
Monotony based inclusion detection in EIT for

realistic electrode models

Bastian Harrach and Marcel Ullrich

Institut für Mathematik, Julius-Maximilians-Universität, 97074 Würzburg, Germany

E-mail: bastian.harrach@uni-wuerzburg.de and marcel.ullrich@uni-wuerzburg.de

Abstract. In electrical impedance tomography (EIT), there is a monotony relation between
the conductivity of an imaging subject and the EIT measurements. Such monotony relations
can be used for inclusion detection methods. However, up to now, monotony-based methods
were only known to reconstruct an upper or lower bound of inclusions.

In a recent preprint, the authors showed that, for continuous boundary data, monotony
based methods are in fact capable of reconstructing the exact shape of inclusions. In this work,
we discuss how to extend our results to the practically relevant complete electrode model setting
and study the possibility of rigorous resolution guarantees.

1. Introduction
The aim of electrical impedance tomography is to image the conductivity inside a conducting
subject by boundary current-voltage measurements. In this work we focus on detecting the
shape of conducting anomalies (aka inclusions) within a practically relevant setting. To obtain
current-voltage measurements we consider the following setting, cf. figure 1.

We are given a conducting object with a set of separated electrodes attached to its boundary.
A prescribed current pattern is applied to the electrodes and yields measurement data of the
resulting potential on each electrode (up to a real constant representing the ground level).
The boundary of the object is isolated, currents can only flow trough the electrodes. The
electrodes are highly conducting, such that the potentials can be assumed to be constant on
each electrode. Furthermore we assume that the contact impedance of a thin contact layer
between each electrode and the object is known.

Mathematically, for this setting, the current-voltage measurements can be modeled by
the complete electrode model (CEM) as follows. Let Ω ∈ R

n be a bounded domain with
smooth boundaries, σ ∈ L∞

+ (Ω) (where L∞
+ (Ω) denotes the subspace of L∞(Ω)-functions with

positive essential infima), the electrodes are identified with their corresponding boundary parts
e1, e2, . . . , eL ⊆ ∂Ω and the contact impedances are real values z1, z2, . . . , zL ∈ R. Then, for a
prescribed current pattern I = (Il)

L
l=1 ∈ R

L� there exists a unique pair (u, U) ∈ H1� (Ω) × R
L�

(where the subscript � denotes the subspace of H1(Ω)-functions resp. RL-elements with vanishing
integral mean resp. sum of components), such that

∇ · σ∇u = 0 in Ω, (1)
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u|∂Ω + zlσ∂νu|∂Ω = Ul on el, 1 ≤ l ≤ L, (2)

σ∂νu|∂Ω = 0 on ∂Ω \
L⋃
l=1

el, (3)

∫
el

σ∂νu|∂ΩdS = Il, (4)

where σ∂νu|∂Ω denotes the Neumann boundary values and u|∂Ω ∈ �L2
�(∂Ω) is the trace of u. By

this formulation of the CEM, we can identify the current-voltage measurements for an object
with conductivity σ, with the linear symmetric mapping R(σ) : RL� → R

L� , I �→ U , cf. e.g. [1].

2. Monotony based methods
2.1. The monotony relation
Theorem 1. Let σ1, σ2 ∈ L∞

+ (Ω) and (v, V ) be the solution of the CEM for the conductivity σ2.
Then ∫

Ω
(σ1 − σ2)|∇v|2dx ≥ 〈I, (R(σ2)−R(σ1)) I〉 ≥

∫
Ω

σ2
σ1

(σ1 − σ2)|∇v|2dx, (5)

where 〈·, ·〉 : RL × R
L → R

L denotes the euclidean inner product.

Note that there is an analogue monotony results for the continuous boundary model that
seem to go back to Ikehata, Kang, Seo and Sheen [2, 3].

Proof. It is known, that (u, U) ∈ H1� (Ω)×R
L� is the solution of the CEM for the conductivity σ

and the prescribed current pattern I ∈ R
L� if and only if the following variational formulation

Bσ((u, U), (v, V )) :=

∫
Ω
σ∇u · ∇vdx +

L∑
l=1

1

zl

∫
el

(u|∂Ω − Ul)(v|∂Ω − Vl)dS =

L∑
l=1

IlVl = 〈I, V 〉

holds for all (v, V ) ∈ H1� (Ω)× R
L� , cf. e.g. [1].

With this equivalent formulation of the CEM-System we obtain the first inequality. Let
(u, U) resp. (v, V ) be the solution of the CEM for the conductivity σ1 resp. σ2.

0 ≤
∫
Ω
σ1|∇(u− v)|2dx +

L∑
l=1

1

zl

∫
ei

((u|∂Ω − Ui)− (v|∂Ω − Vi))
2 dS

= Bσ1((u, U), (u, U)) + Bσ2((v, V ), (v, V ))− 2Bσ1((u, U), (v, V )) +

∫
Ω

(σ1 − σ2)|∇v|2dx

= 〈I, (R(σ1)−R(σ2))I〉+

∫
Ω

(σ1 − σ2)|∇v|2dx.

Thus, we obtain the first inequality.
By interchanging (u, U) and (v, V ) as well as σ1 and σ2, the equation above yields:

〈I, (R(σ2)−R(σ1))I〉

=

∫
Ω

(σ1 − σ2)|∇u|2dx +

∫
Ω
σ2|∇(v − u)|2dx +

L∑
l=1

1

zl

∫
ei

((v|∂Ω − Vi)− (u|∂Ω − Ui))
2 dS

=

∫
Ω
σ1

∣∣∣∣∇u− σ2
σ1
∇v

∣∣∣∣
2

+
σ2
σ1

(σ1 − σ2)|∇v|2dx +

L∑
l=1

1

zl

∫
ei

((v|∂Ω − Vi)− (u|∂Ω − Ui))
2 dS.

Since σ1 and zl are positive the second inequality follows.
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A simple consequence is

σ1 ≤ σ2 =⇒ R(σ1) ≥ R(σ2), (6)

where the first inequality is meant in the pointwise (a.e.) on Ω sense, and the second one is to
be understood in the sense that R(σ1)−R(σ2) has only non-negative eigenvalues.

2.2. A simple monotony based shape reconstruction method
We start by presenting the main idea on a simple case. Let the conductivity σ of the conducting
object Ω be given by σ = 1 + χD ∈ L∞

+ (Ω), where D ⊆ Ω is an open set. Then (6) yields that

DR :=
⋃

ε>0, x∈Ω, R(1+χBε(x))≥R(σ)

Bε(x)

is an upper bound of the inclusion D.

Such monotony based reconstruction methods were numerically studied by Tamburrino and
Rubinacci [4]. In the recent preprint [5] (see also [6]), the authors showed that, for continuous
boundary data, monotony methods are actually capable of reconstructing the exact shape D (if D
has connected complement) and that they allow a fast linearized but still exact implementation.

3. Resolution guaranties for monotony based methods
In the realistic CEM-model with finitely many electrodes, we can no longer expect the monotony
based method to reconstruct the exact shape of an inclusion. However, we will now present a new
approach that allows us to guarantee certain detectability properties (or resolution guarantees)
for the CEM-model, even with imprecisely known backgrounds and measurement noise.

For a resolution given by a partition (ωi)
N
i=1,

⋃̇n

i=1ωi = Ω (wi 
= ∅), we will show how to test
whether a set of electrodes e1, e2, . . . , eL is suitable to ensure some reconstruction guaranties or
not.

Similar as in section 2.2, let us consider the case where the conductivity σ is given by
σ = σ0 + χDκ ∈ L∞

+ (Ω) with σ0, κ ∈ L∞(Ω), κ ≥ c (a.e.) on a set D ⊆ Ω and |σ0 − 1| ≤ ε for
some small constants c > 2ε > 0.

3.1. A basic resolution guarantee
For an inclusion detection method that yields a reconstruction DR to D, we say that it fulfills
a resolution guarantee with respect to a partition (ωi)

N
i=1 if the following holds.

If a piece ωi of the resolution partition is completely overlapped by an inclusion D, the
method will mark this piece as a part of the reconstruction DR. On the other hand, if there is
no inclusion, no piece of the resolution partition will be marked. Mathematically speaking, this
means that

(i) ωi ⊆ D implies ωi ⊆ DR for i ∈ {1, 2, . . . , N}, and

(ii) D = ∅ implies DR = ∅.

3.2. Verification of resolution guarantee
Theorem 2. The inclusion detection method

DR :=
⋃

i∈{1,2,...,N}, R(1−ε+cχωi )≥R(σ)

ωi (7)

fulfills the resolution guarantee of 3.1 if and only if

R(1− ε + cχωi) 
≥ R(1 + ε), for all i ∈ {1, 2, . . . , N}. (8)
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Proof. By the monotony relation (6), assertion (i) is always satisfied, since ωi ⊆ D implies
1− ε + cχωi ≤ σ for all i ∈ {1, 2, . . . , N}. Hence, only assertion (ii) needs to be verified.

First, we assume that D = ∅. Thus, σ = σ0 ≤ 1 + ε and by the monotony relation (6) we
obtain that R(σ) ≥ R(1 + ε). Hence, R(1− ε+ cχωi) 
≥ R(1 + ε) for all i ∈ {1, 2, . . . , N} implies
R(1− ε + cχωi) 
≥ R(σ) for all i ∈ {1, 2, . . . , N}.

For the converse, we assume that R(1− ε+ cχωi) ≥ R(1 + ε) for at least one i ∈ {1, 2, . . . , N}
and the conductivity be given by σ = 1 + ε. For this case DR ⊇ ωi 
= ∅.

Theorem 2 offers a criterion to check, if the resolution and the electrode setting fit together,
such that the reconstruction method, given by (7), fulfills the resolution guarantee or not.

e1

e2

e3

e4

e5

e6

...

ω1 ω2 ω3 ω4 ω5 · · ·

ωi

D

Ω
Figure 1. CEM-setting with a potentially resolution
(ωi)

N
i=1 and sample inclusion D.

3.3. Presence of measurement errors
We consider noisy measurement data Rδ(σ) with ‖R(σ) − Rδ(σ)‖ = δ. If the reconstruction
method with exact data fulfills the resolution guarantee, the test criteria (8) also yield a
bound Δ > 0 for the measurement error δ, such that the resolution guarantee is still valid
for measurement with noise up to Δ. This bound depend on the smallest eigenvalue of all the
matrices R(1− ε + cχωi)−R(1 + ε) from the test criterion.
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