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ABSTRACT
Transient excitation currents generate electromagnetic

fields which, in turn, induce electric currents in proximal
conductors. For slowly varying fields, this can be described
by the eddy current equation.

In many applications, the considered domain consists
of both, conducting and non-conducting regions. Thus the
equation is of parabolic-elliptic type: In insulating regions
the field instantaneously adapts to the excitation (quasi sta-
tionary elliptic behavior), while in conducting regions this
adaptation takes some time due to the induced eddy currents
(parabolic behavior).

The eddy current equation can be made fully parabolic
by setting the conductivity in the insulated region to a small
but positive value ε > 0. The aim of this work is to rigor-
ously justify this parabolic regularization. We show, that the
parabolic regularization leads to a well-posed problem and
that, for ε→ 0, its solutions converge against the solution of
the parabolic-elliptic eddy current equation. We also con-
sider an elliptic regularization and show an analogous result
there.

INTRODUCTION
Transient excitation currents J(x, t) generate electro-

magnetic fields, E(x, t) and H(x, t), which can be described
by Maxwell’s equations

curlH = e∂tE +σE + J,

curlE =−µ∂tH,

where the curl-operator acts on the three spatial coordinates,
∂t denotes the time-derivative, and (under the assumption of
linear and isotropic time-independent material laws) σ(x),
e(x) and µ(x) are the conductivity, permittivity and perme-
ability of the considered domain.

For slowly varying electromagnetic fields, the displace-
ment currents e ∂E

∂t can be neglected, cf. Alonso [1999], Am-
mari et al. [2000] and Pepperl [2005]. This leads to the tran-

sient eddy current equation

∂t(σE)+ curl
(

1
µ

curlE
)
= I (1)

with I = −∂tJ. In a typical application the domain under
consideration consists of both, conducting regions (σ(x) >
0) and non-conducting regions (σ(x)= 0). The consequence
is, that equation (1) is of parabolic-elliptic type. The physi-
cal interpretation is that the time-scales are different: In the
insulating regions, the field instantaneously adapts to the ex-
citation (quasi stationary behavior), while in the conducting
regions this adaptation takes some time (due to eddy cur-
rents induced by the varying electromagnetic fields). More-
over, it is easily shown, that equation only determines curlE
and σE, cf. Theorem 2.5 below.

To overcome this non-uniqueness and also for com-
putational reasons (cf., e.g., Lang and Teleaga [2008]), it
seems natural to regularize the problem by setting the con-
ductivity to a small value ε > 0 in the non-conducting re-
gion. In that way, the eddy current equation is made full
parabolic:

∂t(σεEε)+ curl
(

1
µ

curlEε

)
= I

with

σε =

{
σ(x) σ(x)> 0
ε σ(x) = 0

,

and is uniquely solvable (cf. Section 4). The aim of this
work is to rigorously justify this regularization: We show,
that

σεEε→ σE and curlEε→ curlE

as ε approaches zero, where E denotes a solution of (1).
Note that for a scalar parabolic-elliptic equation (that ap-
pears, e.g., as a two-dimensional version of the eddy current
equation), this result was shown in [Gebauer, 2007].
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Moreover, we will also justify an elliptic regularization
for (1). It is similar to the one presented by Nicaise and
Tröltzsch [2013] and motivated by (but not equivalent to,
cf. Section 5)

∂t(σEε)+ curl
(

1
µ

curlEε

)
+ εEε = I.

Usually, the transient eddy current equation is treated
by imposing a gauge condition. In that case, several well-
posed variational formulations have been proposed for (1),
cf., e.g. Bachinger et al. [2005]; Acevedo et al. [2009];
Kolmbauer [2011]; Nicaise and Tröltzsch [2013], but these
approaches concentrate on solving the equation with a fixed
conducting region. Accordingly, the variational formula-
tions, with their underlying solution spaces, depend on the
support of the conductivity.

For several applications such as inverse problems, sen-
sitivity considerations, or, as in our case, the regularization
of the equation, it is useful to have a variational formulation
that does not depend on the conducting domain. In case of
unbounded domains, the authors derive in [Arnold and Har-
rach, 2012] a variational formulation for (1), that is unified
with respect to σ. In this work, we carry these results over
to the case of bounded domains: We propose a well-posed
variational formulation, that is somehow flexible with re-
spect to the conductivity. Moreover, its solution not only
solves the variational problem but also yields a solution of
the eddy current equation: It represents the solutions up to
gradient fields, that vanish on the conductor. In this paper,
we use this theory to justify the parabolic and the elliptic
regularization.

This paper is organized as follows. After introduc-
ing the necessary notations in Section 1, we carry over
the results of [Arnold and Harrach, 2012] about the well-
definedness of (1) in Section 2. Section 3 contains our vari-
ational formulation and the solvability of (1). In Section 4
we justify the parabolic regularization: We show the conver-
gence of the solutions when the fully positive conductivity
approaches zero in a part of the domain. We finish this paper
by presenting a similar result for an elliptic regularization in
Section 5. A conclusion can be found in Section 6.

1 NOTATION
Let T > 0 and O ⊂ R3 be a simply connected bounded

domain with Lipschitz boundary Σ and outer unit normal
ν. We denote by L∞

+(O) the space of L∞(O)-functions with
positive (essential) infima.

D(O), respectively, D(O×]0,T [) denote the space of
C∞-functions which are compactly supported in O, respec-
tively, O×]0,T [. We also use the notation D(O× [0,T [) for
the space of restrictions of functions from D(O×]−∞,T [)
to O× [0,T ].

Beside L2(O), we use the spaces

H(curl) : = {E ∈ L2(O)3 | curlE ∈ L2(O)3},
H0(curl) : = {E ∈ H(curl) |ν×E|Σ = 0},

H1(O) : = {E ∈ L2(O) |∇E ∈ L2(O)3},

which are Hilbert spaces with respect to their graph norms.
We denote the dual space of a space H by H ′. We fre-

quently use the dual pairing between H(curl)′ and H(curl),
which we denote by

〈G,E〉 for G ∈ H(curl)′, E ∈ H(curl).

We also write OT := O×]0,T [ and L2(OT ) instead of
L2(O×]0,T [), and usually omit the arguments x and t and
only use them where we expect them to improve readability.

For a Banach space X , C(0,T,X) and L2(0,T,X) de-
note the spaces of vector-valued functions

E : [0,T ]→ X ,

which are continuous on [0,T ], respectively, square inte-
grable, cf., e.g., [Dautray and Lions, 2000c, XVIII, §1].

2 THE EDDY CURRENT PROBLEM
We consider the space L2(0,T,H0(curl)) as a proper

space to look for a solution of (1).
Let us assume that µ ∈ L∞

+(O) and either

σ ∈ L∞
+(O)

or

σ ∈ LC := {σ ∈ L∞(O) |σ ∈ L∞
+(Ω) with Ω := supp σ ( O,

and Ω = ∪s
i=1Ωi, s ∈ N, Ωi bounded Lipschitz

domains, Ωi∩Ω j = /0, i 6= j, and

O \Ω is connected}.

Throughout this paper, we denote the support of σ by Ω.
We assume that we are given Eι ∈ L2(O)3 with

div(σEι) = 0 and the excitation

I ∈ L2(0,T,H(curl)′) with div I = 0.

Then, for E ∈ L2(0,T,H0(curl)) the eddy current equa-
tion (1) posed on O×]0,T [ is well-defined in a distributional
sense and equivalent to

−
∫ T

0

∫
O

σE ·∂tΦdxdt +
∫ T

0

∫
O

1
µ

curlE · curlΦdxdt

=
∫ T

0
〈I,Φ〉dt for all Φ ∈D(O×]0,T [)3. (2)
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The assertions of this section are proven in [Arnold and
Harrach, 2012, Sect. 2] for unbounded domains. The proofs
are analogously.

We first establish, that every solution of (1) has well-
defined initial values. Therefore we introduce the space

Wσ :=
{

E ∈ L2(0,T,H0(curl)) |
(σE). ∈ L2(0,T,H0(curl)′)

}
,

where (σE). denotes the time-derivative of σE ∈ L2(OT )
3

in the sense of vector-valued distributions with respect to
the canonical injection L2(O)3 ↪→ H0(curl)′.

Lemma 2.1. If E ∈Wσ, then
√

σE ∈C(0,T,L2(O)3). Ad-
ditionally, for E,F ∈Wσ the following integration by parts
formula holds:

∫ T

0
〈(σE).,F〉dt +

∫ T

0
〈(σF)

.
,E〉dt

=
∫

O
σ(E(T ) ·F(T )−E(0) ·F(0)) dx. (3)

Lemma 2.2 (Initial values). If E ∈ L2(0,T,H0(curl))
solves (1), then E ∈Wσ and thus has well-defined initial
values

√
σE(0) ∈ L2(O)3.

For t ∈]0,T [ a.e., (σE).(t) ∈ H0(curl)′ is given by

〈(σE).(t),F〉= 〈I(t),F〉−
∫

O

1
µ

curlE(t) · curlF dx (4)

for all F ∈ H0(curl).

Corollary 2.3. The following problem is well-defined:
Find E ∈ L2(0,T,H0(curl)) that solves

∂t(σ(x)E(x, t))+ curl
(

1
µ(x)

curlE(x, t)
)
= I(x, t)

in O×]0,T [, (5)√
σ(x)E(x,0) =

√
σ(x)Eι(x) in O. (6)

Now, we give an equivalent variational formulation:

Lemma 2.4 (Standard variational formulation). The
following problems are equivalent:

a) Find E ∈ L2(0,T,H0(curl)) that solves (5)–(6).
b) Find E ∈Wσ that solves (6) and

∫ T

0
〈(σE).,F〉dt +

∫ T

0

∫
O

1
µ

curlE · curlF dxdt

=
∫ T

0
〈I,F〉dt (7)

for all F ∈ L2(0,T,H0(curl)).

c) Find E ∈ L2(0,T,H0(curl)) that solves

−
∫ T

0

∫
O

σE ·∂tΦdxdt +
∫ T

0

∫
O

1
µ

curlE · curlΦdxdt

=
∫ T

0
〈I,Φ〉dt +

∫
O

σEι ·Φ(0)dx

for all Φ ∈D(O× [0,T [)3.

Theorem 2.5 (Uniqueness). Equations (5)–(6) unique-
ly determine curlE and

√
σE.

Moreover, if E ∈ L2(0,T,H0(curl)) solves (5)–(6), then
every function F ∈ L2(0,T,H0(curl)) with curlF = curlE
and
√

σF =
√

σE also solves (5)–(6).

3 A VARIATIONAL SOLUTION THEORY
Unfortunately, the non-uniqueness implies, that none

of the variational formulations in Lemma 2.4 is well-posed.
Our approach is as follows. We keep this non-uniqueness
and try to determine the unique part of the solutions - that is
the divergence-free part. Therefore, we write

E = Ẽ +∇u

with a divergence free field Ẽ, and a gradient field ∇u. The
crucial point is to consider ∇u = ∇uẼ as a continuous lin-
ear function of Ẽ, cf. Lemma 3.1. This allows us to rewrite
the eddy current equations (5)–(6) as a variational equation
for Ẽ, which is uniformly coercive on the space of diver-
gence free functions and thus uniquely determines the field
Ẽ. Note, that Ẽ does not solve the eddy current equations.

This section is similar to Section 3 of [Arnold and Har-
rach, 2012] for the case of unbounded domains.

Lemma 3.1. There is a continuous linear map

L2(O)3→ H0(curl0) := {E ∈ H0(curl) | curlE = 0},
E 7→ ∇uE ,

with

div(σ(E +∇uE)) = 0 in O. (8)

Proof. Let E ∈ L2(O)3.
We first consider the case Ω = O. Due to Poincare’s

inequality (cf., e.g., [Dautray and Lions, 2000a, IV, §7,
Prop. 2]), the fact, that σ is positively bounded from be-
low on O, and Lax-Milgram’s Theorem (cf., e.g., [Renardy
and Rogers, 2004, §8, Thm. 8.14]), there exists a unique
uE ∈ H1

0 (O) that solves

∫
O

σ∇u ·∇vdx =−
∫

O
σE ·∇vdx for all v ∈ H1

0 (O),
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and uE depends continuously on E ∈ L2(O)3.
Now, let Ω(O. Again, as σ is positively bounded from

below on Ω, we obtain as above a unique uE ∈ H1
�(Ω) that

solves

∫
Ω

σ∇u ·∇vdx =−
∫

Ω

σE ·∇vdx for all v ∈ H1(Ω),

where H1
�(Ω) :=

{
v ∈ H1(Ω) |

∫
Ωi

vdx = 0, i = 1, . . . ,s
}
,

and uE depends continuously on E|Ω. We extend uE to
an element of H1

0 (O) by solving ∆u = 0 on O \Ω with
u|∂Ω = uE |∂Ω for u ∈ H1(O \Ω) with u|Σ = 0. Again, Lax-
Milgram’s Theorem provides a unique solution, which de-
pends continuously on uE |∂Ω and thus on E. Let uE , again,
denote its extension.

In both cases uE ∈ H1
0 (O), ∇uE ∈ H0(curl0) and the

mapping E 7→ ∇uE is well-defined, linear and continuous
with a continuity constant that depends on the lower and
upper bounds of σ. Moreover, (8) is fulfilled. �

For the rest of this paper, let ∇uE denote the image of
E under this mapping. Obviously, there are different possi-
bilities to construct this map, but

√
σ∇uE is uniquely deter-

mined by the condition (8). Moreover, it holds that

‖
√

σ∇uE‖L2(O)3 ≤ ‖
√

σE‖L2(O)3 . (9)

Note that ∇uE depends nonlinearly on σ. Also continuous
dependence on σ for fixed E must not be true. We will
discuss a special case in Section 4.

Now we use this Lemma to show a variational formu-
lation for (5)–(6). We define the bilinear form

a : L2(0,T,H0(curl))×H1(0,T,H0(curl))→ R :

a(E,Φ) :=−
∫ T

0

∫
O

σ(E +∇uE) · Φ̇dxdt

+
∫ T

0

∫
O

1
µ

curlE · curlΦdxdt, (10)

and, motivated by Lemma 2.4c), the linear form l:

l : H1(0,T,H0(curl))→ R

l(Φ) :=
∫ T

0
〈I,Φ〉dt +

∫
O

σEι ·Φ(0)dx.

To get around the non-uniqueness, cf. Theorem 2.5, we
consider the Hilbert space

W0 := {E ∈ H0(curl) | divE = 0}

equipped with the norm ‖curl ·‖L2(O)3 , which is equivalent
to the graph norm, cf. [Girault and Raviart, 1986, Lemma

3.4]. Especially, there is a constant CO only depending on
O such that

‖E‖L2(O)3 ≤CO‖curlE‖L2(O)3 .

Let H1
T 0(0,T,W0) := {Ψ ∈ H1(0,T,W0) |Ψ(T ) = 0}.

Theorem 3.2 (Equivalence). If Ẽ ∈ L2(0,T,W0) solves

a(Ẽ,Φ) = l(Φ) for all Φ ∈ H1
T 0(0,T,W0), (11)

then Ẽ +∇uẼ ∈ L2(0,T,H0(curl)) solves (5)–(6).

Proof. Obviously, a(·,∇φ) as well as l(∇φ) vanish for gra-
dient fields ∇φ ∈ H1(0,T,H0(curl)), φ ∈ H1(0,T,H1(O)).
(For the latter, recall that div I = 0 and div(σEι) = 0.)
Now we use the following simple decomposition: Every
Φ ∈D(O)3 can be written as

Φ = Ψ+∇φ, (12)

with Ψ ∈W0, φ ∈ H1
0 (O). From that and the linearity of a

and l it follows, that (for any Ẽ ∈ L2(0,T,W0))

a(Ẽ,Φ) = l(Φ)

holds for all Φ ∈ D(O × [0,T [)3, if it holds for all Φ ∈
H1

T 0(0,T,W0). Lemma 2.4 yields the assertion. �

We now show, that (11) is well-posed. We will use the
Lions-Lax-Milgram Theorem.

Lemma 3.3 (Lions-Lax-Milgram Theorem). Let H
be a Hilbert space and V be a normed (not necessarily
complete) vector space. Let a : H ×V → R be a bilinear
form satisfying the following properties:

a) For every Φ ∈ V , the linear form E 7→ a(E,Φ) is con-
tinuous on H .

b) There exists α > 0 such that

inf
‖Φ‖V=1

sup
‖E‖H ≤1

|a(E,Φ)| ≥ 1
α
.

Then for each continuous linear form l ∈ V ′, there exists
El ∈H such that

a(El ,Φ) = l(Φ) for all Φ ∈V and ‖El‖H ≤ α‖l‖V ′ .

The proof can be found, for example, in [Showalter, 1997,
III.2, Thm. 2.1, Cor. 2.1].



4th Inverse Problems, Design and Optimization Symposium (IPDO-2013), Albi, FRANCE, June 26-28, 2013

Theorem 3.4 (Existence). There is a unique solution
Ẽ ∈ L2(0,T,W0) of (11). Ẽ depends continuously on I and√

σEι and with α = max(‖µ‖∞,2) it holds, that

‖Ẽ‖L2(0,T,W0)
≤

αmax(CO‖I‖L2(0,T,H(curl)′),‖
√

σEι‖L2(O)3). (13)

Ẽ +∇uẼ solves the eddy current equations (5)–(6) and any
other solution E ∈ L2(0,T,H0(curl)) of (5)–(6) fulfills

curlE = curl Ẽ,
√

σE =
√

σ(Ẽ +∇uẼ). (14)

curlE and
√

σE depend continuously on I and
√

σEι:

‖curlE‖L2(0,T,L2(O)3) ≤

αmax(CO‖I‖L2(0,T,H(curl)′),‖
√

σEι‖L2(O)3),

‖
√

σE‖L2(OT )3 ≤2CO‖
√

σ‖∞‖curlE‖L2(0,T,L2(O)3).

Proof. To apply Lions-Lax-Milgram Theorem we use the
Hilbert space H := L2(0,T,W0) and equip its subspace V :=
H1

T 0(0,T,W0) with the norm

‖Φ‖2
V := ‖Φ‖2

L2(0,T,W0)
+‖
√

σ(Φ+∇uΦ)(0)‖2
L2(O)3 .

Then, it is straightforward to show, that for fixed Φ ∈V
the linear form E 7→ a(E,Φ) is continuous on H and that
l ∈V ′ with

‖l‖V ′ ≤max(CO‖I‖L2(0,T,H(curl)′),‖
√

σEι‖L2(O)3).

Moreover, for Φ ∈ V , Lemma 3.1 and the integration
by parts formula (3) yield that

a(Φ,Φ)≥
1
2
‖
√

σ(Φ+∇uΦ)(0)‖2
L2(O)3 +

1
‖µ‖∞

‖Φ‖2
L2(0,T,W0)

, (15)

which implies, that

inf
‖Φ‖V=1

sup
‖E‖H ≤1

|a(E,Φ)| ≥ 1
α
.

Now, Lemma 3.3 yields the existence of an Ẽ ∈H that
fulfills (11) and depends continuously on l.

Theorem 3.2 yields that Ẽ +∇uẼ ∈ L2(0,T,H0(curl))
is a solution of the eddy current equations (5)–(6).

To show uniqueness, let Ẽ1, Ẽ2 ∈ L2(0,T,W0) be
two solutions of (11). Then, Ẽ1 + ∇uẼ1

, Ẽ2 + ∇uẼ2
∈

L2(0,T,H0(curl)) both solve the eddy current equations
(5)–(6) and Theorem 2.5 implies Ẽ1 = Ẽ2.

The remaining assertions follow similarly from Theo-
rem 2.5. �

Corollary 3.5. Let (σn)n∈N ⊂ LC ∪ L∞
+(O) be a bounded

sequence and Ẽn, n ∈ N, be the corresponding unique solu-
tions of (11). Then the sequences

(Ẽn)n∈N ⊂ L2(0,T,W0),

(
√

σnẼn)n∈N, (
√

σn∇uẼn
)n∈N ⊂ L2(OT )

3

are bounded. The bounds depend on the bound of (σn)n∈N.
In particular, for any sequence (En)n∈N ⊂

L2(0,T,H0(curl)) of corresponding solutions of equa-
tions (5)–(6) the sequences

(curlEn)n∈N, (
√

σnEn)n∈N ⊂ L2(OT )
3

are bounded.

Remark 3.6. Several results about the dependence of the
solution on the conductivity can be obtained. In particu-
lar the solution’s sensitivity with respect to the eddy current
equation changing from elliptic to parabolic type is studied
by the authors in [Arnold and Harrach, 2012, Sect. 4] in
the case of unbounded domains. The results can be directly
carried over to the bounded setting.

4 PARABOLIC REGULARIZATION
In this section we keep σ ∈ LC, Eι ∈ L2(O)3 with

div(σEι) = 0 and I as in Section 2 fixed and analyze the
solution(s) behavior corresponding to

σε =

{
σ x ∈Ω

ε x ∈ O \Ω
,

if the positive real number ε approaches zero. Obviously, we
have limε→0 σε = σ in L∞(O). In that way, the eddy current
equation is made fully parabolic:

∂t(σεEε)+ curl
(

1
µ

curlEε

)
= I. (16)

Our main result is Theorem 4.4, where we show, that
the relevant parts of the solutions of (16), i.e. curlEε and
σεEε, converge against the corresponding unique parts of
the solutions of the eddy current equation

∂t(σE)+ curl
(

1
µ

curlE
)
= I

if ε tends to zero. Therefore, we use the variational formu-
lation (11) and show that its (unique) solutions converge (cf.
Theorem 4.3).

Let us first remark, that, as σε ∈ L∞
+(O), the theory of

Sections 2 and 3 (with appropriate initial conditions) holds.
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Especially, (16) is uniquely solvable, and the unique solu-
tion is given by Ẽε +∇uẼε

, where Ẽε ∈ L2(0,T,W0) is the
unique solution of (11) with σ = σε and ∇uẼε

is its image
under the mapping from Lemma 3.1 with σ = σε.

We start with the analysis of the mapping from
Lemma 3.1,

L2(O)3→ H0(curl0), E 7→ ∇uE,ε

such that div(σε(E +∇uE,ε)) = 0, if ε tends to zero. Here,
we indicate the nonlinear dependence of uE on σε by uE,ε.

Lemma 4.1. Let (Fε)⊂ L2(O)3 be bounded with Fε ⇀F ∈
L2(O)3 as ε→ 0. Let (uFε,ε) ⊂ H1

0 (O) denote the corre-
sponding unique elements from Lemma 3.1, that solve

∫
O

σε∇uFε,ε ·∇vdx =−
∫

O
σεFε ·∇vdx for all v ∈ H1

0 (O)

and let uF,σ ∈ H1
0 (O) be the corresponding element from

Lemma 3.1 (that is unique by construction). Then

a) ‖√σεFε‖L2(O\Ω)3 → 0,
√

σεFε ⇀
√

σF in L2(O)3 and
(
√

σε∇uFε,ε)⊂ L2(O)3 is bounded.
b) σε∇uFε,ε ⇀ σ∇uF,σ ∈ L2(O)3.

Especially, for fixed F ∈ L2(O)3 it holds, that σεF→ σF in
L2(O)3 and σε∇uF,ε→ σ∇uF,σ in L2(O)3.

Proof. Let φ ∈ L2(O)3.

a) Obviously, it holds, that

‖
√

σεFε‖L2(O\Ω)3 =
√

ε‖Fε‖L2(O\Ω)3 → 0,

moreover

(
√

σεFε−
√

σF,φ)L2(O)3

=
√

ε(Fε,φ)L2(O\Ω)3 +(Fε−F,
√

σφ)L2(Ω)3 → 0,

and with

‖
√

σε∇uFε,ε‖L2(O)3 ≤ ‖
√

σεFε‖L2(O)3

we obtain, that (
√

σε∇uFε,ε) is bounded in L2(O)3.
b) First we show that every subsequence of (

√
σε∇uFε,ε)

has a subsequence that converges weakly against√
σ∇h for some h ∈ H1

0 (O). In a second step we show
that all these weak limits coincide.
As (
√

σε∇uFε,ε) ⊂ L2(O)3 is bounded, every subse-
quence is bounded, and Alaoglu’s Theorem, cf., e.g.,
[Renardy and Rogers, 2004, Thm. 6.62], yields that
every subsequence contains subsequence (that we still

indicate by ε for the ease of notation), again, that con-
verges weakly against some a ∈ L2(O)3:

√
σε∇uFε,ε ⇀ a ∈ L2(O)3.

We then also have

√
σε∇uFε,ε|Ω =

√
σ∇uFε,ε|Ω ⇀ a|Ω ∈ L2(Ω)3

and therefore

∇uFε,ε|Ω ⇀
a|Ω√

σ
∈ L2(Ω)3.

The orthogonal decomposition

∇H1(Ω)⊕⊥H0(div0,Ω) = L2(Ω)3,

cf. [Dautray and Lions, 2000b, IX, §3, Prop. 1], where
H0(div0,O) = {E ∈ L2(O)3 | divE = 0, ν ·E|Σ = 0},
yields then a|Ω√

σ
∈ ∇H1(Ω) and hence there is some h ∈

H1(Ω) with

a|Ω√
σ
= ∇h.

Obviously, ∇h is uniquely determined, but h is not. To
overcome this, we fix h by the choice h ∈ H1

�(Ω) as in
Lemma 3.1 and extend it to an element of H1

0 (O) by
solving ∆h = 0 on O \Ω. Then it still holds that

√
σ∇uFε,ε ⇀

√
σ∇h in L2(O)3

and hence

(σε∇uFε,ε−σ∇h,φ)L2(O)3 =

(σ∇uFε,ε−σ∇h,φ)L2(Ω)3 +
√

ε(
√

ε∇uFε,ε,φ)L2(O\Ω)3

→ 0,

i.e. σε∇uFε,ε ⇀ σ∇h in L2(O)3.
To conclude, that all these weak limits are identical, we
show

σ∇h = σ∇uF,σ.

For every v ∈ H1
0 (O), Part 1) yields

0 =
∫

O
σε∇uFε,ε ·∇vdx+

∫
O

σεFε ·∇vdx

→
∫

Ω

σ∇h ·∇vdx+
∫

Ω

σF ·∇vdx if ε→ 0,
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and therefore also the right hand side vanishes for every
v ∈ H1

0 (O). Accordingly, σ∇h = σ∇uF,σ and ∇h|Ω =
∇uF,σ|Ω.
Altogether, the second assertion follows. �

The next step is to show, that the solutions of the varia-
tional equation (11) converge.

To obtain meaningful initial values for (16), we modify
the initial value Eι ∈ L2(O)3 to make its product with σε

divergence-free by Eι +∇uEι,ε. The precedent Lemma then
yields σε(Eι +∇uEι,ε)→ σEι in L2(O)3 and the right hand
side of (11), lε : H1(0,T,H0(curl))→ R, obviously fulfills

lε(Φ) : =
∫ T

0
〈I,Φ〉dt +

∫
O

σε(Eι +∇uEι,ε) ·Φ(0)dx

→
∫ T

0
〈I,Φ〉dt +

∫
O

σEι ·Φ(0)dx = l(Φ)

for every Φ ∈ H1(0,T,H0(curl)).
Corresponding to σε let Ẽε ∈ L2(0,T,W0) denote the

unique solution of

aε(Ẽε,Φ) = lε(Φ) for all Φ ∈ H1
T 0(0,T,W0), (17)

that is the variational problem (11) with σ = σε. The bilin-
ear form aε : L2(0,T,H0(curl))×H1(0,T,H0(curl))→R is
then given by

aε(E,Φ) =−
∫ T

0

∫
O

σε(E +∇uE,ε) · Φ̇dxdt

+
∫ T

0

∫
O

1
µ

curlE · curlΦdxdt.

The next lemma shows that the solutions converge weakly
towards the solution Ẽ ∈ L2(0,T,W0) of (11) (that corre-
sponds to ε = 0).

Lemma 4.2. It holds, that Ẽε ⇀ Ẽ in L2(0,T,W0),√
σεẼε ⇀

√
σẼ and σε∇uẼε,ε

⇀ σ∇uẼ,σ in L2(OT )
3.

Proof. The precedent Lemma yields that it suffices to show
that Ẽε ⇀ Ẽ. To show this, we use the same technique:
From Corollary 3.5 we know that (Ẽε) ⊂ L2(0,T,W0) is
bounded. Again, Alaoglu’s Theorem yields that every sub-
sequence contains a subsequence (that we still denote by
(Ẽε) for ease of notation) that converges weakly against
some Ẽ ′ ∈ L2(0,T,W0). In the following we show, that all
these weak limits are identical to Ẽ.

The previous Lemma yields

√
σεẼε ⇀

√
σẼ ′ in L2(OT )

3

and

σε∇uε,Ẽε
⇀ σ∇uẼ ′ ∈ L2(OT )

3.

Moreover, Ẽε ⇀ Ẽ ′ in L2(0,T,W0) implies that curl Ẽε ⇀
curl Ẽ ′ in L2(OT )

3, so that for every Φ ∈ H1
T 0(0,T,W0) the

left hand side aε(Ẽε,Φ) of (11) with σ = σε converges
against a(Ẽ ′,Φ):

aε(Ẽε,Φ) =−
∫ T

0

∫
O

σε(Ẽε +∇uẼε,ε
) · Φ̇dxdt

+
∫ T

0

∫
O

1
µ

curl Ẽε · curlΦdxdt

→ a(Ẽ ′,Φ)

As lε(Φ)→ l(Φ), Ẽ ′ solves (11) and thus uniqueness pro-
vides Ẽ = Ẽ ′. �

Theorem 4.3. It holds, that Ẽε → Ẽ in L2(0,T,W0),√
σεẼε→

√
σẼ and

√
σε∇uẼε,ε

→
√

σ∇uẼ,σ in L2(OT )
3.

Proof. Using the fact, that Ẽε +∇uẼε,ε
solves (16) with ini-

tial values
√

σε(Eι +∇uEι,ε), the integration by parts for-
mula (3) and Lemma 2.4b) we obtain for every ε, that

‖µ−
1
2 curl Ẽε‖2

L2(OT )3 +
1
2
‖
√

σε(Ẽε +∇uẼε,ε
)(T )‖2

L2(O)3

=
1
2

∫
O

σε(Eι +∇uEι,ε)
2 dx+

∫ T

0

∫
O

1
µ

curl Ẽ · curl Ẽε dxdt

+
∫ T

0
〈(σ(Ẽ +∇uẼ,σ))

.
, Ẽε +∇uẼε,ε

〉dt

≤ limsup
ε→0

[
1
2

∫
O

σε(Eι +∇uEι,ε)
2 dx

+
∫ T

0

∫
O

1
µ

curl Ẽ · curl Ẽε dxdt

+
∫ T

0
〈(σ(Ẽ +∇uẼ,σ))

.
, Ẽε +∇uẼε,ε

〉dt
]

=
1
2

∫
O

σ |Eι +∇uEι
|2 dx+

∫ T

0

∫
O

1
µ

curl Ẽ · curl Ẽ dxdt

+
∫ T

0
〈(σ(Ẽ +∇uẼ,σ))

.
, Ẽ +∇uẼ,σ〉dt

= ‖µ−
1
2 curl Ẽ‖2

L2(OT )3 +
1
2
‖
√

σ(Ẽ +∇uẼ,σ)(T )‖2
L2(O)3

and hence

limsup
ε→0

[
‖µ−

1
2 curl Ẽε‖2

L2(OT )3

+
1
2
‖
√

σε(Ẽε +∇uẼε,ε
)(T )‖2

L2(O)3

]
≤ ‖µ−

1
2 curl Ẽ‖2

L2(OT )3 +
1
2
‖
√

σ(Ẽ +∇uẼ,σ)(T )‖2
L2(O)3 ,

which, together with Ẽε ⇀ Ẽ and the other results of
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Lemma 4.2 yields

lim
ε→0

[
‖µ−

1
2 curl(Ẽε− Ẽ)‖2

L2(OT )3

+
1
2
‖
√

σε(Ẽε +∇uẼε,ε
)(T )−

√
σ(Ẽ +∇uẼ,σ)(T )‖2

L2(O)3

]
≤ 2‖µ−

1
2 curl Ẽ‖2

L2(OT )3 −2(µ−
1
2 curl Ẽ,µ−

1
2 curl Ẽ)L2(OT )3

+‖
√

σ(Ẽ +∇uẼ,σ)(T )‖2
L2(O)3

− (
√

σ(Ẽ +∇uẼ,σ)(T ),
√

σ(Ẽ +∇uẼ,σ)(T ))L2(O)3

= 0.

Hence the first assertion follows from

lim
ε→0
‖Ẽε− Ẽ‖2

L2(0,T,W0)
= lim

ε→0
‖curl(Ẽε− Ẽ)‖2

L2(OT )3

≤ ‖µ‖∞ limsup
ε→0

‖µ−
1
2 curl(Ẽε− Ẽ)‖2

L2(OT )3 = 0

and the third assertion follows from

lim
ε→0
‖
√

σε(Ẽε +∇uẼε,ε
)(T )−

√
σ(Ẽ +∇uẼ,σ)(T )‖2

L2(O)3

= 0.

The second assertion now follows immediately with

lim
ε→0
‖
√

σεẼε−
√

σẼ‖2
L2(OT )3

= lim
ε→0

(‖
√

σ(Ẽε− Ẽ)‖2
L2(ΩT )3 +‖

√
εẼε‖2

L2(O\ΩT )3)

≤CO(‖σ‖∞ lim
ε→0
‖Ẽε− Ẽ‖2

L2(0,T,W0)
+ lim

ε→0
ε‖Ẽε‖2

L2(0,T,W0)
)

= 0. �

Now we can formulate our main result. Corresponding
to σε, let Eε ∈ L2(0,T,H0(curl)) denote the unique solution
of (16) with initial values

√
σε(Eι +∇uEι,ε). For ε = 0, let

E ∈ L2(0,T,H0(curl)) denote any solution of (5)–(6).

Theorem 4.4. It holds, that curlEε → curlE and√
σεEε →

√
σE in L2(OT )

3 and that (σεEε)
. → (σE). in

L2(0,T,H0(curl)′).

Proof. It holds, that
√

σεEε =
√

σε(Ẽε +∇uẼε,ε
), curlEε =

curl Ẽε and curlE = curl Ẽ, so that the precedent Lemma
provides the first and the second assertion.

From the explicit form (4) of (σεEε)
. given in

Lemma 2.2, we obtain for all F ∈ L2(0,T,H0(curl))

∣∣∣∣∫ T

0
〈(σεEε)

.− (σE).,F〉dt
∣∣∣∣

=

∣∣∣∣∫ T

0

∫
O

1
µ

curl(E−Eε) · curlF dxdt
∣∣∣∣→ 0.

This yields (σεEε)
.→ (σE). in L2(0,T,H0(curl)′). �

5 ELLIPTIC REGULARIZATION
We finish this paper by justifying an elliptic regulariza-

tion of the variational problem (11).
Again, we keep σ ∈ LC ∪ L∞

+(O), Eι and I fixed and
modify the variational equation (11) by setting the bilinear-
form aε : L2(0,T,H0(curl))×H1(0,T,H0(curl))→ R to

aε(E,Φ) : = a(E,Φ)+ ε(E,Φ)L2(OT )3

=−
∫ T

0

∫
O

σ(E +∇uE,σ) · Φ̇dxdt

+
∫ T

0

∫
O

1
µ

curlE · curlΦdxdt +
∫ T

0

∫
O

εE ·Φdxdt

for some ε > 0. Now, aε is (with respect to the space vari-
able) coercive on the whole space H0(curl).

We consider the variational problem of finding Ẽε ∈
L2(0,T,W0) that solves

aε(Ẽε,Φ) = l(Φ) for all Φ ∈ H1
T 0(0,T,W0) (18)

and study the solutions behavior if ε tends to zero.
It has to be stated clearly, that, in contrast to the

parabolic regularization, we do not have any assertion about
the solutions of the related (but not equivalent) regularized
eddy current problem

∂t(σEε)+ curl
(

1
µ

curlEε

)
+ εEε = I. (19)

This is due to the fact, that a solution of (18) does not natu-
rally imply a solution of (19), as it is the case for the original
problem, cf. Theorem 3.2 and the parabolic regularization
in Section 4. Anyway, for some applications, the variational
equation might be of interest on itself.

In the following we show, that the solutions of (18) con-
verge against the solution of (11), if ε tends to zero. There-
fore, let us shortly answer the question of well-posedness.
Obviously, the problem to find Ẽε ∈ L2(0,T,W0) that solves
(18) for all Φ ∈ H1

T 0(0,T,W0) still fits into the framework
of the proof of the first part of Theorem 3.4 and hence
there is a solution. Moreover, it can be shown, that, if
Ẽε ∈ L2(0,T,W0) is such a solution, then Ẽε +∇uẼε

∈Wσε

(cf. Lemma 2.2 and the proof of Lemma 2.3 in [Arnold and
Harrach, 2012]). Therefore, the integration by parts formula
(3) holds and a result similar to Lemma 2.4. Using this, one
easily sees, that Ẽε is unique.

Theorem 5.1. Let Ẽ ∈ L2(0,T,W0) denote the unique so-
lution of (11) and Ẽε ∈ L2(0,T,W0) denote the unique so-
lution of (18). Then it holds, that Ẽε→ Ẽ in L2(0,T,W0) if
ε→ 0.

Proof. First of all the coercivity and continuity constants
in Theorem 3.4 are the same for both, the regularized and
the original problem. Therefore, Theorem 3.5 yields that



4th Inverse Problems, Design and Optimization Symposium (IPDO-2013), Albi, FRANCE, June 26-28, 2013

Ẽε is bounded. Moreover, it obviously holds for all F ∈
L2(0,T,W0), that

0 = l(F)− l(F) = aε(Ẽε,F)−a(Ẽ,F)

= a(Ẽε− Ẽ,F)+ ε(Ẽε,F)L2(OT )3 .

By use of a similar formulation as in Lemma 2.4b) we ob-
tain with α = max(‖µ‖∞,2), that

‖Ẽε− Ẽ‖2
L2(0,T,W0)

≤ ε

α
(Ẽε, Ẽε− Ẽ)L2(OT )3

≤ αεC2
O‖Ẽε‖L2(0,T,W0)

‖Ẽε− Ẽ‖L2(0,T,W0)

and hence

‖Ẽε− Ẽ‖L2(0,T,W0)
≤ αεC2

O‖Ẽε‖L2(0,T,W0)
.

The assertion follows from the fact, that ‖Ẽε‖L2(0,T,W0)
is

bounded. �

In addition, one can in the same way as in Section 4,
that σ(Ẽε +∇uẼε

)→ σ(Ẽ +∇uẼ) and (σ(Ẽε +∇uẼε
)). →

(σ(Ẽ +∇uẼ))
..

6 CONCLUSION
We have considered the transient eddy current equa-

tion in a bounded domain consisting of a conducting and
a non-conducting part, which are described by the conduc-
tivity coefficient. A consequence is, that the equation is of
parabolic-elliptic type and does not determine its solutions
uniquely in the non-conducting part.

We have presented a variational solution theory, that
is uniquely solvable and whose solution represents all so-
lutions of the eddy current equation. This solution theory
treats the conductivity merely as a parameter, especially it
does not depend on the conducting region. We have used
this theory to show a parabolic and an elliptic regularization
for the equation.

A natural way to regularize the equation is to set
the conductivity to a small positive value ε in the non-
conducting part. Then the resulting equation is fully
parabolic and leads to a well-posed problem. We have justi-
fied this regularization by proving the convergence of its so-
lutions against the solution of the original parabolic-elliptic
equation if ε tends to zero.

We have also showed an adequate result for an elliptic
regularization.
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