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DIMENSION BOUNDS IN MONOTONICITY METHODS FOR THE
HELMHOLTZ EQUATION\ast 

BASTIAN HARRACH\dagger , VALTER POHJOLA\ddagger , AND MIKKO SALO\S 

Abstract. The article [B. Harrach, V. Pohjola, and M. Salo, Anal. PDE] established a mono-
tonicity inequality for the Helmholtz equation and presented applications to shape detection and
local uniqueness in inverse boundary problems. The monotonicity inequality states that if two scat-
tering coefficients satisfy q1 \leq q2, then the corresponding Neumann-to-Dirichlet operators satisfy
\Lambda (q1) \leq \Lambda (q2) up to a finite-dimensional subspace. Here we improve the bounds for the dimension
of this space. In particular, if q1 and q2 have the same number of positive Neumann eigenvalues,
then the finite-dimensional space is trivial.
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1. Introduction. This article is concerned with monotonicity properties arising
in inverse problems and applications. As a basic example, if \sigma 1 and \sigma 2 are positive
functions (representing electrical conductivities) in a bounded domain \Omega \subset \BbbR n and if
\Lambda (\sigma 1) and \Lambda (\sigma 2) are the corresponding Neumann-to-Dirichlet (ND) operators (repre-
senting electrical boundary measurements), then one has the monotonicity property

\sigma 1 \leq \sigma 2 =\Rightarrow \Lambda (\sigma 1) \geq \Lambda (\sigma 2).

The last statement means that \Lambda (\sigma 1) - \Lambda (\sigma 2) is a positive semidefinite operator on the
mean-free functions in L2(\partial \Omega ) (the so-called Loewner order). This property, together
with a certain nontrivial converse based on localized potentials [9], leads to efficient
monotonicity based methods for determining shapes of obstacles or inclusions from
electrical or optical boundary measurements (cf. [37] for the origin of this idea, [26] for
the proof of the converse monotonicity property, and the list of references for recent
works on monotonicity-based methods at the end of this introduction).

The recent work [24] extends monotonicity based methods to imaging problems
with positive frequency, in particular acoustic imaging modeled by the Helmholtz
equation. It turns out that the basic monotonicity property may fail in this case, but
monotonicity still holds up to a finite-dimensional space and [24] shows that shape
detection methods and local uniqueness results can be developed also in this situation.
The paper [12] extends this idea to farfield inverse scattering and shows numerical
reconstructions.
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Let us describe the results of [24] in more detail. Let \Omega \subset \BbbR n, n \geq 2, be a
bounded Lipschitz domain, and let q \in L\infty (\Omega ) be a real valued function with q \not \equiv 0.
Let k > 0, and consider the Neumann problem

(1.1)

\Biggl\{ 
(\Delta + k2q)u = 0 in \Omega ,

\partial \nu u = g on \partial \Omega .

We assume that k > 0 is not a resonance frequency, which means that the Neumann
problem has a unique solution u \in H1(\Omega ) for any g \in L2(\partial \Omega ). Define the ND operator

\Lambda (q) : L2(\partial \Omega ) \rightarrow L2(\partial \Omega ), g \mapsto \rightarrow u| \partial \Omega .

Let \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \rightarrow  - \infty be the Neumann eigenvalues of \Delta + k2q in \Omega , and let d(q)
be the number of positive Neumann eigenvalues (counted with multiplicity).

In [24, Theorem 3.5] it was proved that

q2  - q1 \geq 0 =\Rightarrow \Lambda (q2) - \Lambda (q1) has only finitely many negative eigenvalues.

Here we consider \Lambda (q2)  - \Lambda (q1) as a compact self-adjoint operator on L2(\partial \Omega ). Let
d(q1, q2) be the number of negative eigenvalues of \Lambda q2  - \Lambda q1 (counting with multiplic-
ity). In [24, Theorem 3.5] it was also proved that d(q1, q2) satisfies the bound

d(q1, q2) \leq d(q2).

The next result gives a more precise estimate for d(q1, q2).

Theorem 1.1. Let q1, q2 \in L\infty (\Omega ) \setminus \{ 0\} be such that k is not a resonance fre-
quency for q1 and q2. Assume that q1 \leq q2 a.e. in \Omega . Then

d(q1, q2) \leq d(q2) - d(q1).

This has an immediate consequence: even if q1 and q2 are positive, the standard
monotonicity inequality for the ND operators remains true if q1 and q2 have the same
number of positive Neumann eigenvalues.

Theorem 1.2. Let q1, q2 \in L\infty (\Omega ) \setminus \{ 0\} be such that k is not a resonance fre-
quency for q1 and q2. Assume that d(q1) = d(q2). Then

q1 \leq q2 =\Rightarrow \Lambda (q1) \leq \Lambda (q2).

Let us describe the main idea of the proof of Theorem 1.1. If q1 and q2 are in
L\infty (\Omega ) \setminus \{ 0\} and satisfy q1 \leq q2, we define the interpolated potentials

q(t) = q1 + t(q2  - q1), t \in [0, 1].

Denote by \lambda 1(t) \geq \lambda 2(t) \geq \cdot \cdot \cdot \rightarrow  - \infty the Neumann eigenvalues of \Delta + k2q(t) in \Omega .
Assume for simplicity that each \lambda j(t) is a simple eigenvalue. (The proof in section
2 removes this restriction.) Then each map \lambda j : [0, 1] \rightarrow \BbbR is smooth and strictly
increasing. This follows from the variational formula

\lambda \prime j(t) = k2
\int 
\Omega 

(q2  - q1)\varphi j(t)
2 dx,

where \{ \varphi j(t)\} is an L2-orthonormal basis consisting of Neumann eigenfunctions cor-
responding to \{ \lambda j(t)\} , and from the unique continuation principle. Now, when t = 0
one starts with d(q1) positive eigenvalues, and when t = 1 one has d(q2) positive
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eigenvalues. Since the maps t \mapsto \rightarrow \lambda j(t) are strictly increasing, exactly d(q2)  - d(q1)
eigenvalues cross the real axis as t increases to 1, and the eigenspace at each crossing
gives rise to a one-dimensional subspace of L2(\partial \Omega ). Now if g \in L2(\partial \Omega ) is orthogo-
nal to all these one-dimensional subspaces, it follows that ((\Lambda (q2)  - \Lambda (q1))g, g) \geq 0,
proving that the finite-dimensional obstruction has dimension \leq d(q2) - d(q1).

The next result complements Theorem 1.1 by showing that in certain cases where
q1 and q2 differ by a constant, there are lower bounds on the number of negative
eigenvalues. Its proof is based on computing an expression for the quadratic form
((\Lambda (q2  - b) - \Lambda (q1 + a))g, g) in terms of the Neumann eigenfunctions of \Delta + k2q1 and
showing that the quadratic form is negative for g in a space spanned by finitely many
traces of Neumann eigenfunctions.

Theorem 1.3. Let q1, q2 \in L\infty (\Omega ) \setminus \{ 0\} be such that k is nonresonant for q1
and q2. Assume that q2  - q1 is a positive constant and d(q2) > d(q1). Let \mu 1 be the
largest negative Neumann eigenvalue of \Delta + k2q1, and let \mu 2 be the smallest positive
eigenvalue of \Delta + k2q2. Let Nj be the multiplicity of \mu j.

(a) \Lambda (q2 - b) - \Lambda (q1+a) has at least N1 negative eigenvalues whenever a < k - 2| \mu 1| 
is sufficiently close to k - 2| \mu 1| , and b \in [0, k - 2\mu 2).

(b) \Lambda (q2 - b) - \Lambda (q1+a) has at least N2 negative eigenvalues whenever b < k - 2\mu 2

is sufficiently close to k - 2\mu 2, and a \in [0, k - 2| \mu 1| ).

From the previous theorem, we obtain the following special cases where equality
is attained in Theorem 1.1.

Theorem 1.4.
(a) Let q \in L\infty (\Omega ) be such that 0 is a Neumann eigenvalue of \Delta + k2q with

multiplicity N . For \varepsilon > 0 small enough, d(q + \varepsilon ) - d(q  - \varepsilon ) = N and \Lambda (q +
\varepsilon ) - \Lambda (q  - \varepsilon ) has exactly N negative eigenvalues.

(b) Let \Omega be the square (0, \pi )2 \subset \BbbR 2, let k > 0, and let N \geq 2 be even. There
is a c > 0 such that for \varepsilon > 0 small, \Lambda (c + \varepsilon )  - \Lambda (c  - \varepsilon ) has exactly N =
d(c+ \varepsilon ) - d(c - \varepsilon ) negative eigenvalues.

Let us give some more references to earlier and related work and comment on the
relevance of our results. Monotonicity estimates and localized potentials techniques
have been used in different ways for the study of inverse problems [14, 25, 15, 1,
26, 2, 28, 4, 12, 24, 18, 20] and several recent works build practical reconstruction
methods on monotonicity properties [37, 17, 27, 22, 30, 38, 6, 7, 36, 39, 23, 40, 8].
Recently, monotonicity arguments were also discovered to yield Lipschitz stability
results (cf. [21, 35, 16]). All of these works consider stationary imaging cases where
monotonicity of the ND operators holds in the sense of the Loewner order as explained
above. So far, only [24, 12, 19] cover the case of positive frequency imaging where the
monotonicity only holds up to a finite-dimensional space. For extending monotonicity-
based theoretical uniqueness and stability results, as well as monotonicity-based nu-
merical reconstruction methods, it seems to be of utmost importance to have a good
bound on the number of eigenvalues that have to be disregarded. [24] showed that
this number is smaller than d(q2), which might become arbitrarily large for high fre-
quencies k \rightarrow \infty . Using this bound would result in disregarding a large part of the
ND operators for high frequencies and might make numerical reconstruction methods
unfeasible. This article, however, shows that the number is smaller than d(q2) - d(q1)
which might still be small (or even zero) for high frequencies. Note also that this
article indicates that the bound is sharp for q1 close to q2, but that the bound might
get too large when q2  - q1 increases (cf. section 4).
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The rest of this paper is organized as follows. Section 2 gives the proof of Theorem
1.1, and section 3 proves Theorems 1.3 and 1.4. Section 4 gives a simple alternative
proof of Theorem 1.1 for the case where q1 and q2 are constant and numerically studies
the sharpness of the bound for large q2  - q1.

2. Upper bound for the number of negative eigenvalues. For the proof
of Theorem 1.1, it will be useful to consider solutions of the Helmholtz equation also
when k is a resonant frequency. In this case the Neumann data needs to satisfy finitely
many linear constraints.

Lemma 2.1. Let q \in L\infty (\Omega ) and k > 0, and define the sets

N(q) = \{ \varphi \in H1(\Omega ) ; (\Delta + k2q)\varphi = 0 in \Omega , \partial \nu \varphi | \partial \Omega = 0\} ,
D(q) = \{ \varphi | \partial \Omega ; \varphi \in N(q)\} .

Also let N(q)\bot be the orthogonal complement of N(q) in L2(\Omega ), and let D(q)\bot be the
orthogonal complement of D(q) in L2(\partial \Omega ).

(a) N(q) and D(q) are finite-dimensional spaces whose dimension is the multi-
plicity of 0 as the Neumann eigenvalue of \Delta + k2q in \Omega .

(b) For any F \in L2(\Omega ) and g \in L2(\partial \Omega ), the equation

(2.1) (\Delta + k2q)u = F in \Omega , \partial \nu u| \partial \Omega = g,

has a solution u \in H1(\Omega ) if and only if one has the compatibility conditions

(2.2)

\int 
\Omega 

F\varphi dx =

\int 
\partial \Omega 

g\varphi dS, \varphi \in N(q).

In particular, a solution exists whenever F \in N(q)\bot and g \in D(q)\bot . The
solution is unique up to addition of a function in N(q), and one has a bounded
map

Tq : N(q)\bot \times D(q)\bot \rightarrow H1(\Omega ), (F, g) \mapsto \rightarrow uF,g,

where uF,g is the unique solution with (u, \varphi )H1(\Omega ) = 0 for \varphi \in N(q).
(c) Let \lambda 1 \geq \lambda 2 \geq \lambda 3 \geq \cdot \cdot \cdot \rightarrow  - \infty be the Neumann eigenvalues of \Delta + k2q in \Omega 

and let (\varphi j)
\infty 
j=1 be a corresponding orthonormal basis of L2(\Omega ) consisting of

Neumann eigenfunctions. If F \in L2(\Omega ) and g \in L2(\partial \Omega ) satisfy (2.2), then
any solution u \in H1(\Omega ) of (2.1) may be represented as the L2(\Omega )-convergent
sum

u =
\sum 
j\in J

aj\varphi j +
\sum 
j /\in J

1

\lambda j

\biggl[ \int 
\Omega 

F\varphi j dx - 
\int 
\partial \Omega 

g\varphi j dS

\biggr] 
\varphi j ,

where J = \{ j \geq 1 ; \lambda j = 0\} is finite, and aj \in \BbbR are some constants.

Remark. The sum in part (c) may not converge in higher norms in general. In
fact, if it did converge in some space where the normal derivative operator is bounded,
then one would get that \partial \nu u| \partial \Omega = 0, which is not true if g \not = 0.

Proof. As in [24, section 2.1] we use the compact inclusion map \iota : H1(\Omega ) \rightarrow 
L2(\Omega ) to define K = \iota \ast \iota and Kq = \iota \ast Mq\iota , where Mq : L2(\Omega ) \rightarrow L2(\Omega ) is the
multiplication operator by q. Both K and Kq are compact self-adjoint operators
from H1(\Omega ) to H1(\Omega ). A function u \in H1(\Omega ) is a weak solution of (2.1) if and only
if

(Id - K  - k2Kq)u =  - \iota \ast F + \gamma \ast g,
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where \gamma : H1(\Omega ) \rightarrow L2(\partial \Omega ) is the trace operator. By Fredholm theory (see, e.g.,
[34, Corollary 8.95]), this problem has a solution u \in H1(\Omega ) for given F \in L2(\Omega ),
g \in L2(\partial \Omega ) if and only if

( - \iota \ast F + \gamma \ast g, \varphi )H1(\Omega ) = 0

for all \varphi \in H1(\Omega ) in the kernel of Id  - K  - k2Kq. But this finite-dimensional ker-
nel is equal to N(q), showing that (2.1) is solvable if and only if (2.2) holds. The
representation in [34, Corollary 8.95] shows that there is a unique solution uF,g with
(uF,g, \varphi )H1(\Omega ) = 0 for \varphi \in N(q) and that

\| uF,g\| H1(\Omega ) \leq C\|  - \iota \ast F + \gamma \ast g\| H1(\Omega ) \leq C(\| F\| L2(\Omega ) + \| g\| L2(\partial \Omega )).

Finally, the map N(q) \rightarrow D(q), \varphi \mapsto \rightarrow \varphi | \partial \Omega is bijective by the unique continuation
principle. This proves (a) and (b).

To prove (c) let u be a solution of (2.1). Since (\varphi j) is an orthonormal basis of
L2(\Omega ) we have

u =

\infty \sum 
j=1

cj\varphi j , cj =

\int 
\Omega 

u\varphi j dx,

with convergence in L2(\Omega ). Testing the weak form of (2.1) against \varphi j and integrating
by parts gives that\int 

\Omega 

F\varphi j dx = ((\Delta + k2q)u, \varphi j)L2(\Omega ) =

\int 
\partial \Omega 

g\varphi j dS + (u, (\Delta + k2q)\varphi j)L2(\Omega )

=

\int 
\partial \Omega 

g\varphi j dS + \lambda j

\int 
\Omega 

u\varphi j .

This yields the representation for u in (c).

For q1, q2 \in L\infty (\Omega ) \setminus \{ 0\} , we define

q(t) := q1 + t(q2  - q1), t \in [0, 1].

We also define the family of operators

H(t) := \Delta + k2q(t), t \in [0, 1].

The following result from analytic perturbation theory is needed to describe the be-
havior of the eigenvalues of H(t) as t changes.

Lemma 2.2. Let q1, q2 \in L\infty (\Omega ) and k > 0, assume that q1 \leq q2 and q1 \not \equiv q2,
and let \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \rightarrow  - \infty be the Neumann eigenvalues of \Delta + k2q1 in \Omega . There
exist real-analytic functions \lambda j : [0, 1] \rightarrow \BbbR and \varphi j : [0, 1] \rightarrow L2(\Omega ) with the following
properties:

(a) \lambda j(0) = \lambda j for j \geq 1, and for any t \in [0, 1], the numbers \lambda j(t) represent the
repeated1 Neumann eigenvalues of H(t) in \Omega . Zero is a Neumann eigenvalue
of H(t0) with multiplicity N if and only if precisely N functions \lambda j(t) vanish
at t = t0.

(b) Each \lambda j(t) is strictly increasing on [0, 1].

1We call \lambda 1 \geq \lambda 2 \geq . . . the repeated eigenvalues if and only if the value \lambda j is repeated the number
of times of its multiplicity in the sequence.
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(c) Each \varphi j(t) is a Neumann eigenfunction in H1(\Omega ) satisfying

H(t)\varphi j(t) = \lambda j(t)\varphi j(t) in \Omega , \partial \nu \varphi j(t)| \partial \Omega = 0,

and (\varphi j(t))
\infty 
j=1 is an orthonormal basis of L2(\Omega ) for any t \in [0, 1]. Each map

[0, 1] \rightarrow H1(\Omega ), t \mapsto \rightarrow \varphi j(t) is real-analytic.

Proof. This result will be proved by analytic perturbation theory, and hence in
this proof we will assume the function spaces to be complex valued.

(a) For z \in \BbbC , define the operator

H(z) = \Delta + k2(q1 + z(q2  - q1)).

Then H(t) = \Delta + k2q(t) for t \in \BbbR . We wish to use [29, Theorem VII.3.9, p. 392] to
show that the Neumann eigenvalues of H(t) can be parametrized analytically with
respect to t (see [3, Theorem 3.1, p. 442] and [32, Theorem XII.13] for related results).
In order to do this, we need to realize H(z) with Neumann boundary values as a self-
adjoint analytic family of unbounded operators on L2(\Omega ). In the present case where
\Omega has Lipschitz boundary, the required results may be found in [10, section 2]. (In
fact the easier abstract results in [10, Appendix B] would suffice.)

Define the set

\scrD = \{ u \in H1(\Omega ) ; \Delta u \in L2(\Omega ), \~\gamma Nu = 0 in H - 1/2(\partial \Omega )\} ,

where \~\gamma N is the weak Neumann trace operator in [10, Formulas (2.40) and (2.41)]. We
consider H(z) as an unbounded linear operator on L2(\Omega ) with domain dom(H(z)) =
\scrD . The family (H(z))z\in \BbbC has the following properties:

(i) Each H(z) is closed and densely defined. This follows since \Delta with domain
\scrD is self-adjoint by [10, Theorem 2.6], and hence \Delta and consequently also
H(z) is closed and densely defined.

(ii) The family (H(z))z\in \BbbC is holomorphic of type (A) (see [29, section VII.2.1])
since for each u \in \scrD , the map

z \mapsto \rightarrow H(z)u = \Delta u+ k2q1u+ k2z(q2  - q1)u

is holomorphic.
(iii) The family (H(z))z\in \BbbC is a self-adjoint holomorphic family, i.e., a holomorphic

family of operators satisfying H(z)\ast = H(\=z) (see [29, section VII.3.1]): since
\Delta with domain \scrD is self-adjoint [10, Theorem 2.6] and the map B(z) : u \mapsto \rightarrow 
k2(q1 + z(q2  - q1))u is bounded on L2(\Omega ), by [5, Lemma XII.1.6] we have

H(z)\ast = \Delta \ast +B(z)\ast = \Delta +B(\=z) = H(\=z).

(iv) H(z) has a compact resolvent, when z \in \BbbC . This can be seen as follows. Let

Rz(\zeta ) := (H(z) - \zeta ) - 1,

denote the resolvent. Arguing as in the proof of [10, Corollary 2.7] using [10,
Remark 2.19], we have that

Rz(\zeta 0) := (H(z) - \zeta 0)
 - 1

is compact, when \zeta 0 \in \BbbR + is large enough. By the resolvent identity in [31,
Theorem VIII.2] we have that

Rz(\zeta ) = Rz(\zeta 0) - (\zeta 0  - \zeta )Rz(\zeta )Rz(\zeta 0).
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The resolvent Rz(\zeta ) is by definition continuous on L2(\Omega ), when \zeta is in the
resolvent set. The above formula hence implies that Rz(\zeta ) is compact on
L2(\Omega ), since Rz(\zeta 0) is compact.

Thus the family (H(z))z\in \BbbC satisfies the conditions in [29, Theorem VII.3.9, p. 392],
and there are real-analytic functions \lambda j(t) and real-analytic vector functions \varphi j(t),
for t \in [0, 1], such that \lambda j(t) represent all the repeated eigenvalues of H(t), \varphi j(t) are
the corresponding eigenfunctions, and (\varphi j(t)) is an orthonormal basis of L2(\Omega ). Since
\varphi j(t) \in \scrD , these are exactly the standard Neumann eigenvalues and eigenfunctions of
H(t) (see [10, Formula (2.41)]). We may reorder \lambda j(t) and \varphi j(t) so that \lambda j(0) = \lambda j .

(b) We compute \lambda \prime j(t) using a variational formula: by [29, Formula (VII.3.18), p.

391] and by the fact that H \prime (t)u = k2(q2  - q1)u, we have

(2.3) \lambda \prime j(t) = (H \prime (t)\varphi j(t), \varphi j(t))L2(\Omega ) =

\int 
\Omega 

k2(q2  - q1)\varphi j(t)
2 dx.

Using the assumption that q2 \geq q1, we have \lambda \prime j(t) \geq 0. Moreover, since q1 \not \equiv q2,
we have q2  - q1 \geq c > 0 in some set E of positive measure in \Omega . Thus we see that
\lambda \prime j(t) > 0. (Otherwise if \lambda \prime j(t) = 0, then

\int 
E
\varphi j(t)

2 dx = 0 which would contradict the
unique continuation principle.) This implies that each \lambda j(t) is a strictly increasing
function on [0, 1].

(c) All other statements in (c) have been proved, except that t \mapsto \rightarrow \varphi j(t) is real-
analytic as an H1(\Omega )-valued function. To prove this, note first that for any v \in L2(\Omega )
the map

t \mapsto \rightarrow (\varphi j(t), v)L2(\Omega )

is real-analytic on [0, 1]. Now, if \psi \in H1(\Omega ), we compute

(\varphi j(t), \psi )H1(\Omega ) = (\varphi j(t), \psi )L2(\Omega )  - (\Delta \varphi j(t), \psi )L2(\Omega )

= (\varphi j(t), \psi )L2(\Omega ) + k2(q(t)\varphi j(t), \psi )L2(\Omega )  - \lambda j(t)(\varphi j(t), \psi )L2(\Omega ).

Each term on the last line is real-analytic for t \in [0, 1]. Thus t \mapsto \rightarrow \varphi j(t) is weakly, and
hence strongly, analytic as an H1(\Omega )-valued function.

We will next combine Lemmas 2.1 and 2.2 to obtain solutions of

(2.4) (\Delta + k2q(t))ut = 0 in \Omega , \partial \nu ut| \partial \Omega = g,

that depend Lipschitz continuously on t \in [0, 1] as long as g is orthogonal to a finite-
dimensional subspace of L2(\partial \Omega ).

Lemma 2.3. Assume the conditions in Lemma 2.2. Let t1 < \cdot \cdot \cdot < tK be the times
when 0 is a Neumann eigenvalue of H(t), let g \in L2(\partial \Omega ), and let ut be the unique
solution of (2.4) for t \in [0, 1] \setminus \{ t1, . . . , tK\} .

(a) The map

[0, 1] \setminus \{ t1, . . . , tK\} \rightarrow H1(\Omega ), t \mapsto \rightarrow ut,

is real-analytic. The derivative \partial tut is the unique H1(\Omega ) solution of (\Delta +
k2q(t))v =  - k2q\prime (t)ut in \Omega with \partial \nu v| \partial \Omega = 0. For any compact F \subset [0, 1] \setminus 
\{ t1, . . . , tK\} , there is CF > 0 such that

\| ut\| H1(\Omega ) \leq CF \| g\| L2(\partial \Omega ), t \in F.
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(b) Let t0 be one of t1, . . . , tK and let I = \{ j \geq 1 ; \lambda j(t0) = 0\} . Then

\| ut  - 
\sum 
j\in I

(ut, \varphi j(t))L2(\Omega )\varphi j(t)\| H1(\Omega ) \leq C\| g\| L2(\partial \Omega )

uniformly for t close to t0.
(c) If J = \{ j \geq 1 ; \lambda j(tl) = 0 for some l \in \{ 1, 2, . . . ,K\} \} , then

\| ut  - 
\sum 
j\in J

(ut, \varphi j(t))L2(\Omega )\varphi j(t)\| H1(\Omega ) \leq C\| g\| L2(\partial \Omega )

uniformly over t \in [0, 1] \setminus \{ t1, . . . , tK\} .
(d) With the notation of Lemma 2.1 let

D = D(q(t1))\oplus \cdot \cdot \cdot \oplus D(q(tK)).

If additionally g \in D\bot , then t \mapsto \rightarrow ut extends uniquely as a Lipschitz continu-
ous map

[0, 1] \rightarrow H1(\Omega ), t \mapsto \rightarrow ut.

Proof. We first show that 0 is a Neumann eigenvalue of H(t) at only finitely many
times t. Note that \Delta + k2q2 has at most finitely many positive Neumann eigenvalues.
Since the functions \lambda j(t) are strictly increasing and since the Neumann eigenvalues
of \Delta + k2q2 are given by \lambda j(1), we see that only finitely many of the functions \lambda j(t)
have a zero in [0, 1]. Thus there are only finitely many times 0 \leq t1 < \cdot \cdot \cdot < tK \leq 1
in the interval t \in [0, 1] so that 0 is a Neumann eigenvalue of H(t).

Proof of part (a). Fix any g \in L2(\partial \Omega ) and let t \in [0, 1] \setminus \{ t1, . . . , tK\} . Then the
Neumann problem for \Delta + k2q(t) in \Omega is well-posed, and we define ut = Tq(t)(0, g) as
the unique solution of (2.4). Fix t0 \in [0, 1] \setminus \{ t1, . . . , tK\} , and note that for t close to
t0 one has

(\Delta + k2q(t0))(ut  - ut0) =  - k2(q(t) - q(t0))ut =  - k2(t - t0)(q2  - q1)ut

and \partial \nu (ut  - ut0)| \partial \Omega = 0. It follows that

[Id + k2(t - t0)G(q(t0))((q2  - q1) \cdot )]ut = ut0 ,

where G(q(t0)) : F \mapsto \rightarrow Tq(t0)(F, 0) is bounded L
2(\Omega ) \rightarrow H1(\Omega ) by Lemma 2.1. Choos-

ing t close to t0, we can solve the last equation by Neumann series so that

ut =

\infty \sum 
j=0

( - k2)j(t - t0)
j [G(q(t0))((q2  - q1) \cdot )]jut0 .

Thus t \mapsto \rightarrow ut is real-analytic in [0, 1] \setminus \{ t1, . . . , tK\} . Moreover, for any t0 \in [0, 1] \setminus 
\{ t1, . . . , tK\} there is \varepsilon (t0) > 0 so that

(2.5) \| ut\| H1(\Omega ) \leq 2\| ut0\| H1(\Omega ) \leq C(t0)\| g\| L2(\partial \Omega ), | t - t0| < \varepsilon (t0).

This proves the uniform bound for \| ut\| H1(\Omega ) over any compact subset F of [0, 1] \setminus 
\{ t1, . . . , tK\} . Finally, differentiating the power series and evaluating at t0 yields

\partial tut| t=t0 =  - k2G(q(t0))((q2  - q1)ut0),
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so that \partial tut| t=t0 is the unique solution of (\Delta + k2q(t0))v =  - k2(q2  - q1)ut0 in \Omega with
\partial \nu v| \partial \Omega = 0.

Proof of part (b). Let t0 be one of t1, . . . , tK . Let I = \{ j \geq 1 ; \lambda j(t0) = 0\} (so
that I is finite), and write

ut = vt + wt, vt = Ptut, wt = Qtut,

where Pt and Qt are the orthogonal projections on L2(\Omega ) given by

Ptu =
\sum 
j\in I

(u, \varphi j(t))L2(\Omega )\varphi j(t), Qtu =
\sum 
j /\in I

(u, \varphi j(t))L2(\Omega )\varphi j(t).

We need to prove that \| wt\| H1(\Omega ) \leq C\| g\| L2(\partial \Omega ) for t close to t0.
Fix some \=t \in [0, 1] \setminus \{ t1, . . . , tK\} , and write ut = r + ht, where r \in H1(\Omega ) is the

unique solution of

(\Delta + k2q(\=t))r = 0 in \Omega , \partial \nu r| \partial \Omega = g.

Then ht solves
(\Delta + k2q(t))ht = Ft in \Omega , \partial \nu ht| \partial \Omega = 0,

where

Ft =  - (\Delta + k2q(t))r =  - k2(q(t) - q(\=t))r =  - k2(t - \=t)(q2  - q1)r.

Now wt = Qtut = Qtr +Qtht, so that

\| wt\| L2(\Omega ) \leq \| r\| L2(\Omega ) +

\left[  \sum 
j /\in I

\biggl( \int 
\Omega 

ht\varphi j(t) dx

\biggr) 2
\right]  1/2

.

Testing the equation for ht against \varphi j(t) and integrating by parts gives that

\lambda j(t)

\int 
\Omega 

ht\varphi j(t) dx =

\int 
\Omega 

Ft\varphi j(t) dx

and consequently

\| wt\| L2(\Omega ) \leq \| r\| L2(\Omega ) +

\left[  \sum 
j /\in I

1

\lambda j(t)2

\biggl( \int 
\Omega 

Ft\varphi j(t) dx

\biggr) 2
\right]  1/2

.

Now, the main point is that | \lambda j(t0)| \geq c > 0 for j /\in I. Moreover, the formula (2.3)
implies that

0 \leq \lambda \prime j(t) \leq C, uniformly over j \geq 1 and t \in [0, 1].

These facts imply that there is \varepsilon > 0 so that

| \lambda j(t)| \geq c/2, uniformly over j /\in I and | t - t0| \leq \varepsilon .

It follows that

\| wt\| L2(\Omega ) \leq \| r\| L2(\Omega ) +
2

c
\| Ft\| L2(\Omega ), | t - t0| \leq \varepsilon .
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Thus \| wt\| L2(\Omega ) \leq C\| g\| L2(\partial \Omega ) uniformly over t \in [t0  - \varepsilon , t0 + \varepsilon ], since \| r\| H1(\Omega ) \leq 
C\| g\| L2(\partial \Omega ) and Ft =  - k2(t - \=t)(q2  - q1)r.

Finally we estimate the H1 norm. By Lemma 2.1, we have that

(2.6) vt =  - 
\sum 
j\in I

1

\lambda j(t)

\biggl[ \int 
\partial \Omega 

g\varphi j(t) dS

\biggr] 
\varphi j(t).

Now since wt solves the equation

(\Delta + k2q(t))wt = Gt in \Omega , \partial \nu wt| \partial \Omega = g,

where by (2.6)

Gt =  - (\Delta + k2q(t))vt =  - 
\sum 
j\in I

\biggl[ \int 
\partial \Omega 

g\varphi j(t) dS

\biggr] 
\varphi j(t),

we obtain that

\| \nabla wt\| 2L2(\Omega ) =

\int 
\Omega 

( - \Delta wt)wt dx+

\int 
\partial \Omega 

(\partial \nu wt)wt dS

=

\int 
\Omega 

(k2q(t)wt  - Gt)wt dx+

\int 
\partial \Omega 

gwt dS.

Consequently

\| wt\| 2H1(\Omega ) \leq C(\| wt\| 2L2(\Omega ) + \| Gt\| 2L2(\Omega )) +

\int 
\partial \Omega 

gwt dS.

Using Cauchy's inequality with \varepsilon in the boundary integral and the trace result
\| wt\| L2(\partial \Omega ) \leq C\| wt\| H1(\Omega ), we obtain that

\| wt\| 2H1(\Omega ) \leq C(\| wt\| 2L2(\Omega ) + \| Gt\| 2L2(\Omega ) + \| g\| 2L2(\partial \Omega )).

We have seen above that \| wt\| L2(\Omega ) \leq C\| g\| L2(\partial \Omega ) uniformly over | t - t0| \leq \varepsilon , and the
same is true for \| Gt\| L2(\Omega ). Thus \| wt\| H1(\Omega ) \leq C\| g\| L2(\partial \Omega ) uniformly over | t - t0| \leq \varepsilon .

Proof of part (c). This is completely analogous to the proof of part (b), upon
using the fact that | \lambda j(t)| \geq c > 0 uniformly over j /\in J and t \in [0, 1].

Proof of part (d). Let now g \in D\bot , let t0 = tl, where 1 \leq l \leq K, and let t \not = t0
be close to t0. As in part (b), we write ut = vt +wt, where vt = Ptut and wt = Qtut.

We first prove that under the assumption g \in D\bot , the map t \mapsto \rightarrow vt is a real-
analytic from [0, 1] to H1(\Omega ). By (2.6) we have that

vt =  - 
\sum 
j\in I

1

\lambda j(t)

\biggl[ \int 
\partial \Omega 

g\varphi j(t) dS

\biggr] 
\varphi j(t).

Now \lambda j(t0) = 0, so vt could potentially blow up as t\rightarrow t0. However, this is prevented
by the fact that g \in D\bot , which ensures that vt may be written as

vt =  - 
\sum 
j\in I

\biggl[ \int 
\partial \Omega 

g
\varphi j(t) - \varphi j(t0)

\lambda j(t) - \lambda j(t0)
dS

\biggr] 
\varphi j(t).
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Since \lambda j and \varphi j are real-analytic, one has

(2.7) \lambda j(t) - \lambda j(t0) = \mu j(t)(t - t0), \varphi j(t) - \varphi j(t0) = \psi j(t)(t - t0),

where \mu j and \psi j are real-analytic near t0 with \psi j taking values inH
1(\Omega ), and \mu j(t0) =

\lambda \prime j(t0) > 0. Thus

(2.8) vt =  - 
\sum 
j\in I

\biggl[ \int 
\partial \Omega 

g
\psi j(t)

\mu j(t)
dS

\biggr] 
\varphi j(t),

where \mu j(t) \geq c > 0 near t0. The map [0, 1] \rightarrow L2(\partial \Omega ), t \mapsto \rightarrow \psi j(t)| \partial \Omega is real-analytic
since the trace operator is bounded from H1(\Omega ) to L2(\partial \Omega ). Thus t \mapsto \rightarrow vt is real-
analytic near t0, and one has \| vt\| H1(\Omega ) \leq C\| g\| L2(\partial \Omega ) near t0. Combined with part
(b), this implies that

(2.9) \| ut\| H1(\Omega ) \leq C\| g\| L2(\partial \Omega ) for t close to t0.

Next we define ut0 so that the map s \mapsto \rightarrow us is Lipschitz continuous at t0. Recalling
the operator D(q(t0))

\bot \rightarrow H1(\Omega ), g \mapsto \rightarrow ug, where ug = Tq(t0)(0, g) from Lemma 2.1,
we define

ut0 := ug +
\sum 
j\in I

(vt0  - ug, \varphi j(t0))L2(\Omega )\varphi j(t0).

Then ut0 solves (\Delta +k2q(t0))ut0 = 0 in \Omega with \partial \nu ut0 | \partial \Omega = g, and one has Pt0ut0 = vt0 .
It remains to prove that s \mapsto \rightarrow us is Lipschitz continuous at t0. Note that

(\Delta + k2q(t0))(ut  - ut0) =  - k2(q(t) - q(t0))ut =  - k2(t - t0)(q2  - q1)ut

and \partial \nu (ut - ut0)| \partial \Omega = 0. It follows from Lemma 2.1 that the function  - k2(t - t0)(q2 - 
q1)ut is in N(q(t0))

\bot and that

ut  - ut0 = Tq(t0)( - k
2(t - t0)(q2  - q1)ut, 0) + \varphi 

for some \varphi \in N(q(t0)). Define the operator

G(q(t0)) : N(q(t0))
\bot \rightarrow H1(\Omega ), F \mapsto \rightarrow Qt0Tq(t0)(F, 0).

Then G(q(t0)) is bounded (since Qt0 = Id - Pt0 is bounded on H1(\Omega )), and

ut  - ut0 =  - k2(t - t0)G(q(t0))((q2  - q1)ut) + Pt0(ut  - ut0).

Using the uniform bound (2.9), we get that

\| ut  - ut0\| H1(\Omega ) \leq C\| g\| L2(\partial \Omega )| t - t0| + \| Pt0(ut  - ut0)\| H1(\Omega ).

To analyze the last term, we note that by the assumption that g \in D\bot and by (2.7)
and (2.8)

Pt0(ut  - ut0) =
\sum 
j\in I

\biggl[ \int 
\Omega 

(ut  - ut0)\varphi j(t0) dx

\biggr] 
\varphi j(t0)

=
\sum 
j\in I

\biggl[ \int 
\Omega 

(ut\varphi j(t) - ut0\varphi j(t0)) dx

\biggr] 
\varphi j(t0) - 

\sum 
j\in I

\biggl[ \int 
\Omega 

ut(\varphi j(t) - \varphi j(t0)) dx

\biggr] 
\varphi j(t0)

=  - 
\sum 
j\in I

\biggl[ \int 
\partial \Omega 

g

\biggl[ 
\psi j(t)

\mu j(t)
 - \psi j(t0)

\mu j(t0)

\biggr] 
dS

\biggr] 
\varphi j(t0) - (t - t0)

\sum 
j\in I

\biggl[ \int 
\Omega 

ut\psi j(t) dx

\biggr] 
\varphi j(t0),
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where \mu j and \psi j are real-analytic near t0 with \psi j taking values in H1(\Omega ). Thus in
particular

\| Pt0(ut  - ut0)\| H1(\Omega ) \leq C(\| g\| L2(\partial \Omega ) + \| ut\| L2(\Omega ))| t - t0| .

Using (2.9) again, this concludes the proof that s \mapsto \rightarrow us is Lipschitz continuous near
t0. Since this is true near t1, . . . , tK , and since s \mapsto \rightarrow us is real-analytic away from
\{ t1, . . . , tK\} , we have proved (d).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We will do the proof in three steps.
Step 1: Definition of a finite-dimensional space D. We can assume that q2 \geq q1

and q2 \not \equiv q1, since the case q2 \equiv q1 is immediate. Write d1 = d(q1), d2 = d(q2) and
N = d2  - d1, and let q(t) and \lambda j(t) be as in Lemma 2.2. Now the positive Neumann
eigenvalues of q(0) are \lambda 1(0), . . . , \lambda d1

(0). Since the functions \lambda j(t) are strictly increas-
ing, the positive Neumann eigenvalues related to q(1) are \lambda 1(1), . . . , \lambda d1

(1),\lambda j1(1), . . . ,
\lambda jN (1) for some indices j1, . . . , jN . (Here it is possible that N = 0.) We reorder the
indices for j \geq d1 + 1 so that the positive Neumann eigenvalues related to q(1) are
in descending order \lambda 1(1), . . . , \lambda d1

(1),\lambda d1+1(1), . . . , \lambda d2
(1). It follows that \lambda j(t) for

j \leq d1 are positive on [0, 1], \lambda j(t) for d1 + 1 \leq j \leq d2 have a unique zero and cross
from negative to positive on [0, 1], and \lambda j(t) for j \geq d2 + 1 are always negative on
[0, 1].

Let 0 < t1 < \cdot \cdot \cdot < tK < 1 be the times when 0 is a Neumann eigenvalue of H(t),
and let

D = D(q(t1))\oplus \cdot \cdot \cdot \oplus D(q(tK))

as in Lemma 2.3. By Lemmas 2.1 and 2.2, dim(D(q(tl))) is the multiplicity of 0
as a Neumann eigenvalue of H(tl), which is precisely the number of functions \lambda j(t)
that vanish at tl. Since exactly N = d2  - d1 functions \lambda j have a zero in [0, 1], it
follows that dim(D) \leq N . (The dimension of D would be equal to N if all the spaces
D(q(t1)), . . . , D(q(tK)) would be linearly independent, but this may not be true in
general.)

Step 2: We will next show that

((\Lambda (q2) - \Lambda (q1))g, g) \geq 0 for all g \in D\bot .

Fix g \in D\bot , and let [0, 1] \rightarrow H1(\Omega ), t \mapsto \rightarrow ut be the map in Lemma 2.3. Since
q(0) = q1 and q(1) = q2, it follows that

((\Lambda (q2) - \Lambda (q1))g, g) =

\int 
\partial \Omega 

u1g dS  - 
\int 
\partial \Omega 

u0g dS.

We write, for t \in [0, 1],

F (t) :=

\int 
\partial \Omega 

utg dS =

\int 
\Omega 

(| \nabla ut| 2  - k2q(t)u2t ) dx.

Then F is Lipschitz continuous in [0, 1] since t \mapsto \rightarrow ut is Lipschitz:

| F (t) - F (t0)| \leq \| ut  - ut0\| L2(\partial \Omega )\| g\| L2(\partial \Omega ) \leq Cg\| ut  - ut0\| H1(\Omega ) \leq Cg| t - t0| .

We compute the derivative of F using the fact from Lemma 2.3 that ut is real-
analytic in [0, 1] \setminus \{ t1, . . . , tK\} , and \partial tut is the unique solution of

(\Delta + k2q(t))\partial tut =  - k2q\prime (t)ut in \Omega , \partial \nu \partial tut| \partial \Omega = 0.
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Thus

F \prime (t) = 2

\int 
\Omega 

(\nabla ut \cdot \nabla \partial tut  - k2q(t)ut\partial tut) dx - k2
\int 
\Omega 

q\prime (t)u2t dx

= 2k2
\int 
\Omega 

q\prime (t)u2t dx - k2
\int 
\Omega 

q\prime (t)u2t dx

= k2
\int 
\Omega 

q\prime (t)u2t dx.

Since F (t) is Lipschitz continuous and hence absolutely continuous, we may use the
fundamental theorem of calculus to compute

((\Lambda (q2) - \Lambda (q1))g, g) = F (1) - F (0) =

\int 1

0

F \prime (t) dt

= k2
\int 1

0

\int 
\Omega 

(q2  - q1)u
2
t dx dt.(2.10)

Since q2  - q1 \geq 0 a.e., we get that ((\Lambda (q2) - \Lambda (q1))g, g) \geq 0 for g \in D\bot as required.
Step 3: One has d(q1, q2) \leq d(q2) - d(q1).
By the previous step one has ((\Lambda (q2)  - \Lambda (q1))g, g) \geq 0 for all g \in D\bot . By [24,

Corollary 3.3] this implies that \Lambda (q1) \leq dim(D) \Lambda (q2), i.e., that \Lambda (q2)  - \Lambda (q1) has
\leq dim(D) \leq d(q2) - d(q1) negative eigenvalues.

3. Lower bounds for the number of negative eigenvalues. In this section
we will prove Theorems 1.3 and 1.4. We will work under the assumption that q2 - q1 is
a positive constant, which ensures that the Neumann eigenvalues and eigenfunctions of
\Delta +k2q(t) behave in a very simple way as t varies. (In particular, analytic perturbation
theory is not required.)

Proof of Theorem 1.3. The proof proceeds in several steps.
Step 1: Notation for eigenvalues and eigenfunctions. Let d1 = d(q1), and let

\lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda d1
> 0 > \lambda d1+1 \geq \cdot \cdot \cdot \rightarrow  - \infty 

be the Neumann eigenvalues of \Delta + k2q1 in \Omega . (Here it is possible that d1 = 0, and
all eigenvalues are negative.) Let (\varphi j)

\infty 
j=1 be a corresponding orthonormal basis of

L2(\Omega ) consisting of Neumann eigenfunctions, i.e.,

(\Delta + k2q1)\varphi j = \lambda j\varphi j in \Omega , \partial \nu \varphi j | \partial \Omega = 0.

Define the potentials q(t) = (1  - t)q1 + tq2. Since by assumption c = q2  - q1 is a
positive constant, we have

q(t) = q1 + tc.

Now, one has

(\Delta + k2q1)\varphi = \lambda \varphi \Leftarrow \Rightarrow (\Delta + k2q(t))\varphi = (\lambda + k2ct)\varphi .

Thus the Neumann eigenvalues of \Delta + k2q(t) are given by

\lambda j(t) = \lambda j + k2ct,(3.1)
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and the corresponding L2-orthonormal Neumann eigenfunctions \varphi j(t) = \varphi j are inde-
pendent of t. We note that the functions \lambda j(t), t \in [0, 1], are strictly increasing. They
are positive if j \leq d1, cross from negative to positive and satisfy \lambda j(tj) = 0 at times

0 < td1+1 \leq \cdot \cdot \cdot \leq td2 < 1

if d1 + 1 \leq j \leq d2, and stay negative if j \geq d2 + 1. Here d2 = d(q2).
Step 2: Formula for ((\Lambda (q2) - \Lambda (q1))g, g). Fix g \in L2(\partial \Omega ), and let t \in [0, td1+1)\cup 

(td2
, 1]. Let ut be the solution of

(\Delta + k2q(t))ut = 0 in \Omega , \partial \nu ut| \partial \Omega = g.

Note that the Neumann problem is well-posed for t in this range, and as in Lemma
2.1 one has the L2(\Omega )-convergent representation

ut =

\infty \sum 
j=1

cj(t)\varphi j

with

(3.2) cj(t) =

\int 
\Omega 

ut\varphi j dx =  - 1

\lambda j(t)

\int 
\partial \Omega 

g\varphi j dS.

As in Lemma 2.3 (but with slightly different notation), we write ut = vt + wt, where

(3.3) vt =

d2\sum 
j=d1+1

cj(t)\varphi j , wt =
\sum 

j /\in [d1+1,d2]

cj(t)\varphi j .

Thus we have

((\Lambda (q2) - \Lambda (q1))g, g) =

\int 
\partial \Omega 

(u1  - u0)g dS

=

d2\sum 
j=d1+1

(cj(1) - cj(0))

\int 
\partial \Omega 

g\varphi j dS +

\int 
\partial \Omega 

(w1  - w0)g dS

=

d2\sum 
j=d1+1

k2c

\lambda j(1)\lambda j(0)

\biggl( \int 
\partial \Omega 

g\varphi j dS

\biggr) 2

+

\int 
\partial \Omega 

(w1  - w0)g dS.(3.4)

Note that the coefficient k2c
\lambda j(1)\lambda j(0)

is negative exactly when d1 + 1 \leq j \leq d2, so that

the sum in (3.4) is \leq 0 while the last integral may be positive.
Step 3: Formula for ((\Lambda (q2 - b) - \Lambda (q1+a))g, g). We will now replace q1 by q1+a

and q2 by q2 - b and show that for suitable choices of a and b, the negative contributions
in (3.4) dominate the positive ones. This will imply that the corresponding quadratic
form is negative on some finite-dimensional space, yielding a lower bound for the
number of negative eigenvalues. We do the rescalings

a = c\alpha , b = c(1 - \beta ),

where \alpha , \beta \in [0, 1] and

q(\alpha ) = q1 + a, q(\beta ) = q2  - b.
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Equation (3.4) now becomes

(3.5) ((\Lambda (q2  - b) - \Lambda (q1 + a))g, g) =

d2\sum 
j=d1+1

k2c(\beta  - \alpha )

\lambda j(\beta )\lambda j(\alpha )

\biggl( \int 
\partial \Omega 

g\varphi j dS

\biggr) 2

+

\int 
\partial \Omega 

(w\beta  - w\alpha )g dS.

In the notation of Theorem 1.3, one has \mu 1 = \lambda d1+1 and \mu 2 = \lambda d2
(1) = \lambda d2

+ k2c.
Then td1+1 = c - 1k - 2| \mu 1| (since \lambda d1+1(td1+1) = 0) and td2

= 1  - c - 1k - 2\mu 2 (since
\lambda d2

(td2
) = 0). It follows that

(3.6)

\Biggl\{ 
a \in [0, k - 2| \mu 1| ) if and only if \alpha \in [0, td1+1),

b \in [0, k - 2\mu 2) if and only if \beta \in (td2 , 1].

The next step is to show that the last integral in (3.5) is uniformly bounded over
\alpha \in [0, td1+1) and \beta \in (td2

, 1]. This will follow since wt is related only to those
eigenfrequencies that are uniformly bounded away from zero.

Step 4: \| wt\| H1(\Omega ) \leq C\| g\| L2(\partial \Omega ) uniformly over t \in [0, td1+1) \cup (td2 , 1]. This
follows directly from Lemma 2.3(c).

Step 5: Proof of part (a). We will show that there is a subspace V of L2(\partial \Omega )
with dim(V ) = N1 such that (3.5) is negative when g \in V \setminus \{ 0\} , \alpha < td1+1 is close
to td1+1, and \beta \in (td2

, 1]. Combined with (3.6) and [24, Lemma 3.2(b)] applied to
A =  - (\Lambda (q2  - b) - \Lambda (q1 + a)) with r = 0, this will prove part (a).

By the trace theorem and Step 4, we have\bigm| \bigm| \bigm| \bigm| \int 
\partial \Omega 

(w\beta  - w\alpha )g dS

\bigm| \bigm| \bigm| \bigm| \leq C\| w\beta  - w\alpha \| H1(\Omega )\| g\| L2(\partial \Omega ) \leq C\| g\| 2L2(\partial \Omega )

uniformly over \alpha \in [0, td1+1) and \beta \in (td2
, 1]. Thus

((\Lambda (q2  - b) - \Lambda (q1 + a))g, g) \leq 
d2\sum 

j=d1+1

k2c(\beta  - \alpha )

\lambda j(\beta )\lambda j(\alpha )

\biggl( \int 
\partial \Omega 

g\varphi j dS

\biggr) 2

+ C\| g\| 2L2(\partial \Omega ).

If j \in [d1 + 1, d2], then \alpha < tj and \beta > tj , and \lambda j(\beta ) = \lambda j(tj) + k2c(\beta  - tj) =
k2c(\beta  - tj) > 0. Thus one has

k2c(\beta  - \alpha )

\lambda j(\beta )
\geq k2c(\beta  - tj)

k2c(\beta  - tj)
= 1.

Since \lambda j(\alpha ) = \lambda j(tj) - k2c(tj  - \alpha ) =  - k2c(tj  - \alpha ) < 0, we obtain that

((\Lambda (q2  - b) - \Lambda (q1 + a))g, g) \leq  - 
d2\sum 

j=d1+1

1

k2c(tj  - \alpha )

\biggl( \int 
\partial \Omega 

g\varphi j dS

\biggr) 2

+ C\| g\| 2L2(\partial \Omega )

uniformly over \alpha \in [0, td1+1) and \beta \in (td2 , 1].
Recall now the assumption that \lambda d1+1 has multiplicity N1, and define

V = span\{ \varphi d1+1| \partial \Omega , . . . , \varphi d1+N1
| \partial \Omega \} .



3010 BASTIAN HARRACH, VALTER POHJOLA, AND MIKKO SALO

Here \varphi d1+1, . . . , \varphi d1+N1
are Neumann eigenfunctions corresponding to \lambda d1+1. We

claim that dim(V ) = N1. For if a1\varphi d1+1| \partial \Omega + \cdot \cdot \cdot + aN1
\varphi d1+N1

| \partial \Omega = 0, then the
function \varphi = a1\varphi d1+1 + \cdot \cdot \cdot + aN1

\varphi d1+N1
satisfies

(\Delta + k2q1)\varphi = \lambda d1+1\varphi in \Omega , \varphi | \partial \Omega = \partial \nu \varphi | \partial \Omega = 0.

By the unique continuation principle this implies that \varphi \equiv 0, and since \{ \varphi j\} are
orthonormal in L2(\Omega ) we obtain a1 = \cdot \cdot \cdot = aN1

= 0. This proves that dim(V ) = N1.
Let now g \in V \setminus \{ 0\} . Since \lambda d1+1 has multiplicity N1 and since tj is the unique

zero of t \mapsto \rightarrow \lambda j(t), by (3.1) one has td1+1 = \cdot \cdot \cdot = td1+N1 , and thus

((\Lambda (q2  - b) - \Lambda (q1 + a))g, g) \leq  - 1

k2c(td1+1  - \alpha )

d1+N1\sum 
j=d1+1

\biggl( \int 
\partial \Omega 

g\varphi j dS

\biggr) 2

 - 
d2\sum 

j=d1+N1+1

1

k2c(tj  - \alpha )

\biggl( \int 
\partial \Omega 

g\varphi j dS

\biggr) 2

+ C\| g\| 2L2(\partial \Omega )

uniformly over \alpha \in [0, td1+1) and \beta \in (td2
, 1]. The middle term on the right is \leq 0,

and writing

\delta = inf
g\in V,\| g\| L2(\partial \Omega )=1

d1+N1\sum 
j=d1+1

\biggl( \int 
\partial \Omega 

g\varphi j dS

\biggr) 2

,

where \delta > 0 (the infimum is over the unit sphere in a finite-dimensional normed space
and the quantity inside the infimum is positive for g \in V \setminus \{ 0\} ), we obtain that

((\Lambda (q2  - b) - \Lambda (q1 + a))g, g) \leq 
\biggl( 
 - \delta 

k2c(td1+1  - \alpha )
+ C

\biggr) 
\| g\| 2L2(\partial \Omega ),

where C is uniform over \alpha \in [0, td1+1) and \beta \in (td2
, 1]. Thus choosing \alpha < td1+1

sufficiently close to td1+1, one has ((\Lambda (q2  - b)  - \Lambda (q1 + a))g, g) < 0 for g \in V \setminus \{ 0\} .
This concludes the proof of part (a).

Step 6: Proof of part (b). This is completely analogous to Step 5: one defines the
subspace

V = span\{ \varphi d2 - N2+1| \partial \Omega , . . . , \varphi d2
| \partial \Omega \} 

and shows that ((\Lambda (q2  - b) - \Lambda (q1 + a))g, g) < 0 for g \in V \setminus \{ 0\} when \beta \in (td2 , 1] is
sufficiently close to td2 .

Proof of Theorem 1.4. (a) If \lambda j are the Neumann eigenvalues of \Delta + k2q in \Omega ,
then \lambda j \pm k2\varepsilon are the eigenvalues of \Delta +k2(q\pm \varepsilon ) in \Omega . Thus if \varepsilon 0 > 0 is small enough
and \varepsilon \leq \varepsilon 0, one has d(q + \varepsilon )  - d(q  - \varepsilon ) = N , and \Lambda (q + \varepsilon )  - \Lambda (q  - \varepsilon ) has at most
N negative eigenvalues by Theorem 1.1. Moreover, by Theorem 1.3 with q1 = q - \varepsilon 0,
q2 = q + \varepsilon 0, \mu 1 =  - k2\varepsilon 0, and \mu 2 = k2\varepsilon 0, we obtain that \Lambda (q + \varepsilon )  - \Lambda (q  - \varepsilon ) has at
least N negative eigenvalues for \varepsilon small.

(b) Recall that we now assume that \Omega := (0, 1)2. It is enough to show that for
any even N \geq 2, there is an eigenvalue \mu of \Delta in \Omega with multiplicity N . If this holds,
then choosing c =  - k - 2\mu gives that 0 is an eigenvalue of \Delta + k2c of multiplicity N ,
and the result follows from part (a).

An orthonormal basis of L2(\Omega ) consisting of Neumann eigenfunctions of \Delta in \Omega 
is given by (\varphi l1,l2)

\infty 
l1,l2=0, where

\varphi l1,l2(x) = cl1,l2 cos(l1x1) cos(l2x2)
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for some normalizing constants cl1,l2 . The eigenvalue corresponding to \varphi l1,l2 is  - (l21+
l22). See, e.g., [11].

We set \lambda = 5r, where r \geq 1 is an odd integer, and write N = r + 1. Since 5 is a
prime of the form 4m+ 1, there are 4N pairs (s1, s2) \in \BbbZ 2 such that \lambda = s21 + s22 [13,
Theorem 278]. Now r is odd, so \lambda is not a square and both s1 and s2 must be nonzero,
and thus there are exactly N pairs (l1, l2) \in (\BbbN \cup \{ 0\} )2 so that \lambda = l21+ l

2
2. This shows

that the multiplicity of  - \lambda as a Neumann eigenvalue of \Delta is exactly N .

4. The Helmholtz equation with constant parameter. In this section, we
will treat the Neumann problem for the Helmholtz equation

(4.1)

\Biggl\{ 
(\Delta + k2q)u = 0 in \Omega ,

\partial \nu u = g on \partial \Omega 

with a constant coefficient q(x) = const. In this case, the Helmholtz solution operator
can be expressed using the Neumann eigenfunctions of the Laplace equation, which
allows us to give a simple independent proof of Theorem 1.1 and show that the
dimension bound in Theorem 1.1 is sharp for the Helmholtz solution operators.

For the special case of a constant coefficient in a two-dimensional unit square we
also derive an infinite matrix representation of the ND operator and study numerically
the question whether the bound in Theorem 1.1 is sharp for the ND operators.

4.1. The dimension bound for the constant parameter case.

Definition 4.1. For 0 \not \equiv q \in L\infty (\Omega ) and a nonresonant wavenumber k > 0 we
define the Helmholtz solution operator

S(q) : H1(\Omega ) \rightarrow H1(\Omega ), F \mapsto \rightarrow v,

where v \in H1(\Omega ) solves\int 
\Omega 

\bigl( 
\nabla v \cdot \nabla w  - k2qvw

\bigr) 
dx = (F,w)H1(\Omega ) for all w \in H1(\Omega ).

Note that the ND operator

\Lambda (q) : L2(\partial \Omega ) \rightarrow L2(\partial \Omega ), g \mapsto \rightarrow u| \partial \Omega ,

where u \in H1(\Omega ) solves (4.1), obviously fulfills

\Lambda (q) = \gamma S(q)\gamma \ast ,

where \gamma denotes the compact trace operator

\gamma : H1(\Omega ) \rightarrow L2(\partial \Omega ), v \mapsto \rightarrow v| \partial \Omega .

Theorem 4.2. Let \Omega \subset \BbbR n be a bounded Lipschitz domain. Let a, b \in \BbbR with
a < b, and let k > 0 be nonresonant for q(x) = a and q(x) = b. Then

(a) S(b) - S(a) has exactly d(b) - d(a) negative eigenvalues,
(b) \Lambda (b) - \Lambda (a) has at most d(b) - d(a) negative eigenvalues.

Note that (b) follows from Theorem 1.1, but our proof of Theorem 4.2 is inde-
pendent of this result and rather elementary, so we believe that this is of independent
interest.
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As in the proof of Lemma 2.1 (see also [24, section 2.1]), we let Id : H1(\Omega ) \rightarrow 
H1(\Omega ) denote the identity operator, \iota : H1(\Omega ) \rightarrow L2(\Omega ) denote the compact em-
bedding, and Mq : L2(\Omega ) \rightarrow L2(\Omega ) denote the multiplication operator by q. Then
K := \iota \ast \iota and Kq := \iota \ast Mq\iota are compact self-adjoint linear operators from H1(\Omega ) to
H1(\Omega ), and

S(q) := (Id - K  - k2Kq)
 - 1,

where the inverse exists if and only if k > 0 is nonresonant for the potential q (cf.,
e.g., [24, Lemma 2.2]).

For constant coefficients q(x) = a \in \BbbR this simplifies to

Ka = aK and S(a) = (Id - (1 + ak2)K) - 1.

Since K : H1(\Omega ) \rightarrow H1(\Omega ) is a compact self-adjoint, positive definite operator,
there exists an orthonormal basis (vl)l\in \BbbN of H1(\Omega ) of eigenfunctions corresponding to
eigenvalues \lambda l > 0,

Kvl = \lambda lvl for all l \in \BbbN .

Note that in this section, \lambda l are the eigenvalues of the compact operator K which
converge to zero (unlike in the earlier sections, where \lambda j were Neumann eigenvalues
converging to  - \infty ).

Lemma 4.3.
(a) A function v \in H1(\Omega ) is an eigenfunction of K with eigenvalue \lambda if and

only if v is a Neumann eigenfunction of the Laplace equation with Neumann
eigenvalue 1

\lambda  - 1, i.e.,

 - \Delta v =

\biggl( 
1

\lambda 
 - 1

\biggr) 
v, \partial \nu v| \partial \Omega = 0.

(b) k > 0 is nonresonant for the potential q(x) = a \in \BbbR if and only if

1

1 + ak2
\not \in \{ \lambda 1, \lambda 2, . . .\} ,

i.e., if and only if ak2 is not a Neumann eigenvalue. Moreover,

d(a) = \#

\biggl\{ 
\lambda l : \lambda l >

1

1 + ak2

\biggr\} 
.

(c) If k > 0 is nonresonant for the potential q(x) = a \in \BbbR , then

S(a)vl = (Id - (1 + ak2)K) - 1vl =
1

1 - (1 + ak2)\lambda l
vl.

(d) Let a, b \in \BbbR with a < b, and k > 0 be nonresonant for q(x) = a and q(x) = b.
Then

(F, (S(b) - S(a))F )H1(\Omega ) =

\infty \sum 
l=1

cl (F, vl)
2
H1(\Omega ) ,

where 0 \not = cl \in \BbbR , and the number of negative cl is exactly d(b) - d(a).
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Proof. Kv = \lambda v is equivalent to\int 
\Omega 

\nabla v \cdot \nabla w dx - 
\biggl( 
1

\lambda 
 - 1

\biggr) \int 
\Omega 

vw dx

= ((Id - K)v, w)H1(\Omega )  - 
\biggl( 
1

\lambda 
 - 1

\biggr) 
(Kv,w)H1(\Omega )

=

\biggl( 
(Id - 1

\lambda 
K)v, w

\biggr) 
H1(\Omega )

= 0 for all w \in H1(\Omega ),

which is the variational formulation equivalent to

 - \Delta v =

\biggl( 
1

\lambda 
 - 1

\biggr) 
v, \partial \nu v| \partial \Omega = 0.

This proves (a).
The first parts of (b) and (c) are obvious. The second part of (b) has been
proved in [24, Lemma 2.1].
To prove (d) note that for all F \in H1(\Omega )

F =

\infty \sum 
l=1

vl (F, vl)H1(\Omega ) ,

where the sum is convergent in H1(\Omega ). Hence,

(F, (S(b) - S(a))F )H1(\Omega )

=

\Biggl( 
F, (S(b) - S(a))

\infty \sum 
l=1

vl (F, vl)H1(\Omega )

\Biggr) 
H1(\Omega )

=

\infty \sum 
l=1

\biggl( 
1

1 - (1 + bk2)\lambda l
 - 1

1 - (1 + ak2)\lambda l

\biggr) 
(F, vl)

2
H1(\Omega ) .

For the coefficients

cl :=
1

1 - (1 + bk2)\lambda l
 - 1

1 - (1 + ak2)\lambda l

=
(b - a)k2\Bigl( 

1
\lambda l

 - (1 + bk2)
\Bigr) \Bigl( 

1
\lambda l

 - (1 + ak2)
\Bigr) 

we obviously have that cl \not = 0 and that cl < 0 if and only if

1

1 + ak2
> \lambda l >

1

1 + bk2
.

By the second part of (b), the number of negative cl is exactly d(b) - d(a).

Proof of Theorem 4.2. Using Lemma 4.3 we have that

V := span\{ vl : cl < 0\} \subset H1(\Omega )
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is a subspace of dimension dim(V ) = d(b) - d(a),

(F, (S(b) - S(a))F )H1(\Omega ) < 0 for all F \in V \setminus \{ 0\} , and

(F, (S(b) - S(a))F )H1(\Omega ) \geq 0 for all F \bot H1 V.

Using, e.g., [24, Lemma 3.2], this shows that S(b)  - S(a) has exactly d(b)  - d(a)
negative eigenvalues and thus proves Theorem 4.2(a).

Using that \Lambda (b) - \Lambda (a) = \gamma (S(b) - S(a))\gamma \ast , we also have that\int 
\partial \Omega 

g (\Lambda (b) - \Lambda (a)) g dS \geq 0

for all g with \gamma \ast g \bot H1 V , which is equivalent to

(g, \gamma v)L2(\partial \Omega ) = (\gamma \ast g, v)H1(\Omega ) = 0 for all v \in V,

and thus \int 
\partial \Omega 

g (\Lambda (b) - \Lambda (a)) g dS \geq 0 for all g \bot L2 \gamma (V ).

Using dim(\gamma (V )) \leq dim(V ) = d(b)  - d(a) and [24, Corollary 3.3]), this shows that
\Lambda (b)  - \Lambda (a) has at most d(b)  - d(a) negative eigenvalues and thus proves Theo-
rem 4.2(b).

4.2. Helmholtz equation on the two-dimensional unit square. We now
consider the special case of the Helmholtz equation with constant parameter q(x) =
a \in \BbbR on the two-dimensional unit square

\Omega := (0, 1)2

and derive an infinite matrix representation for the ND operator \Lambda (a).
For the unit square the Neumann eigenfunctions are well known.

Lemma 4.4. For l,m \in \BbbN 0 we define

vl,m : \Omega \rightarrow \BbbR , vl,m(x, y) := dldm cos(\pi lx) cos(\pi my),

with d0 := 1 and dj =
\surd 
2 for j \in \BbbN . The functions vl,m are Neumann eigenfunctions

of the Laplacian

 - \Delta vl,m = \pi 2(l2 +m2)vl,m, \partial \nu vl,m| \partial \Omega = 0,

and eigenfunctions of K : H1(\Omega ) \rightarrow H1(\Omega )

Kvl,m = \lambda l,mvl,m with \lambda l,m :=
1

1 + \pi 2(l2 +m2)
.

(vl,m)l,m\in \BbbN is an orthonormal basis of L2(\Omega ), and (
\sqrt{} 
\lambda l,mvl,m)l,m\in \BbbN is an or-

thonormal basis of H1(\Omega ).

Proof. It is easily checked that the functions (vl,m)l,m\in \BbbN are Neumann eigenfunc-
tions and that they form an orthonormal basis of L2(\Omega ). Lemma 4.3 implies that the
(vl,m)l,m\in \BbbN are also eigenfunctions of K, and this yields that

(vl,m, vl\prime ,m\prime )H1(\Omega ) =
1

\lambda l,m

\int 
\Omega 

vl,mvl\prime ,m\prime dx =
1

\lambda l,m
\delta l,l\prime \delta m,m\prime ,

which shows that (
\sqrt{} 
\lambda l,mvl,m)l,m\in \BbbN is an orthonormal basis of H1(\Omega ).
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We can now expand the ND operator \Lambda (a) in an orthonormal basis of cosine
functions on the four sides of \partial \Omega .

Lemma 4.5. Define gs : \partial \Omega \rightarrow \BbbR (s \in \BbbN 0) by setting for all j \in \BbbN 0

g4j+0(x, y) := dj cos(j\pi y)1\Sigma right
(x, y), \Sigma right := \{ 1\} \times (0, 1),

g4j+1(x, y) := dj cos(j\pi (1 - x))1\Sigma top
(x, y), \Sigma top := (0, 1)\times \{ 1\} ,

g4j+2(x, y) := dj cos(j\pi (1 - y))1\Sigma left
(x, y), \Sigma left := \{ 0\} \times (0, 1),

g4j+3(x, y) := dj cos(j\pi x)1\Sigma bottom
(x, y), \Sigma bottom := (0, 1)\times \{ 0\} .

Then (gs)s\in \BbbN 0
\subseteq L2(\partial \Omega ) is an orthonormal basis of L2(\partial \Omega ).

The infinite matrix representation of \Lambda (a) with respect to this basis is given by
4\times 4-blocks of the form

\biggl( \int 
\partial \Omega 

g4i+p\Lambda (a)g4j+r ds

\biggr) 
p,r=0,...,3

=

\left(    
M0 M1 M2 M3

M3 M0 M1 M2

M2 M3 M0 M1

M1 M2 M3 M0

\right)    ,

where (for i, j \in \BbbN 0)

M0 =

\left\{   \delta ij
coth(

\surd 
\pi 2i2 - ak2)\surd 

\pi 2i2 - ak2
for i2 > ak2

\pi 2 ,

 - \delta ij cot(
\surd 
ak2 - \pi 2i2)\surd 

ak2 - \pi 2i2
for i2 < ak2

\pi 2 ,
M1 =

( - 1)ididj
\pi 2(i2 + j2) - ak2

,

M2 =

\left\{   \delta ij( - 1)i csch(
\surd 
\pi 2i2 - ak2)\surd 

\pi 2i2 - ak2
for i2 > ak2

\pi 2 ,

 - \delta ij( - 1)i csc(
\surd 
ak2 - \pi 2i2)\surd 

ak2 - \pi 2i2
for i2 < ak2

\pi 2 ,
M3 =

( - 1)jdidj
\pi 2(i2 + j2) - ak2

.

Proof. Clearly, (gs)s\in \BbbN 0 \subseteq L2(\partial \Omega ) is an orthonormal basis of L2(\partial \Omega ), and

I0(j, l,m) :=

\int 
\partial \Omega 

g4j+0 vl,m| \partial \Omega ds = ( - 1)ldl\delta jm,

I1(j, l,m) :=

\int 
\partial \Omega 

g4j+1 vl,m| \partial \Omega ds = ( - 1)m+jdm\delta jl,

I2(j, l,m) :=

\int 
\partial \Omega 

g4j+2 vl,m| \partial \Omega ds = ( - 1)jdl\delta jm,

I3(j, l,m) :=

\int 
\partial \Omega 

g4j+3 vl,m| \partial \Omega ds = dm\delta jl.

Using that (
\surd 
\lambda lmvlm)l,m\in \BbbN is an orthonormal basis of H1(\Omega ) that diagonalizes

the solution operator (cf. Lemma 4.3(c)) we have that\int 
\partial \Omega 

g4i+p\Lambda (a)g4j+r ds = (\gamma \ast g4i+p, S(a)\gamma 
\ast g4j+r)H1(\Omega )

=

\infty \sum 
l,m=0

\lambda lm
1 - (1 + ak2)\lambda lm

Ip(i, l,m)Ir(j, l,m)

=

\infty \sum 
l,m=0

1

\pi 2(l2 +m2) - ak2
Ip(i, l,m)Ir(j, l,m).
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The assertion then follows from a simple calculation using the sum formulas

\infty \sum 
m=0

d2m
\pi 2m2 + c

=

\Biggl\{ 
 - cot(

\surd 
 - c)\surd 

 - c
for c < 0,

\surd 
 - c \not \in \pi \BbbN ,

coth(
\surd 
c)\surd 

c
for c > 0,

\infty \sum 
m=0

( - 1)m
d2m

\pi 2m2 + c
=

\Biggl\{ 
 - csc(

\surd 
 - c)\surd 

 - c
for c < 0,

\surd 
 - c \not \in \pi \BbbN ,

csch(
\surd 
c)\surd 

c
for c > 0

(see, e.g., [33, Formula (1), p. 327, and Formula (4), p. 329]).

4.3. Numerical evaluation of the dimension bound. We still consider the
special case of the Helmholtz equation on the unit square \Omega = (0, 1)2 with constant
parameter q(x) = a \in \BbbR , resp., q(x) = b \in \BbbR , and fix k := 1 without loss of
generality. It follows from Lemmas 4.3 and 4.4 that resonances occur when a or b
equals \pi 2(l2 +m2) with l,m \in \BbbN 0 and that

d(b) - d(a) = \#\{ l,m \in \BbbN 0 : a < \pi 2(l2 +m2) < b\} .

We know from Theorem 4.2 (and the more general Theorem 1.1) that \Lambda (b)  - 
\Lambda (a) will have at most d(b)  - d(a) negative eigenvalues. Moreover, we know from
Theorem 1.4 that this bound is achieved, when a and b are sufficiently close together
and only slightly smaller, resp., larger than a Neumann eigenvalue \pi 2(l2 +m2), and
d(b) - d(a) will then be the multiplicity of this Neumann eigenvalue which can attain
any even positive integer.

We will now numerically evaluate how the number of negative eigenvalues of
\Lambda (b) - \Lambda (a) behaves. To this end we use the numerical programming language MAT-
LAB to calculate a 1000 \times 1000 matrix approximating \Lambda (b) - \Lambda (a) using the matrix
representation formula in Lemma 4.5 for i, j = 0, . . . , 249. We estimated the error
in this finite-dimensional approximation to be below \delta = 10 - 5 in the spectral norm
by comparing \Lambda (b)  - \Lambda (a) to its upper left 500 \times 500 entries (filled up by zeros to a
1000\times 1000 matrix). Accordingly, we considered eigenvalues below  - \delta to be negative
and counted their number (with multiplicity).

Figure 1 shows this numerically computed number of negative eigenvalues of
\Lambda (b) - \Lambda (a) and the theoretical bound d(b) - d(a) as a function of b \in \BbbR for a =  - 10
(top left), a = 10 (top right), a = 100 (bottom left), and a = 200 (bottom right).
Whenever b crosses an eigenvalue \pi 2(l2 +m2) with l,m \in \BbbN 0 the theoretical bound
d(b) - d(a) increases by the multiplicity of this eigenvalue. The plots indicate that the
number of negative eigenvalue \Lambda (b)  - \Lambda (a) also increases by the multiplicity of this
eigenvalue but that there is an additional effect decreasing the number of negative
eigenvalues when b - a increases.

To further investigate this additional effect, Figure 2 shows the values of the
eigenvalues of \Lambda (b)  - \Lambda (a) as a function of b for fixed a =  - 10. More precisely, for
each integer b =  - 10, - 9, . . . , 200 (excluding the resonance b = 0), the black dots are
plotted at the position (b, \lambda j(a, b)), where \lambda j(a, b), j = 1, . . . , 1000, are the numerically
calculated eigenvalues of \Lambda (b) - \Lambda (a). The red dashed lines show the positions of the
Neumann eigenvalues. Whenever b crosses an eigenvalue, new negative eigenvalues of
\Lambda (b) - \Lambda (a) appear. But at the same time the values of the eigenvalues increase with
b - a, and it seems that negative eigenvalues can become positive again, which would
explain the drops in the number of negative eigenvalues observed in Figure 1.

Let us stress however that this numerical experiment is only an indication of what
might happen to stimulate further research. We do not have a rigorous proof that the
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Fig. 1. Comparison of the numerically calculated number of negative eigenvalues of \Lambda (b) - \Lambda (a)
with the theoretical bound d(b) - d(a).

Fig. 2. Plot of the numerically calculated eigenvalues of \Lambda (b) - \Lambda (a) (black dots) as a function
of b for fixed a :=  - 10.
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observed drop in the number of negative eigenvalues really exists. \Lambda (b)  - \Lambda (a) is a
compact operator with an infinite number of eigenvalues accumulating at zero, and we
cannot rigorously rule out the possibility that there exist more negative eigenvalues
(up to the theoretically proven bound d(b)  - d(a)) that we did not find due to their
absolute values being below the numerical precision level.
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