
SIAM J. IMAGING SCIENCES c© 2018 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, pp. 863–887

Magnetic Resonance Electrical Impedance Tomography (MREIT): Convergence
and Reduced Basis Approach∗

Dominik Garmatter† and Bastian Harrach†

Abstract. This article considers the inverse problem of magnetic resonance electrical impedance tomography
(MREIT) in two dimensions. A rigorous mathematical framework for this inverse problem as well
as the existing Harmonic Bz Algorithm as a solution algorithm are presented. The convergence
theory of this algorithm is extended, such that the usage of an approximative forward solution of
the underlying partial differential equation (PDE) in the algorithm is sufficient for convergence.
Motivated by this result, a novel algorithm is developed, the aim of which is to speed up the existing
Harmonic Bz Algorithm. This is achieved by combining it with an adaptive variant of the reduced
basis method, a model order reduction technique. In a numerical experiment, a high-resolution
image of the Shepp–Logan phantom is reconstructed and both algorithms are compared.
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1. Introduction. Magnetic resonance electrical impedance tomography (MREIT) is an
imaging modality developed over the course of the last three decades. In order to obtain
data, surface electrodes are attached onto the imaging subject, e.g., the human body, while
the object resides inside an MRI scanner. Injecting current through the electrodes then
results in a change of the magnetic flux density B = (Bx, By, Bz) inside the subject, and
the MRI scanner can detect this change in the magnetic field. The aim of the method is
the determination of the electrical conductivity σ of the imaging subject from this measured
data. This paper deals with the Bz-based MREIT approach, which is feasible in practice:
it is assumed that only Bz is available where the z-direction is the direction of the main
magnetic field of the MRI scanner (earlier techniques utilized the whole magnetic field B, but
cumbersome subject rotations are then necessary to acquire all three components). In order to
solve the inverse problem of determining σ from Bz, one can apply the well-known Harmonic
Bz Algorithm, which was proposed by Seo et al. [25] and has since been extensively studied;
see, e.g., [20, 11, 30, 14, 15, 24] and the references therein.

The historical motivation for the development of MREIT techniques is electrical impedance
tomography (EIT); see, e.g., [4, 17, 2, 13, 28] for a broad overview. EIT is known to be severely
ill-posed and nonlinear such that the spatial resolution of a reconstruction is (usually) poor
(on the other hand, EIT shines with an excellent temporal resolution; cf. time-difference EIT
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in the above-cited works). Consequently, improving the spatial resolution of conductivity
images was the driving force for the development of MREIT techniques.

Before the contributions of this paper to the field are described, the basic setting and the
key identity of the Harmonic Bz Algorithm are recapitulated. Let the imaging subject reside
in a bounded domain Ω ⊂ R3 with two pairs of surface electrodes attached to it, and let
E±1 , E

±
2 denote the respective parts of ∂Ω where the electrodes are attached. Furthermore,

let σ ∈ C1(Ω). Each of the two input currents I1, I2 (one per electrode pair) induces a
magnetic field and the respective z-components B1

z , B
2
z are the observable data. The physical

motivation for Bz-based MREIT is the implicit connection between the unknown conductivity
σ and the observable data B1

z , B
2
z via the Biot–Savart law: for j = 1, 2, where j specifies the

active electrode pair throughout this article, and r = (x, y, z) ∈ Ω, it is

Bj
z(r) =

µ0

4π

∫
Ω
σ(r)

(x− x′)∂u
σ
j

∂y (r′)− (y − y′)∂u
σ
j

∂x (r′)

|r− r′|3
dr′,

with µ0 the magnetic constant of the free space. uσj denotes the electrical potential that
satisfies the shunt model, i.e.,

∇ · (σ∇uσj ) = 0 in Ω,

Ij =

∫
E+
j

σ
∂uσj
∂n

ds = −
∫
E−j

σ
∂uσj
∂n

ds, ∇uσj × n = 0 on E+
j ∪ E

−
j ,

σ
∂uσj
∂n

= 0 on ∂Ω \
(
E+
j ∪ E

−
j

)
,

where n denotes the outward unit normal vector and × denotes the cross product. The
Harmonic Bz Algorithm is then an iteration based on the following identity (here in the
logarithmic formulation), which is obtained by applying the curl-operator on both sides of
Ampère’s law:

∇xy lnσ =
1

µ0
(σA[σ])−1

(
∇2B1

z

∇2B2
z

)
, with A[σ] =

(
∂u1
∂y −∂u1

∂x
∂u2
∂y −∂u2

∂x

)
,(1)

where ∇2 always denotes the Laplace operator throughout this article and ∇xy is the gradient
in the x and y directions.

For locally cylindrical subjects with a conductivity that is hardly changing alongside the
z-direction, the corresponding MREIT problem can be formulated entirely in two space di-
mensions; see, e.g., [14, 15]. This paper will consider this two-dimensional MREIT problem,
which is feasible in practice for the limbs and the thorax of the human body.

The contribution of this paper to the field is the following: although there have been many
advanced numerical studies in MREIT, the convergence analysis did so far only consider the
idealized case in which the exact forward solution uσj is available for the Harmonic Bz Al-
gorithm. Of course, this is not the case in a numerical study (where, for instance, only a
finite element approximation is available), such that numerical convergence of the algorithm
remains an open question. This paper provides a rigorous and complete mathematical frame-
work as well as a convergence result for the inverse problem in question. The convergence
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result is based on and at the same time an extension of the existing convergence theory (see
[14, 15]), such that the usage of an approximation of uσj in the Harmonic Bz Algorithm is
sufficient for convergence. As a consequence, actual numerical convergence of the algorithm
is achieved. Furthermore, the potential to use an approximative forward solution instead of
the exact one opens up the possibility of combining the existing Harmonic Bz Algorithm with
model order reduction techniques in order to develop novel algorithms that retain the accu-
racy in the reconstruction but are computationally faster. The reduced basis method (see,
e.g., [21, 9] for a general survey) as a model order reduction technique is presented, where the
main task of the method is the construction of a low-dimensional reduced basis space, e.g., via
snapshots that are forward solutions for relevant parameters, followed by Galerkin projection
onto this space. This novel algorithm will utilize an adaptive reduced basis approach: new
parameter values for the enrichment of the reduced basis space are found by projecting the
inversion algorithm onto it and iterating this projected algorithm. By alternately updating
the reduced basis space and running the onto this space reprojected inversion algorithm, the
solution of the inverse problem and the construction of the reduced basis space are achieved
simultaneously. This adaptive approach was outlined for the nonlinear Landweber method
in [7] and is based on ideas developed in [6, 5, 12, 31]. A recent work [27] aims at speeding
up the image reconstruction in MREIT by presenting an undersampled MREIT method that
allows for a reduced data acquisition time.

The remainder of this paper is organized as follows. In section 2 the forward and inverse
problems in question are presented. Required results for the convergence theorem are derived,
and the theorem itself is proven. Section 3 contains a short presentation of the reduced
basis method as well as the development of the novel algorithm including numerical results.
Conclusions are drawn in section 4.

2. Magnetic resonance electrical impedance tomography (MREIT). This section pro-
vides the mathematical framework, i.e., the forward and the inverse problem of MREIT, the
solution algorithms for the inverse problem, and the convergence theorem including various
minor results. As mentioned in the introduction, the focus of this paper is a convergence anal-
ysis for the two-dimensional MREIT problem (and in section 3 the speed-up of the Harmonic
Bz Algorithm), such that the mathematical setting will be chosen accordingly. We refer to
[24, 25, 14] for a detailed motivation as well as an overview of the MREIT problem.

2.1. Problem formulation. For the remainder of this article, let Ωc ⊂⊂ ΩI ⊂⊂ Ω ⊂ R2

be C1,α-domains with α ∈ (0, 1), let E±1 , E
±
2 denote the respective parts of ∂Ω where the

electrodes are attached, and let I1, I2 be the input currents corresponding to the electrodes;
see Figure 1 for an exemplary setting of an electrode configuration and the domains. Later on,
Ωc will serve as contrast domain, where the unknown true conductivity is allowed to change
from a constant background. ΩI will be an intermediate domain between Ωc and Ω, which
will be necessary for various theoretical arguments throughout this article.

We consider the parameter space

P := {σ ∈ C1,α(Ω) | σ(x) > 0, x ∈ Ω}

and want to stress that this rather restrictive choice is made in view of the convergence theory
to be developed in sections 2.2 and 2.3.
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Figure 1. Exemplary setting of the domains Ωc ⊂⊂ ΩI ⊂⊂ Ω ⊂ R2 and attached electrodes E±j , j = 1, 2.

For the sake of completeness, we include a proof of the fact that a solution of the shunt
model can be obtained as a scaled solution of a standard boundary value problem; see, e.g.,
[14, Lemma 2.1].

Lemma 2.1. For σ ∈ P, let uσj fulfill

∇ · (σ∇uσj ) = 0 in Ω,(2a)

uσj |E+
j

= 1, uσj |E−j = 0,(2b)

σ∇uσj · n = 0 on ∂Ω\E+
j ∪ E

−
j ,(2c)

where j = 1, 2 specifies the active electrode pair E±j and corresponding input current Ij. Then,

ũσj =
Ij∫

E+
j
σ
∂uσj
∂n ds

uσj(3)

is a solution of the two-dimensional shunt model

∇ · (σ∇u) = 0 in Ω,(4a)

Ij =

∫
E+
j

σ
∂u

∂n
ds = −

∫
E−j

σ
∂u

∂n
ds, ∇u× n = 0 on E+

j ∪ E
−
j ,(4b)

σ
∂u

∂n
= 0 on ∂Ω \

(
E+
j ∪ E

−
j

)
.(4c)

Proof. uσj as a solution of (2) has Neumann boundary values σ
∂uσj
∂n ∈ H

−1/2(∂Ω) such that∫
Ω
σ∇uσj · ∇wdx =

∫
∂Ω
σ
∂uσj
∂n

wds
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holds for all w ∈ H1(Ω) and choosing w ≡ 1 as well as utilizing (2c) yields∫
E+
j

σ
∂uσj
∂n

ds = −
∫
E−j

σ
∂uσj
∂n

ds.

As a consequence, ũσj =
Ij∫

E+
j
σ
∂uσ
j

∂n
ds
uσj fulfills the shunt model (4).

Remark 2.2. (i) Finding a solution uσj of (2) is equivalent to finding

u ∈ H1
Dj (Ω) := {u ∈ H1(Ω) | u|E+

j
= 1, u|E−j = 0}

solving

b(u, v;σ) = f(v) for all v ∈ H1
0 (Ω),(5a)

b(u, v;σ) :=

∫
Ω
σ∇u · ∇vdx, f(v) := 0.(5b)

Since σ ∈ P, existence and uniqueness of a solution of (5) and therefore (2) follow via
the Lax–Milgram theorem.

(ii) It is well known [26] that the shunt model (4) omits an (up to an additive constant)
unique solution. Therefore, the gradient of a solution of (4) is uniquely determined and
equivalent to the gradient of (3).

(iii) Whenever we refer to a solution of (2), we refer to the scaled solution via (3) and will
write not ũ but u.

Before we formulate the inverse problem in the upcoming section, we gather various known
regularity results and estimates for the solutions of mixed boundary value problems in the
following lemma; see [15, Lemma 3.1]. It is easy to see that the general problem (6) in the
upcoming lemma covers the forward problem (2).

Lemma 2.3. Denote by Γ any relatively open C1,α-portion of ∂Ω. For the boundary value
problem

∇ · (σ∇u) = σg in Ω,(6a)

u|Γ = h on Γ,(6b)

−σ∇u · n = 0 on ∂Ω\Γ,(6c)

with σ ∈ P, and g ∈ L2(Ω), h ∈ H1/2(Γ), it is u ∈ H2(ΩI) ∩H1(Ω).
(a) If h = 0, the following estimates hold:

‖u‖H2(ΩI) ≤ C1(σ)(‖u‖L2(Ω) + ‖g‖L2(Ω)),(7)

‖u‖H1(Ω) ≤ C2(σ) ‖g‖L2(Ω) .(8)

(b) If g ∈ C(Ω), then u ∈ C1,α(Ω) with α ∈ (0, 1) and

‖∇u‖C0,α(Ωc)
≤ C3(σ)(‖u‖C0,α(ΩI) + ‖g‖C(ΩI)).(9)
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The functions C1(σ), C2(σ), C3(σ) are known bounded functions with respect to ‖∇ lnσ‖C(Ω).

Proof. u ∈ H2(ΩI) ∩H1(Ω) and (7) are direct consequences of [8, Thm. 8.8]. Inequality
(8) can be obtained via the coercivity of the bilinear form and the continuity of the linear
form of the variational problem associated with (6). Finally, u ∈ C1,α(Ω) is obtained by [8,
Cor. 8.36], and the estimate (9) is generated by [8, Thm. 8.32] applied to Ωc ⊂⊂ ΩI .

Do note that all strong norms in this article, e.g., ‖·‖C(Ω) or ‖·‖C0,α(Ω), are always with
respect to the closure of the specified domain.

2.2. Inverse problem and properties. For the remainder of this article, we assume that
the unknown target conductivity σ? fulfills σ? ∈ P with σ? |Ω\Ωc= σb, where σb > 0 is a

known constant, and that the associated data sets B1
z,?, B

2
z,? are available and fulfill (1); i.e.,

∇2Bj
z,? = µ0

(
∂σ?

∂x

∂u?j
∂y
− ∂σ?

∂y

∂u?j
∂x

)
, j = 1, 2,(10)

holds in a pointwise sense inside Ω, where u?j denotes the solutions of (2) for σ = σ?. The
inverse problem of MREIT then reads as follows:

determine σ? from the knowledge of Bj
z,?, j = 1, 2.(11)

Motivated by (1), we formulate the iteration sequence of the Harmonic Bz Algorithm with
initial guess σ0 ∈ P.

Procedure 2.4 (iteration sequence).
1. Calculate the vector field

Vn+1(r) :=


1
µ0

[
(σn(r)A[σn](r))−1

(
∇2B1

z,?(r)

∇2B2
z,?(r)

)]
, r ∈ ΩI ,

(0, 0)t, r ∈ Ω \ ΩI ,

in Ω, where

A[σn](r) =

(
∂un1 (r)
∂y −∂un1 (r)

∂x
∂un2 (r)
∂y −∂un2 (r)

∂x

)
and unj denotes the solution of the direct problem (2) for σ = σn.

2. Determine lnσn+1 as the solution of

∇2 lnσn+1 = ∇ · Vn+1 in Ω, lnσn+1 = lnσ? on ∂Ω.(12)

3. Define the new iterate σn+1 := exp(lnσn+1) > 0.

Remark 2.5. (i) We will often drop the dependency of V and A on r ∈ Ω and understand
those quantities in a pointwise sense.

(ii) Procedure 2.4 differs from previous formulations of the Harmonic Bz Algorithm (see, e.g.,
[25, 20, 14, 15]) by determining the new iterate as a solution of (12). We believe that
there exists a formulation equivalent to (12) utilizing a suitable fundamental solution.
Since this issue is not relevant for this work, we did not investigate it.
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(iii) As mentioned in [15, sec. 2.2], A[σn] is invertible in ΩI (and Procedure 2.4 is well-defined)
but does not need to be invertible up to the boundary. Furthermore, σ? |Ω\ΩI= σb
together with (10) implies ∇2B1

z,? = ∇2B2
z,? = 0 in Ω \ ΩI , such that it is reasonable to

define V(r) = 0 for r ∈ Ω \ ΩI .
(iv) Regarding the uniqueness of the inverse problem (11), we refer the reader to [24, sec.

2.4.2].
(v) Throughout the article, the data B1

z,?, B
2
z,? is assumed to be known exactly. Denoising

techniques have to be employed as soon as measurement noise is present in B1
z,?, B

2
z,?

since the differentiation when obtaining ∇2B1
z,?, ∇2B2

z,? will be sensitive to noise. We
refer the reader to [25, 20, 24, 22, 16, 23] for various articles that examine the problem
of noise in MREIT.

(vi) σ? is a fixed point of Procedure 2.4 in the sense that if σn = σ?, it is Vn+1 = ∇ lnσ?,
lnσn+1 = lnσ?, and σn+1 = σ?. Nonetheless, we want to stress that aside from this
correlation, Vn+1 = 0 in Ω \ ΩI does not imply that ∇ lnσn+1 = 0 in Ω \ ΩI as well.

It is the aim of this paper to extend the existing convergence theory [14, 15] such that
an approximative solution of the direct problem (2), e.g., a finite element approximation or
an approximation of the type described in section 3, can be used in Procedure 2.4 as well.
To this end, we formulate the following iteration sequence of the approximative Harmonic Bz
Algorithm with initial guess σ0 ∈ P.

Procedure 2.6 (approximative iteration sequence).
1. Calculate the approximative vector field

Vn+1
N (r) :=


1
µ0

[
(σn(r)AN [σn](r))−1

(
∇2B1

z,?(r)

∇2B2
z,?(r)

)]
, r ∈ ΩI ,

(0, 0)t, r ∈ Ω \ ΩI ,

in Ω, where

AN [σn](r) =

 ∂un1,N (r)

∂y −∂un1,N (r)

∂x
∂un2,N (r)

∂y −∂un2,N (r)

∂x


and unj,N denotes the yet-unspecified approximation to unj , the exact solution of (2) for
σ = σn.

2. Determine lnσn+1 as the solution of

∇2 lnσn+1 = ∇ · Vn+1
N in Ω, lnσn+1 = lnσ? on ∂Ω.(13)

3. Define the new iterate σn+1 := exp(lnσn+1) > 0.

Remark 2.7. It is important to note that Procedures 2.4 and 2.6 produce different se-
quences of iterates {σ1, σ2, . . . }. Whenever we refer to unj , the solution of the direct problem
(2) for σ = σn, it is meant with respect to the underlying procedure.

Since unj,N is an approximative solution of (2), the well-definedness of Procedure 2.6 cannot
be obtained as in Remark 2.5, and we make the following assumption.
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Assumption 2.8. For the remainder of this article, we assume that Procedure 2.6 is well-
defined. Explicitly, we require the matrices AN [σn] to be invertible inside of ΩI for all n =
0, 1, 2, . . . .

This assumption is reasonable since AN [σn] = A[σn] + (AN [σn]− A[σn]), and as long
as the perturbation AN [σn] − A[σn] is small (e.g., when unj,N is a good approximation), the
invertibility of AN [σn] might hold through the respective property of A[σn].

With our sights on the convergence theory in section 2.3, we investigate the regularity of
the iterates and the vector fields defined during Procedures 2.4 and 2.6.

Theorem 2.9. (a) The iterates σn+1 defined by Procedure 2.4 with initial guess σ0 ∈ P
fulfill σn+1 ∈ P for n = 0, 1, 2, . . . .

(b) As long as the approximations unj,N in Procedure 2.6 fulfill unj,N ∈ C1,α(ΩI), the iterates

σn+1 defined by Procedure 2.6 with initial guess σ0 ∈ P fulfill σn+1 ∈ P for n = 0, 1, 2, . . . .

Proof. (a) With σ? ∈ P we can apply Lemma 2.3 to derive u?1, u
?
2 ∈ C1,α(ΩI). Notic-

ing that the product of Hölder-continuous functions is Hölder-continuous, (10) yields
∇2B1

z,?, ∇2B2
z,? ∈ C0,α(ΩI). Repeating the same argument for σ0 ∈ P and associated

forward solutions and combining it with the fact that for any v ∈ C0,α(ΩI) with v(r) 6= 0,
for all r ∈ ΩI , it is 1

v ∈ C
0,α(ΩI), we can deduce V1 ∈ C0,α(ΩI) (componentwise). Since

σ? is already constant in Ω \ Ωc, it is ∇2B1
z,? = ∇2B1

z,? = 0 in Ω \ Ωc and together with

Ωc ⊂⊂ ΩI ⊂⊂ Ω it is actually V1 ∈ C0,α(Ω). Since lnσ1 is defined as the solution of
(12), its regularity is a consequence of the regularity of the right-hand side, and [8, Thm.
8.34] yields the desired result. The remaining statement follows via induction.

(b) The proof works analogously: the regularity assumption unj,N ∈ C1,α(ΩI) together with
Assumption 2.8 yields the regularity of the vector field, and the regularity of the iterates
of Procedure 2.6 follows from [8, Thm. 8.34].

As a conclusion of this section, we gather properties of the iterates of Procedure 2.6 which
are interesting on their own and especially useful for the convergence proof in the upcoming
section.

Lemma 2.10. Let the approximations in Procedure 2.6 fulfill unj,N ∈ C1,α(ΩI) such that
Theorem 2.9 holds.
(a) There exists a constant C† ≥ 1 that does not depend on n, such that∥∥lnσn+1 − lnσ?

∥∥
C1,α(Ωc)

≤ C†
∥∥Vn+1

N −∇ lnσ?
∥∥
C0,α(Ωc)

, n = 0, 1, 2, . . . .(14)

(b) There exists a constant C‡ ≥ 1 that does not depend on n, such that∥∥lnσn+1 − lnσ?
∥∥
C1,α(Ω)

≤ C‡
∥∥lnσn+1 − lnσ?

∥∥
C1,α(Ωc)

, n = 0, 1, 2, . . . .(15)

(c) It holds for n = 0, 1, 2, . . . that given an estimate ‖lnσ? − lnσn‖C1(Ωc)
≤ Kεn+1, for some

0 < ε < 1 and K ≥ 1, there exists a constant K̃ ≥ 1 that does not depend on n, such that∥∥∥∥σ? − σnσn

∥∥∥∥
C1(Ωc)

≤ K̃εn+1.(16)
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Proof. (a) It is obvious that lnσn+1 − lnσ? solves

∇2 lnσn+1 −∇2 lnσ? = ∇ ·
(
Vn+1
N −∇ lnσ?

)
in Ω,

lnσn+1 − lnσ? = 0 on ∂Ω,

and via [8, (8.90)] the estimate∥∥lnσn+1 − lnσ?
∥∥
C1,α(Ωc)

≤ C
∥∥Vn+1

N −∇ lnσ?
∥∥
C0,α(Ω)

holds, where C is independent of Vn+1
N and thus n. Since σ? is constant in Ω \ Ωc, it

is ∇2B1
z,? = ∇2B2

z,? = 0 and thus Vn+1
N = 0 in Ω \ Ωc as well. Together with C† :=

max{C, 1} ≥ 1, it follows that∥∥lnσn+1 − lnσ?
∥∥
C1,α(Ωc)

≤ C†
∥∥Vn+1

N −∇ lnσ?
∥∥
C0,α(Ω)

= C†
∥∥Vn+1

N −∇ lnσ?
∥∥
C0,α(Ωc)

.

(b) Since Vn+1
N = 0 in Ω \ Ωc, e

n+1 := lnσn+1 − lnσ? fulfills

∇2en+1 = 0 in Ω \ Ωc, en+1 = 0 on ∂Ω, en+1 = en+1 on ∂Ωc.

Utilizing
∥∥en+1

∥∥
C1,α(Ω)

≤
∥∥en+1

∥∥
C1,α(Ωc)

+
∥∥en+1

∥∥
C1,α(Ω\Ωc) and applying [8, (8.90)] to∥∥en+1

∥∥
C1,α(Ω\Ωc) yields∥∥en+1

∥∥
C1,α(Ω)

≤ (1 + C̃)
∥∥en+1

∥∥
C1,α(Ωc)

=: C‡
∥∥en+1

∥∥
C1,α(Ωc)

,

where C̃ stems from [8, (8.90)] and is independent of n, such that C‡ ≥ 1 is also inde-
pendent of n.

(c) Regarding
∥∥σ?−σn

σn

∥∥
C(Ωc)

, it is

‖lnσ? − lnσn‖C(Ωc)
≤ ‖lnσ? − lnσn‖C1(Ωc)

≤ Kεn+1,

such that

e−Kε
n+1 ≤ σ?

σn
≤ eKεn+1 ⇔ e−Kε

n+1 − 1 ≤ σ?

σn
− 1 ≤ eKεn+1 − 1(17)

holds pointwise in Ωc. Therefore, it is∥∥∥∥σ? − σnσn

∥∥∥∥
C(Ωc)

≤ max{|eKεn+1 − 1|, |e−Kεn+1 − 1|},

and applying the mean value theorem to f1(x) := eKx and f2(x) := e−Kx yields the
existence of ξ+

n , ξ
−
n ∈ (0, εn+1) ⊂ (0, ε), such that

|eKεn+1 − 1| = εn+1KeKξ
+
n and |e−Kεn+1 − 1| = εn+1Ke−Kξ

−
n .
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Since Ke−Kξ
−
n ≤ KeKξ

+
n ≤ KeKε for n = 0, 1, 2, . . . , we define K̃ := KeKε ≥ 1 and

conclude
∥∥σ?−σn

σn

∥∥
C(Ωc)

≤ K̃εn+1.

Regarding ∥∥∥∥∇(σ?σn − 1

)∥∥∥∥
C(Ωc)

=

∥∥∥∥∇σ?σn
∥∥∥∥
C(Ωc)

,

it is ∥∥∥∥∇(ln

(
σ?

σn

))∥∥∥∥
C(Ωc)

≤ ‖lnσ? − lnσn‖C1(Ωc)
≤ Kεn+1,

such that

−Kεn+1 ≤ σn

σ?
∇
(
σ?

σn

)
≤ Kεn+1 ⇔ −σ

?

σn
Kεn+1 ≤ ∇

(
σ?

σn

)
≤ σ?

σn
Kεn+1

holds pointwise and componentwise. With (17), it is
∥∥ σ?
σn

∥∥
C(Ωc)

≤ eKεn+1
, and we conclude∥∥∥∥∇(σ?σn

)∥∥∥∥
C(Ωc)

≤ eKεn+1
Kεn+1 ≤ K̃εn+1

and the statement follows.

Obviously, due to the first part of Theorem 2.9, the results of Lemma 2.10 can be obtained
for the iterates of Procedure 2.4 as well.

2.3. Convergence of the approximative Harmonic Bz Algorithm. We gather supple-
mentary results for the convergence theorem in the following lemma.

Lemma 2.11. (a) For a C1,α-domain Ω ⊂ R2 and a1, a2, a3, a4 ∈ C0,α(Ω)∥∥∥∥( a1 a2

a3 a4

)∥∥∥∥
C0,α(Ω)

:= 2 max
i=1,2,3,4

{
‖ai‖C0,α(Ω)

}
is a submultiplicative matrix norm that is consistent with the vector norm∥∥∥∥( a1

a2

)∥∥∥∥
C0,α(Ω)

:= max
{
‖a1‖C0,α(Ω) , ‖a2‖C0,α(Ω)

}
.

(b) There exists a constant CA > 0 such that
∥∥A[σ?]−1

∥∥
C0,α(Ωc)

≤ CA.

Proof. (a) The statement follows from standard arguments in matrix and vector norm
theory such that we omit the proof.

(b) As mentioned in the proof of Theorem 2.9 it is u?1, u
?
2 ∈ C1,α(Ω) and with the notation

( a1 a2
a3 a4 ) := A[σ?], it is∥∥A[σ?]−1

∥∥
C0,α(Ωc)

≤ 2

∥∥∥∥ 1

detA[σ?]

∥∥∥∥
C(Ωc)

max
i=1,2,3,4

{
‖ai‖C0,α(Ωc)

}
= 2

∥∥∥∥ 1

detA[σ?]

∥∥∥∥
C(Ωc)

max
j=1,2

∥∥∇u?j∥∥C0,α(Ωc)
,
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where maxj=1,2 ‖∇u?j‖C0,α(Ωc) is finite. Furthermore, [15, Prop. 2.1] which is based on

[3, Prop. 2.10] yields the existence of a constant σ? > 0 such that ‖ 1
detA[σ?]‖C(Ωc) ≤

1
σ? .

Therefore, we obtain the result

∥∥A[σ?]−1
∥∥
C0,α(Ωc)

≤ 2

σ?
max
j=1,2

∥∥∇u?j∥∥C0,α(Ωc)
=: CA.(18)

In the following, we present the main result of this article—the convergence result for
Procedures 2.4 and 2.6. Do note that this result is inspired by [15, Thm. 3.2].

Theorem 2.12. Let σ? ∈ P = {σ ∈ C1,α(Ω) | σ(x) > 0, x ∈ Ω} with σ? |Ω\Ωc= σb, σb a

known constant, and recall that C† was introduced in Lemma 2.10.
(a) Considering Procedure 2.4, we obtain the following convergence result. There exists an

ε > 0 such that if ‖∇ lnσ?‖C0,α(Ω) < ε, the resulting sequence of iterates σn, n = 1, 2, . . . ,

with initial guess σ0 = σb, satisfies

‖lnσn − lnσ?‖C1,α(Ωc)
≤ C†

(
1

2

)n
ε, n = 1, 2, . . . .

(b) Considering Procedure 2.6, we obtain the following convergence result. There exists an
ε > 0 such that if ‖∇ lnσ?‖C0,α(Ω) < ε and the approximations unj,N fulfill

(i) unj,N ∈ C1,α(ΩI), (regularity condition)

(ii)
∥∥∥∇unj,N −∇unj ∥∥∥

C0,α(Ωc)
≤ εn+1

2CA
(quality condition)

throughout Procedure 2.6, the resulting sequence of iterates σn, n = 1, 2, . . . , with initial
guess σ0 = σb, satisfies

‖lnσn − lnσ?‖C1,α(Ωc)
≤ C†

(
1

2

)n
ε, n = 1, 2, . . . .

Proof. (a) The exact forward solutions unj utilized in Procedure 2.4 fulfill both require-
ments of the second part of this theorem (the regularity stems from Lemma 2.3 and
the second requirement is trivial). Therefore, the first statement of this theorem is a
consequence of the second statement.

(b) We prove by induction: there exists an ε ∈ (0, 1) such that if ‖∇ lnσ?‖C0,α(Ω) < ε and

both the regularity and the quality condition hold, there exists a θ < 1
2 depending on ε,

such that

‖lnσn − lnσ?‖C1,α(Ωc)
≤ C†θnε ≤ C†

(
1

2

)n
ε

holds for n = 1, 2, . . . , where ε and θ are fixed after the base case.
Base case (n = 0): Let unj and u?j denote the solutions of (2) for σ = σn and σ?,

respectively, where (2) was a special case of (6) with g = 0, Γ = E+
j ∪E

−
j , and adequately

chosen h. Furthermore, we introduce the notation e0 := lnσ0− lnσ?, w0
j := u0

j − u?j , and
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w0
j,N := u0

j,N − u?j , where w0
j fulfills

∇ · (σ0∇w0
j ) = −σ0∇e0 · ∇u?j in Ω,(19a)

w0
j |E+

j
= 0, w0

j |E−j = 0,(19b)

− σ0∇w0
j · n = (σ0 − σ?)∇u?j · n = 0 on ∂Ω\E+

j ∪ E
−
j(19c)

since it is σ0 = σb and thus σ0 = σ? on ∂Ω.
To obtain the desired result, we want to utilize (14) and derive a suitable estimate for∥∥V1

N −∇ lnσ?
∥∥
C0,α(Ωc)

. According to Procedure 2.6, it is

σ0AN [σ0]V1
N =

1

µ0

(
∇2B1

z,?

∇2B2
z,?

)
in Ωc. Introducing the notation W 0

N := AN [σ0]−A[σ?] the above relation can be written
as

(σ0I + σ0A[σ?]−1W 0
N )V1

N =
1

µ0
A[σ?]−1

(
∇2B1

z,?

∇2B2
z,?

)
= ∇σ?,

where I ∈ R2×2 is the identity matrix and the last equality was explained (for the logarith-
mic formulation of Procedure 2.6) in Remark 2.5. Subtracting (σ0I+σ0A[σ?]−1W 0

N )∇ lnσ?

on both sides and dividing by σ0 yields

(I + A[σ?]−1W 0
N )(V1

N −∇ lnσ?) =

((
σ?

σ0
− 1

)
I − A[σ?]−1W 0

N

)
∇ lnσ?.(20)

In order to derive the invertibility of I + A[σ?]−1W 0
N and also gain an upper bound on

the matrix norm of its inverse via the Neumann series, we calculate∥∥A[σ?]−1W 0
N

∥∥
C0,α(Ωc)

≤ 2
∥∥A[σ?]−1

∥∥
C0,α(Ωc)

max
j=1,2

∥∥∇w0
j,N

∥∥
C0,α(Ωc)

≤ 2
∥∥A[σ?]−1

∥∥
C0,α(Ωc)

max
j=1,2

∥∥∇w0
j

∥∥
C0,α(Ωc)︸ ︷︷ ︸

(∗)

+ 2
∥∥A[σ?]−1

∥∥
C0,α(Ωc)

max
j=1,2

∥∥∇u0
j,N −∇u0

j

∥∥
C0,α(Ωc)︸ ︷︷ ︸

(∗∗)

.

Defining Ĉ := max{C†, C‡} ≥ 1, where C† and C‡ have been introduced in Lemma 2.10,
we make the initial choice of ε ∈ (0, 1

Ĉ2+1
) ⊂⊂ (0, 1).

Regarding (∗∗), we combine the quality condition ‖∇u0
j,N −∇u0

j‖C0,α(Ωc) ≤
ε

2CA
with (18)

to obtain

2
∥∥A[σ?]−1

∥∥
C0,α(Ωc)

max
j=1,2

∥∥∇u0
j,N −∇u0

j

∥∥
C0,α(Ωc)

≤ 2CA
ε

2CA
= ε.(21)
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Regarding (∗), we want to derive an upper bound for ‖∇w0
j‖C0,α(Ωc) containing ε. Since

w0
j is a solution of (19) which is covered by (6) with right-hand side g = ∇e0 ·∇u?j ∈ L2(Ω)

(it is u?j ∈ H1(Ω) and e0 ∈ C1,α(Ω)), using (7) and (8) yields∥∥w0
j

∥∥
H2(ΩI)

≤ C1(σ0)
(∥∥∇e0 · ∇u?j

∥∥
L2(Ω)

+
∥∥w0

j

∥∥
H1(Ω)

)
≤ C1(σ0)(1 + C2(σ0))

∥∥∇e0 · ∇u?j
∥∥
L2(Ω)

≤ C1(σ0)(1 + C2(σ0))
∥∥∇e0

∥∥
C(Ω)

∥∥u?j∥∥H1(Ω)
.

The Sobolev imbedding theorem [1, Thm. 4.12] yields the estimate ‖w0
j‖C0,α(ΩI) ≤

Cs‖w0
j‖H2(ΩI) with the imbedding constant Cs, and together with (9) we obtain∥∥∇w0

j

∥∥
C0,α(Ωc)

≤ C3(σ0)[
∥∥w0

j

∥∥
C0,α(ΩI)

+
∥∥∇e0 · ∇u?j

∥∥
C(ΩI)

]

≤ C3(σ0)[Cs
∥∥u?j∥∥H1(Ω)

C1(σ0)(1 + C2(σ0)) +
∥∥∇u?j∥∥C0,α(ΩI)

]
∥∥∇e0

∥∥
C(Ω)

.

Note that (9) is applicable here since e0 ∈ C1,α(Ω) combined with u?1, u
?
2 ∈ C1,α(Ω) yields

∇e0 · ∇u?j ∈ C(Ω). At the same time, ‖u?j‖H1(Ω) and ‖∇u?j‖C0,α(ΩI) are finite, and we
denote by

G̃(σ) := C3(σ)[Cs
∥∥u?j∥∥H1(Ω)

C1(σ)(1 + C2(σ)) +
∥∥∇u?j∥∥C0,α(ΩI)

]

a (due to Lemma 2.3) known function that only depends on ‖∇ lnσ‖C(Ω). The expression

sup
‖∇ lnσ−∇ lnσ?‖C(Ω)≤C†C‡ε

G̃(σ)

is well-defined since ‖∇ lnσ −∇ lnσ?‖C(Ω) ≤ C†C‡ε implies the boundedness of ‖∇ lnσ‖C(Ω)

via

‖∇ lnσ‖C(Ω) ≤ ‖∇ lnσ?‖C(Ω) + ‖∇ lnσ −∇ lnσ?‖C(Ω) ≤ (1 + C†C‡)ε ≤ 1,

where the last inequality stems from the initial choice of ε ∈ (0, 1
Ĉ2+1

). Therefore, we

define

Ḡ := sup
‖∇ lnσ−∇ lnσ?‖C(Ω)≤1

G̃(σ),

and remembering ‖∇ lnσ?‖C0,α(Ω) < ε it is∥∥∇e0
∥∥
C(Ω)

≤ ‖∇ lnσ?‖C0,α(Ω) < ε ≤ C†C‡ε

since C†, C‡ ≥ 1, and we assert G̃(σ0) ≤ Ḡ. With the definition of Ĉ, the above result
yields the estimate ∥∥∇w0

j

∥∥
C0,α(Ωc)

≤ G̃(σ0)
∥∥∇e0

∥∥
C(Ω)

≤ ḠĈ2ε,(22)
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and together with (18), we obtain

(∗) = 2
∥∥A[σ?]−1

∥∥
C0,α(Ωc)

max
j=1,2

∥∥∇w0
j

∥∥
C0,α(Ωc)

≤ 2CAḠĈ
2ε.(23)

We refine the initial choice of ε ∈ (0, 1
Ĉ2+1

) and take ε small enough such that (in view of

(21)) max{2CAḠĈ
2ε, ε} < 1

4 . In total, it is∥∥A[σ?]−1W 0
N

∥∥
C0,α(Ωc)

<
1

2

and the Neumann series for I + A[σ?]−1W 0
N is applicable. As a consequence, we obtain

the following estimate which is based on (20), (21), and (23):∥∥V1
N −∇ lnσ?

∥∥
C0,α(Ωc)

≤ 2

(
2

∥∥∥∥σ? − σ0

σ0

∥∥∥∥
C0,α(Ωc)

+ (2CAḠĈ
2 + 1)ε

)
‖∇ lnσ?‖C0,α(Ωc)

.

Using σ0 = σb, we calculate∥∥e0
∥∥
C(Ωc)

≤ diam(Ωc)
∥∥∇e0

∥∥
C(Ωc)

= diam(Ωc) ‖∇ lnσ?‖C(Ωc)
≤ diam(Ωc)ε,

such that
∥∥e0
∥∥
C1(Ωc)

≤ (1 + diam(Ωc))ε and (16) is applicable. Together with (14) and

‖∇ lnσ?‖C0,α(Ω) < ε, we obtain∥∥lnσ1 − lnσ?
∥∥
C1,α(Ωc)

≤ C†
∥∥V1

N −∇ lnσ?
∥∥
C0,α(Ωc)

≤ C†2
(

2K̃ + 2CAḠĈ
2 + 1

)
ε2,

with K̃ ≥ 1 from (16). So far, ε ∈ (0, 1
Ĉ2+1

) fulfills max{2CAḠĈ
2ε, ε} < 1

4 . We finalize

our choice of ε and choose it small enough such that

θ := 2
(

2K̃ + 2CAḠĈ
2 + 1

)
ε <

1

2

and obtain ∥∥lnσ1 − lnσ?
∥∥
C1,α(Ωc)

≤ C†θε < C†
(

1

2

)
ε.

Induction step (n→ n+ 1): Let us assume that∥∥∥lnσk − lnσ?
∥∥∥
C1,α(Ωc)

≤ C†θkε < C†
(

1

2

)k
ε

holds for k = n and we want to verify the statement for k = n + 1. We introduce the
notation en := lnσn − lnσ? and the above induction hypothesis reads

‖en‖C1,α(Ωc)
≤ C†θnε = C†2n

(
2K̃ + 2CAḠĈ

2 + 1
)n
εn+1.(24)
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Correspondingly, we introduce the notation wnj = unj − u?j as well as wnj,N = unj,N − u?j
and since σn = σ? on ∂Ω due to (13), wnj meets

∇ · (σn∇wnj ) = −σn∇en · ∇u?j in Ω,

wnj |E+
j

= 0, wnj |E−j = 0,

− σn∇wnj · n = (σn − σ?)∇u?j · n = 0 on ∂Ω\E+
j ∪ E

−
j .

Similar to (20), we obtain the equality

(I + A[σ?]−1Wn
N )(Vn+1

N −∇ lnσ?) =

((
σ?

σn
− 1

)
I − A[σ?]−1Wn

N

)
∇ lnσ?,

with Wn
N := AN [σn]− A[σ?]. As in the base case, we want to apply the Neumann series

and therefore calculate∥∥A[σ?]−1Wn
N

∥∥
C0,α(Ωc) ≤ 2

∥∥A[σ?]−1
∥∥
C0,α(Ωc)

max
j=1,2

∥∥∇wnj,N∥∥C0,α(Ωc)

≤ 2
∥∥A[σ?]−1

∥∥
C0,α(Ωc)

max
j=1,2

∥∥∇wnj ∥∥C0,α(Ωc)︸ ︷︷ ︸
(�)

+ 2
∥∥A[σ?]−1

∥∥
C0,α(Ωc)

max
j=1,2

∥∥∇unj,N −∇unj ∥∥C0,α(Ωc)︸ ︷︷ ︸
(��)

.

Regarding (�), due to the regularity condition unj,N ∈ C1,α(ΩI), Theorem 2.9 holds, and
with the regularity of σn Lemma 2.3 is applicable for wnj . Using the respective inequalities,
similar to (22), we obtain ∥∥∇wnj ∥∥C0,α(Ωc)

≤ G̃(σn) ‖∇en‖C(Ω) ,

and (15) together with (24) yields

‖∇en‖C(Ω) ≤ ‖e
n‖C1,α(Ω) ≤ C

‡ ‖en‖C1,α(Ωc)
≤ C†C‡ε < 1,

which implies G̃(σn) ≤ Ḡ. In total, we obtain∥∥∇wnj ∥∥C(Ωc)
≤ ḠC‡C†θnε.

Using this, (18), and C†, C‡ ≤ Ĉ, and remembering the definition of θ, we obtain

2
∥∥A[σ?]−1

∥∥
C0,α(Ωc)

max
j=1,2

∥∥∇wnj ∥∥C0,α(Ωc)
≤ 2CAḠĈ

2θnε ≤ θn+1 <
1

2n+1
≤ 1

4
.

Regarding (��), the quality condition ‖∇unj,N − ∇unj ‖C0,α(Ωc) ≤
εn+1

2CA
together with (18)

yields

2
∥∥A[σ?]−1

∥∥
C0,α(Ωc)

max
j=1,2

∥∥∇unj,N −∇unj ∥∥C0,α(Ωc)
≤ 2CA

εn+1

2CA
= εn+1,
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and we can assert that (ε is at least smaller than 1
4)

∥∥A[σ?]−1Wn
N

∥∥
C0,α(Ωc)

<
1

2
.

Therefore, the Neumann series is once again applicable, and together with the previous
estimates as well as (16) and the definition of θ we derive∥∥Vn+1

N −∇ lnσ?
∥∥
C0,α(Ωc)

≤ 2

(
2K̃εn+1 + 2

∥∥A[σ?]−1
∥∥
C0,α(Ωc)

max
j=1,2

∥∥∇wnj,N∥∥C0,α(Ωc)

)
‖∇ lnσ?‖C0,α(Ωc)

≤ 2εn+1
(

2K̃ + 2CAḠĈ
22n

(
2K̃ + 2CAḠĈ

2 + 1
)n

+ 1
)
ε

≤ 2εn+12n
(

2K̃ + 2CAḠĈ
2 + 1

)n+1
ε = θn+1ε.

Combining this with (14) yields∥∥lnσn+1 − lnσ?
∥∥
C1,α(Ωc)

≤ C†
∥∥Vn+1

N −∇ lnσ?
∥∥
C0,α(Ωc)

≤ C†θn+1ε < C†
(

1

2

)n+1

ε,

and the statement is correct for k = n+ 1.

Remark 2.13. Theorem 2.12 extends [15, Thm. 3.2] in the following ways:
(i) The first part of Theorem 2.12 replicates the statement of [15, Thm. 3.2]. Do note that

as mentioned in Remark 2.5 there is no direct correlation between either Vn+1 or Vn+1
N

and ∇ lnσn+1 such that Vn+1 = Vn+1
N = 0 in Ω\Ωc cannot be abused to generate a result

on the iteration error in the background Ω \ Ωc.
(ii) The second part of Theorem 2.12 ensures actual numerical convergence of the Harmonic

Bz Algorithm. Remembering Remark 2.7, unj in the quality condition is the solution of
(2) for σ = σn with σn originating from Procedure 2.6 such that the quality condition
does relate to, for instance, a discretization error. If the approximations unj,N are, for
example, finite element approximations, the regularity condition indicates what type of
finite elements should be utilized to obtain a convergent numerical scheme, and the quality
condition specifies the required approximation quality, i.e., the fineness of the mesh.

(iii) The required bound on ‖∇ lnσ?‖C0,α(Ω) together with σ? ∈ P translates to the contrast

in σ? from the background σb not being too large. In this sense the initial guess σ0 = σb
cannot be too far away from σ?, and the convergence result acquired with Theorem 2.12
has to be interpreted as a local convergence result.

(iv) Theorem 2.12 can be formulated for a broader class of initial guesses, possessing the
properties necessary for the proof. Since the known background σb is indeed the natural
choice here (and fulfills the requirements), we formulated the result with σ0 = σb.

3. Reduced basis methods for MREIT. Throughout section 2 an unspecified approxi-
mation to the forward solution uσj was used. In this section, we want to introduce a specific
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approximation via the reduced basis method, a model order reduction technique. Utilizing
the reduced basis method, we develop a novel algorithm, the aim of which is to speed up the
existing Harmonic Bz Algorithm, and Theorem 2.12 will guarantee the convergence of the
new method if the respective conditions are met. Finally, a numerical comparison of the novel
algorithm and the existing one will be carried out.

3.1. The reduced basis method. As introduced in Remark 2.2, there are two different
forward problems (one for each electrode configuration), to which we want to apply the reduced
basis method. Since this introductory section wants to explain the basics of the reduced basis
method (see, e.g., [21, 9] for a detailed survey), we formulate it for only one of the two forward
problems and choose without loss of generality Y := H1

D1
(Ω) as the solution space in (5) and

write u or uσ instead of uσ1 whenever we refer to (5) in this section. Of course, the method
can be analogously formulated for the second solution space H1

D2
(Ω).

The aim of the reduced basis method is the construction of an accurate reduced basis
approximation uσN of uσ, the solution of (5), where uσN ∈ YN ⊂ Y , the reduced basis space
with dimYN = N ∈ N and N �∞. Typically YN will consist of so-called snapshots that are
solutions of (5) for meaningful parameters. We will discuss our method of constructing YN in
the upcoming section and assume its existence in this section.

Definition 3.1. Given the forward problem (5) and a reduced basis space YN ⊂ Y , with
dimYN = N and basis ΨN := {ψ1, . . . , ψN}, we define the reduced forward problem: for
σ ∈ P find uσN ∈ YN , the solution of

b(uN , v;σ) = f(v) for all v ∈ YN .(25)

We call uσN the reduced basis approximation and will often write uN instead.

Since (25) is simply the Galerkin-projection of (5) onto YN , a closed subspace of Y ,
existence and uniqueness of a solution of (25) follow from the properties of (5).

To give a better impression of (25) and insight into its numerical implementation, we
define the discrete reduced forward problem.

Proposition 3.2. For a given reduced forward problem (25) and σ ∈ P, we define

BN (σ) := (b(ψj , ψi;σ))Ni,j=1 ∈ RN×N , fN := (f(ψi))
N
i=1 ∈ RN .

Solving the linear system

BN (σ)uσN = fN(26)

for uσN = (uN,i)
N
i=1 ∈ RN , we can obtain the solution of (25) via uσN =

∑N
i=1 uN,iψi.

Regarding the stability of (26), if the reduced basis ΨN is orthonormal, it holds that

cond(BN (σ)) ≤ γ(σ)
α(σ) independent of N , with α(σ) and γ(σ) being the coercivity and continuity

constants of the bilinear form b.
From a numerical viewpoint BN (σ) will not be sparse, but since N is usually very small,

the solution of (26) is still very cheap compared to, e.g., the computation of a finite element
approximation of the full forward problem (5).
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We formulate two simple but important properties of the reduced basis method: the well-
known rigorous error estimator for the reduced basis error, here measured in the H1-norm
‖u− uN‖H1(Ω), and the reproduction of solutions.

Lemma 3.3. (a) For σ ∈ P we define the residual r(·;σ) ∈ Y ′ via r(v;σ) := f(v) −
b(uN , v;σ), v ∈ Y and let vr ∈ Y denote the Riesz-representative of r(·;σ), i.e.,

〈vr, v〉H1(Ω) = r(v;σ), v ∈ Y, ‖vr‖H1(Ω) = ‖r(·;σ)‖Y ′ .

Then, the error u− uN ∈ Y is bounded for all σ ∈ P by

‖u− uN‖H1(Ω) ≤ ∆N (σ) :=
‖vr‖H1(Ω)

α(σ)
.

(b) For σ ∈ P, let u, uN be solutions of (5) and (25) and ei ∈ RN the i-th unit vector. Then
the following hold:
(i) If u ∈ YN , then uN = u.

(ii) If u = ψi ∈ ΨN , then uN = ei ∈ RN in Proposition 3.2.

Proof. (a) See, e.g., [21] or [9, Prop. 2.20 and 2.24].
(b) This part of the proof immediately follows from (5) and (25); see, e.g., [9, Prop. 2.21].

We want to close this introductory section by commenting on the reduced basis method in
a numerical setting where a fully discretized forward problem (including a finite dimensional
parameter space) is given instead of (5).

Remark 3.4. (i) The discrete forward solution takes over the role of u in this setting and
the reduced basis solution approximates this discrete forward solution. As a consequence,
the reduced basis error does not incorporate the approximation error that is made by the
discrete forward problem and the error estimator does not include this error. This is a
usual occurrence in reduced basis methods and it is assumed that the discrete forward
problem is chosen well enough such that its approximation error is negligible.

(ii) Given a discretized forward problem, the method (including the error estimator) can
efficiently be implemented utilizing an offline/online decomposition (see, e.g., [21, sec.
7.1.3], [9, sec. 2.3.5], or [7, sec. 3.2]) such that the reduced basis approximation and
the error estimator can be rapidly computed and a considerable speed-up is achieved. In
order to keep the length of this paper managable, we choose not to explain this in detail.

3.2. The Reduced Basis Harmonic Bz Algorithm (RBZ-Algorithm). Let us combine
Procedure 2.4 with a suitable termination criterion as a starting point for the development of
our new method. Motivated by the fixed-point discussion in Remark 2.5 and the convergence
result in Theorem 2.12, we choose the logarithmic iteration error as the termination criterion
and formulate the Harmonic Bz Algorithm.

Remark 3.5. (i) If σ? fulfills the requirements of Theorem 2.12, Algorithm 1 terminates.
As mentioned at the end of section 2.2, Lemma 2.10 holds for Procedure 2.4 as well.
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Algorithm 1 Harmonic Bz Algorithm (σ0 = σb, µ0, ε,∇2B1
z,?,∇2B2

z,?)

1: n = 0
2: repeat
3: For all r ∈ Ω, calculate the vector field

Vn+1(r) :=


1
µ0

[
(σn(r)A[σn](r))−1

(
∇2B1

z,?(r)

∇2B2
z,?(r)

)]
, r ∈ ΩI ,

(0, 0)t, r ∈ Ω \ ΩI .

4: Calculate lnσn+1 as the solution of (12).
5: σn+1 := exp(lnσn+1)
6: n = n+ 1
7: until

∥∥lnσn − lnσn−1
∥∥
C(Ω)

< ε

8: return σBZ = σn

Applying the triangle inequality and (15) yields∥∥lnσn − lnσn−1
∥∥
C(Ω) ≤

∥∥lnσn − lnσn−1
∥∥
C1,α(Ω)

≤ ‖lnσn − lnσ?‖C1,α(Ω) +
∥∥lnσn−1 − lnσ?

∥∥
C1,α(Ω)

≤ C‡
(
‖lnσn − lnσ?‖C1,α(Ωc)

+
∥∥lnσn−1 − lnσ?

∥∥
C1,α(Ωc)

)
,

and it follows from Theorem 2.12 that the last expression goes to zero as n goes to
infinity. Therefore, the chosen termination criterion is reasonable; although, keeping the
convergence result of Theorem 2.12 in mind, simply running a fixed amount of repeat-loop
iterations would also yield decent results.

(ii) Alternatively, an efficiently computable error estimator for ‖lnσn − lnσ?‖C1,α(Ω) could
be used as termination criterion; see [15, Thm. 2.1] for a first result in that direction.

It is our intention to develop a faster version of Algorithm 1 involving the reduced basis
method presented in section 3.1, where the reconstruction with the new algorithm should
retain its quality compared to Algorithm 1. Using a qualitative and cheap approximative for-
ward solution in order to speed up the whole algorithm is intuitive, since the computationally
expensive part of each iteration of Algorithm 1 is the computation of the two solutions of (5)
(one per electrode configuration) involved in the matrix A[σn]. One way to apply the reduced
basis method would be what we call the direct approach:

1. For each forward problem (5) construct a global reduced basis space, e.g., via the classical
greedy algorithm (see, e.g., [29, 21, 9]), where it is the aim of a global reduced basis space
to provide accurate approximations for every parameter in the parameter domain (the
desired accuracy is given by the quality condition in Theorem 2.12).

2. In each step of Algorithm 1, replace the forward solutions of (5) by the corresponding
reduced basis approximations.

The offline/online decomposition mentioned in Remark 3.4 would guarantee the desired speed-
up, and as long as the quality condition in Theorem 2.12 is fulfilled, the convergence would
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also be guaranteed since snapshot-based reduced basis spaces inherit the regularity from the
snapshots.

This direct approach has successfully been applied to inverse problems with a low-
dimensional parameter space; see, e.g., [19, 18, 10]. In the imaging context of this article,
however, we want to recover high-resolution images of the unknown conductivity, such that a
potential discrete parameter domain in a numerical setting would be very high-dimensional.
This high-dimensionality limits the applicability of this direct approach since in general it is
impossible to construct a well-approximating global reduced basis space for a complex high-
dimensional parameter domain. We refer the reader to [9, Rem. 2.11] for more details on this
discussion.

To overcome this issue of dimensionality and to be able to tackle parameter spaces of arbi-
trary dimension, we propose an approach which aims at constructing a locally approximating
reduced basis space. We outlined this local approach for the nonlinear Landweber method in
[7] and want to mention that it is based on ideas developed in [6, 5, 12, 31]. The key idea is to
simultaneously solve the inverse problem as well as adaptively enrich and therefore construct
the reduced basis space:

1. Start with two given reduced basis spaces YN,1 = span{ΨN,1} and YN,2 = span{ΨN,2}
(one per forward problem).

2. Project the reconstruction algorithm on this set of reduced basis spaces. In our case
this leads to Procedure 2.6, where un1,N and un2,N are the reduced basis approximations
introduced in Definition 3.1 for YN,1 and YN,2, respectively.

3. Run this projected algorithm until either the current iterate is accepted as a solution to
the inverse problem ( termination) or the approximation quality of the reduced spaces
is no longer trusted ( step 4).

4. If the approximation quality of the reduced spaces was insufficient, the current iterate is
utilized to generate snapshots for the enrichment of YN,1 and YN,2 ( step 2).

Basically, we abuse the ability of our inversion algorithm to find parameter values that ap-
proach the exact solution in order to determine relevant parameters for which we can include
the snapshots into our reduced basis spaces. Based on these ideas, we formulate the following
Reduced Basis Harmonic Bz Algorithm (RBZ).

Remark 3.6. (i) The initial reduced bases ΨN,1 and ΨN,2 in Algorithm 2 can be empty
since they are directly enriched with the snapshots for the initial guess σ0. Furthermore,
ΨN,1, ΨN,2 are always orthonormalized to ensure numerical stability.

(ii) If σ? fulfills the requirements of Theorem 2.12, Algorithm 2 terminates by an argument
similar to Remark 3.5, where ε1 and ε2 have to be chosen accordingly.

(iii) The formulation in Algorithm 2 is tailored around the convergence result of Theorem
2.12 and is not suitable for a numerical implementation: on the one hand it is dif-
ficult to handle the Hölder-norms numerically, and on the other hand the criterion
minj=1,2{‖∇unj,N −∇unj ‖C0,α(Ωc)} > εn+1

2 , although ensuring the quality condition of
Theorem 2.12 if ε2 is chosen appropriately is not a reasonable criterion from a reduced
basis point of view. In order to check the criterion, one would have to compute the (com-
putationally expensive) exact forward solutions unj , which would defeat the purpose of a
model order reduction approach.
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Algorithm 2 RBZ(σ0 = σb, µ0, ε1, ε2,ΨN,1,ΨN,2,∇2B1
z,?,∇2B2

z,?)

1: n = 0, YN,1 = span{ΨN,1}, YN,2 = span{ΨN,2}
2: repeat
3: ΨN,1 = ΨN,1 ∪ {un1}, ΨN,2 = ΨN,2 ∪ {un2}
4: YN,1 = span{ΨN,1}, YN,2 = span{ΨN,2}
5: repeat
6: For all r ∈ Ω, calculate the vector field

Vn+1
N (r) :=


1
µ0

[
(σn(r)AN [σn](r))−1

(
∇2B1

z,?(r)

∇2B2
z,?(r)

)]
, r ∈ ΩI ,

(0, 0)t, r ∈ Ω \ ΩI .

7: Calculate lnσn+1 as the solution of (13).
8: σn+1 := exp(lnσn+1)
9: n = n+ 1

10: until
∥∥lnσn − lnσn−1

∥∥
C(Ω)

< ε1 or minj=1,2{‖∇unj,N −∇unj ‖C0,α(Ω)} > εn+1
2

11: until
∥∥lnσn − lnσn−1

∥∥
C(Ω)

< ε1

12: return σRBZ = σn

(iv) Therefore, we will explain in the upcoming section the simplified version of the algorithm
(utilizing the error estimator introduced in Lemma 3.3) that was used for the numerical
experiments.

3.3. Numerical experiments. It is our intention to perform a short numerical comparison
of Algorithms 1 and 2, including one reconstruction from exact data and one reconstruction
from noisy data, where the reconstruction quality as well as the computational time will be
compared. It is not our intention to verify the theoretical results from Theorem 2.12, such
that the numerical setting below does not claim to be consistent with the requirements of the
theory developed in section 2.

The to-be-reconstructed conductivity is a piecewise linear approximation of the Shepp–
Logan phantom with 260×260 pixels and 1 added to the grayscale values to ensure coercivity.
It is visualized in the top right of Figure 2, where in the top left the initial value σ0 = σb = 1
can be seen. To match the phantom, we choose Ω := [−1, 1]2 and ΩI := {(x, y) |

√
x2 + y2 <

0.95} ⊂⊂ Ω with electrode pairs E±1 := {(±1, y) | |y| < 0.1}, E±2 := {(x,±1) | |x| < 0.1}.
For simplicity, we choose µ0 = 1, and the scaling introduced in Lemma 2.1 is not performed.
The PDEs (5), (12), and (13) are discretized on a triangular mesh with 135200 elements,
and piecewise linear finite elements are utilized for all three PDEs. As a result, the data
∇2B1

z,?, ∇2B2
z,?, which is generated synthetically via (10) where Comsol is used for the involved

PDE solutions to prevent inverse crime, is piecewise constant on the grid. The noisy data
set in this comparison is generated by (trianglewise) adding 10% relative Gaussian noise
to ∇2B1

z,?, ∇2B2
z,? (wherever ∇2B1

z,? or ∇2B2
z,? is equal to zero, the average absolute value

of ∇2B1
z,? or ∇2B2

z,? is taken as the reference value for the Gaussian relative noise). We



884 DOMINIK GARMATTER AND BASTIAN HARRACH

Figure 2. From top left to bottom right: σ0, the initial guess; σ?, the true conductivity; σBZ , the recon-
struction via Algorithm 1; σRBZ , the reconstruction via Algorithm 2; σδBZ , the reconstruction from noisy data
via Algorithm 1; and σδRBZ , the reconstruction from noisy data via Algorithm 2.

want to emphasize that although testing the reconstruction algorithms for robustness this
circumvents the problem described in Remark 2.5 that occurs when differentiating actual
noisy Bz data (e.g., real-world measurements). In order to ensure the approximation quality
of the reduced basis spaces in Algorithm 2, minj=1,2{‖∇unj,N−∇unj ‖C0,α(Ω)} > εn+1

2 is replaced
by minj=1,2 {∆1,N (σn), ∆2,N (σn)} > ε2, where ∆j,N (σn) was the rigorous reduced basis error
estimator introduced in Lemma 3.3 with j indicating the underlying reduced basis space
YN,1 or YN,2. This termination criterion is computationally cheap to evaluate and the error
estimator in the H1(Ω) norm should contain some derivative information. Finally, we choose
ε = ε1 = 10−6 as the acceptance tolerance in Algorithms 1 and 2, and ε2 = 10−3 for the new
termination criterion. The numerical experiment is performed using MATLAB in conjunction
with the libraries RBmatlab and KerMor, which both can be found online.1

As can be seen in Figure 2, all key features of the Shepp–Logan phantom are captured in
the reconstructions using exact data via Algorithm 1 (center-left) and Algorithm 2 (center-

1http://www.ians.uni-stuttgart.de/MoRePaS/software/

http://www.ians.uni-stuttgart.de/MoRePaS/software/
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right), which cannot be visually distinguished from one another. This is further reflected
via

‖σ? − σBZ‖C(Ω)

‖σBZ‖C(Ω)

≈ 0.092 and
‖σRBZ − σBZ‖C(Ω)

‖σBZ‖C(Ω)

≈ 5.95 · 10−4

such that a high-resolution image of the conductivity can be obtained using either of the two
algorithms. Furthermore, it can be seen that the background is not exactly reconstructed,
which strengthens the statement made in Remark 2.13.

Regarding the computational effort of the algorithms, we note that both required 14
iterations (updates of the conductivity), resulting in 28 solutions of (5) for Algorithm 1.
Algorithm 2 updated its reduced basis spaces 4 times, resulting in only 8 solutions of (5). The
total computational time was 9.84 seconds for Algorithm 1 and 7.61 seconds for Algorithm 2,
resulting in a speed-up of roughly 25%. Do note that both algorithms performing 14 updates
of the conductivity have to solve the related PDEs (12) and (13) 14 times. In our reduced
basis approach the PDE (13) remains untouched, and one could introduce a third reduced
basis space to include this PDE in the adaptive space enrichment procedure as well. Although
this should result in further speed-up, the theoretical foundation via Theorem 2.12 would then
be lost.

Having a look at σδBZ (bottom left of Figure 2) and σδRBZ (bottom right of Figure 2),
the reconstructions via Algorithms 1 and 2 using the noisy data set, we observe that the key
features of the phantom remain intact and note that∥∥σ? − σδBZ∥∥C(Ω)∥∥σδBZ∥∥C(Ω)

≈ 0.13 and

∥∥σδRBZ − σδBZ∥∥C(Ω)∥∥σδBZ∥∥C(Ω)

≈ 9.12 · 10−4.

The computational effort in this noisy scenario and the speed-up obtained were basically
the same as in the noiseless case such that we omit the exact numbers.

4. Conclusion. The Bz-based magnetic resonance electrical impedance tomography prob-
lem can be solved using the existing Harmonic Bz Algorithm. The convergence theory for the
algorithm in the two-dimensional setting was extended to include the case when an approxi-
mative forward solution of the underlying PDE is used instead of the exact forward solution.
This novel result ensures actual numerical convergence of the algorithm and enables the com-
bination of it with innovative numerical methods. The reduced basis method, a model order
reduction technique, was presented and a reduced basis version of the Harmonic Bz Algorithm
was developed in order to speed up the algorithm. In a numerical example (including noisy
data), a high-resolution image of the Shepp–Logan phantom was reconstructed. Both algo-
rithms achieved a satisfactory approximation quality, and the novel Reduced Basis Harmonic
Bz Algorithm achieved a speed-up of around 25%.
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