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MONOTONICITY AND LOCAL UNIQUENESS
FOR THE HELMHOLTZ EQUATION

BASTIAN HARRACH, VALTER POHJOLA AND MIKKO SALO

This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz
(or stationary Schrödinger) equation (1 + k2q)u = 0 in a bounded domain for fixed nonresonance
frequency k > 0 and real-valued scattering coefficient function q. We show a monotonicity relation
between the scattering coefficient q and the local Neumann-to-Dirichlet operator that holds up to finitely
many eigenvalues. Combining this with the method of localized potentials, or Runge approximation,
adapted to the case where finitely many constraints are present, we derive a constructive monotonicity-
based characterization of scatterers from partial boundary data. We also obtain the local uniqueness
result that two coefficient functions q1 and q2 can be distinguished by partial boundary data if there is a
neighborhood of the boundary part where q1 ≥ q2 and q1 6≡ q2.

1. Introduction

Let �⊆ Rn, n ≥ 2, be a bounded Lipschitz domain with unit outer normal ν. For a fixed nonresonance
frequency k > 0, we study the relation between a real-valued scattering coefficient function q ∈ L∞(�)
in the Helmholtz equation (or time-independent Schrödinger equation)

(1+ k2q)u = 0 in � (1)

and the local (or partial) Neumann-to-Dirichlet (NtD) operator

3(q) : L2(6)→ L2(6), g 7→ u|6,

where u ∈ H 1(�) solves (1) with Neumann data

∂νu|∂� =
{

g on 6,
0 else.

Here 6 ⊆ ∂� is assumed to be an arbitrary nonempty relatively open subset of ∂�. Since k is
a nonresonance frequency, 3(q) is well-defined and is easily shown to be a self-adjoint compact
operator.

We will show that
q1 ≤ q2 implies 3(q1)≤fin 3(q2),
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where the inequality on the left-hand side is to be understood pointwise almost everywhere, and the
right-hand side denotes that 3(q2)−3(q1) possesses only finitely many negative eigenvalues. Based on
a slightly stronger quantitative version of this monotonicity relation, and an extension of the technique of
localized potentials [Gebauer 2008] to spaces with finite codimension, we deduce the following local
uniqueness result for determining q from 3(q).

Theorem 1.1. Let O ⊆� be a connected relatively open set with O ∩6 6=∅ and q1 ≤ q2 on O. Then

3(q1)=3(q2) implies q1 = q2 in O.

Moreover, if q1|O 6≡ q2|O , then 3(q2)−3(q1) has infinitely many positive eigenvalues.

Theorem 1.1 will be proven in Section 5. Note that this result removes the assumption q1, q2 ∈ L∞
+
(�)

from the local uniqueness result in [Harrach and Ullrich 2017], and that it implies global uniqueness if
q1−q2 is piecewise-analytic; see Corollary 5.2. Note also that in dimension n = 2, Imanuvilov, Uhlmann
and Yamamoto [Imanuvilov et al. 2015] have proven global uniqueness with partial boundary data for
potentials q ∈W 1,p(�), p > 2. Compared to the result in [Imanuvilov et al. 2015], Theorem 1.1 is both
less restrictive, as it holds for L∞-potentials and any dimension n ≥ 2, and more restrictive, as it relies on
a local definiteness condition that is not required in [Imanuvilov et al. 2015].

Additionally to Theorem 1.1, we will also derive a constructive monotonicity-based method to detect a
scatterer in an otherwise homogeneous domain. Let the scatterer D ⊆� be an open set such that D ⊆�
and the complement � \ D is connected, and let

q(x)= 1 for x ∈� \ D (a.e.), and

1< qmin ≤ q(x)≤ qmax for x ∈ D (a.e.),

with constants qmin, qmax > 0. For an open set B ⊆�, we define the self-adjoint compact operator

TB : L2(6)→ L2(6),

∫
6

gTBh ds :=
∫

B
k2u(g)1 u(h)1 dx,

where u(g)1 , u(h)1 ∈ H 1(�) solve (1) with q ≡ 1 and Neumann data g, h respectively.

Theorem 1.2. For all 0< α ≤ qmin− 1,

B ⊆ D if and only if αTB ≤fin 3(q)−3(1).

We will also give a bound on the number of negative eigenvalues in the case B ⊆ D, and prove a
similar result for scatterers with negative contrast in Section 6.

Let us give some references on related works and comment on the origins and relevance of our result.
The inverse problem considered in this work is closely related to the inverse conductivity problem of
determining the positive conductivity function γ in the equation ∇ · (γ∇u) = 0 in a bounded domain
in Rn from knowledge of the associated Neumann-to-Dirichlet operator. This is also known as the
problem of electrical impedance tomography or the Calderón problem [1980; 2006]. For a short list of
seminal contributions for full boundary data let us refer to [Kohn and Vogelius 1984; 1985; Druskin
1998; Sylvester and Uhlmann 1987; Nachman 1996; Astala and Päivärinta 2006; Haberman and Tataru
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2013; Caro and Rogers 2016]. For the uniqueness problem with partial boundary data there are rather
precise results if n = 2 (see [Imanuvilov et al. 2010; 2015] and the survey [Guillarmou and Tzou 2013]),
but in dimensions n ≥ 3 it is an open question whether measurements on an arbitrary open set 6 ⊆ ∂�
suffice to determine the unknown coefficient. We refer to [Kenig et al. 2007; Isakov 2007; Kenig and
Salo 2013; Krupchyk and Uhlmann 2016] and the overview article [Kenig and Salo 2014] for known
results, which either impose strong geometric restrictions on the inaccessible part of the boundary or
require measurements of Dirichlet and Neumann data on sets that cover a neighborhood of the so-called
front face

F(x0)= {x ∈ ∂� : (x − x0) · ν(x)≤ 0}

for a point x0 outside the closed convex hull of �. Also note that partial boundary data determines full
boundary data by unique continuation if there exists a connected neighborhood of the full boundary on
which the coefficient is known, so that uniqueness also holds in this case; see [Ammari and Uhlmann 2004].

Theorem 1.1, as well as the previous work [Harrach and Ullrich 2017], give uniqueness results where
the measurements are made on an arbitrary open set 6 ⊆ ∂�. Our result shows that a coefficient change
in the positive or negative direction in a neighborhood of 6 (or an open subset of 6) always leads to a
change in the Neumann–Dirichlet-operator irrespectively of what happens outside this neighborhood, or
the geometry or topology of the domain. Note however that our uniqueness result requires that there is a
neighborhood of the boundary part on which the coefficient change is of definite sign. Our uniqueness
result does not cover coefficient changes that are infinitely oscillating between positive and negative
values when approaching the boundary.

Our result is based on combining monotonicity estimates (similar to those originally derived in [Kang
et al. 1997; Ikehata 1998]) with localized potentials. Other theoretical uniqueness results have been
obtained by this approach in [Arnold and Harrach 2013; Gebauer 2008; Harrach 2009; 2012; Harrach
and Seo 2010; Harrach and Ullrich 2017]. Also note that monotonicity relations have been used in
various ways in the study of inverse problems; see, e.g., [Kohn and Vogelius 1984; 1985; Isakov 1988;
Alessandrini 1990; Ikehata 1999], where uniqueness results are established by methods that involve
monotonicity conditions and blow-up arguments.

Monotonicity-based methods for detecting regions (or inclusions) where a coefficient function differs
from a known background have been introduced by Tamburrino and Rubinacci [2002] for the inverse
conductivity problem. In that paper they propose to simulate boundary measurements for a number of test
regions and then use the fact that a monotonicity relation between the simulated and the true measurements
will hold, if the test region lies inside the true inclusion. The work [Harrach and Ullrich 2013] used the
technique of localized potentials [Gebauer 2008] to prove that this is really an if-and-only-if relation
for the case of continuous measurements modeled by the NtD operator. Moreover, [Harrach and Ullrich
2013] also showed that this if-and-only-if relation still holds when the simulated measurements are
replaced by linearized approximations so that the monotonicity method can be implemented without
solving any forward problems other than that for the known background medium. For a list of recent
works on monotonicity-based methods, let us refer to [Harrach et al. 2015; 2019; Harrach and Ullrich
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2015; Harrach and Minh 2016; 2018; Maffucci et al. 2016; Tamburrino et al. 2016; Barth et al. 2017;
Garde 2018; Garde and Staboulis 2017; 2019; Harrach and Lin 2017; Su et al. 2017; Ventre et al. 2017;
Brander et al. 2018; Griesmaier and Harrach 2018; Zhou et al. 2018; Harrach and Meftahi 2019; Harrach
2019; Harrach and Lin 2019].

Previous monotonicity-based results often considered second-order equations with positive bilinear
forms, such as the conductivity equation. So far, this positivity has been the key to proving monotonicity
inequalities between the coefficient and the Neumann-to-Dirichlet operator, and previous results fail
to hold in general for equations involving a positive frequency k > 0 (or a negative potential for the
Schrödinger equation). In this article, we remove this limitation and introduce methods for more general
elliptic models. We will focus on the Helmholtz equation in a bounded domain as a model case, but
the ideas might be applicable to inverse boundary value and scattering problems for, e.g., Helmholtz,
Maxwell, and elasticity equations. The main technical novelty of this work is that we treat compact
perturbations of positive bilinear forms by extending the monotonicity relations to only hold true up
to finitely many eigenvalues, and extend the localized potentials arguments to hold on spaces of finite
codimension.

It should also be noted that the localized potentials arguments in [Gebauer 2008] stem from the ideas
of the factorization method that was originally developed for scattering problems involving far-field
measurements of the Helmholtz equation by Kirsch [1998], see also [Kirsch and Grinberg 2008], and
then extended to the inverse conductivity problem in [Brühl and Hanke 2000; Brühl 2001]; see also the
overview article [Harrach 2013]. For the inverse conductivity problem, the monotonicity method has the
advantage over the factorization method that it allows a convergent regularized numerical implementation,
see [Harrach and Ullrich 2013, Remark 3.5; Garde and Staboulis 2019], and that it can also be used
for the indefinite case where anomalies of larger and smaller conductivity are present. The localized
potentials approach in [Gebauer 2008] has recently been extended to show the possibility of localizing
and concentrating electromagnetic fields in [Harrach et al. 2018].

The paper is structured as follows. In Section 2 we discuss the well-posedness of the Helmholtz
equation outside resonance frequencies, introduce the Neumann-to-Dirichlet-operators, and give a unique
continuation result from sets of positive measure. Sections 3 and 4 contain the main theoretical tools for
this work. In Section 3, we introduce a Loewner order of compact self-adjoint operators that holds up to
finitely many negative eigenvalues, and show that increasing the scattering index monotonically increases
the Neumann-to-Dirichlet-operator in the sense of this new order. We also characterize the connection
between the finite number of negative eigenvalues that have to be excluded in the Loewner ordering
and the Neumann eigenvalues for the Laplacian. Section 4 extends the localized potentials result from
[Gebauer 2008] to the Helmholtz equation and shows that the energy terms appearing in the monotonicity
relation can be controlled in spaces of finite codimension. We give two independent proofs of this result,
one using a functional analytic relation between operator norms and the ranges of their adjoints, and an
alternative proof that is based on a Runge approximation argument. Sections 5 and 6 then contain the
main results of this work on local uniqueness for the bounded Helmholtz equation and the detection of
scatterers by monotonicity comparisons; see Theorem 1.1 and 1.2 above.
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A preliminary version of these results has been published as the extended abstract [Harrach et al. 2017].
The bound on the number of negative eigenvalues in the monotonicity inequalities derived in this work
has recently been improved in [Harrach et al. 2019].

2. The Helmholtz equation in a bounded domain

We start by summarizing some properties of the Neumann-to-Dirichlet-operators, discuss well-posedness
and the role of resonance frequencies, and state a unique continuation result for the Helmholtz equation
in a bounded domain.

2A. Neumann-to-Dirichlet operators. Throughout this work, let � ⊆ Rn, n ≥ 2, denote a bounded
domain with Lipschitz boundary and outer unit normal ν, and let 6 ⊆ ∂� be an open subset of ∂�. For a
frequency k ≥ 0 and a real-valued scattering coefficient function q ∈ L∞(�), we consider the Helmholtz
equation with (partial) Neumann boundary data g ∈ L2(6), i.e., finding u ∈ H 1(�) with

(1+ k2q)u = 0 in �, ∂νu|∂� =
{

g on 6,
0 else.

(2)

We also denote the solution by u(g)q instead of u if the choice of g and q is not clear from the context.
The Neumann problem (2) is equivalent to the variational formulation of finding u ∈ H 1(�) such that∫

�

(∇u · ∇v− k2quv) dx =
∫
∂�

gv|∂� ds for all v ∈ H 1(�). (3)

We introduce the bounded linear operators

I : H 1(�)→ H 1(�),

j : H 1(�)→ L2(�),

Mq : L2(�)→ L2(�),

where I denotes the identity operator, j is the compact embedding from H 1 to L2, and Mq is the
multiplication operator by q. We furthermore use 〈 · , · 〉 to denote the H 1(�) inner product and define
the operators

K := j∗ j and Kq := j∗Mq j,

which are compact self-adjoint linear operators from H 1(�) to H 1(�). By

γ6 : H 1(�)→ L2(6), v 7→ v|6,

we denote the compact trace operator.
With this notation (3) can be written as

〈(I − K − k2Kq)u, v〉 =
∫
∂�

g(γ6v) ds for all v ∈ H 1(�),

so that the Neumann problem for the Helmholtz equation (2) is equivalent to the equation

(I − K − k2Kq)u = γ ∗6g. (4)
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Our results on identifying the scattering coefficient q will require that I − K − k2Kq is continuously
invertible, which is equivalent to the fact that k is not a resonance frequency, or, equivalently; that 0 is
not a Neumann eigenvalue, see Lemmas 2.2 and 3.10. Note that this implies, in particular, that k > 0
and q 6≡ 0. We can then define the Neumann-to-Dirichlet operator (with Neumann data prescribed and
Dirichlet data measured on the same open subset 6 ⊆ ∂�)

3(q) : L2(6)→ L2(6), g 7→ u|6, where u ∈ H 1(�) solves (2).

The Neumann-to-Dirichlet operator satisfies

3(q)= γ6(I − K − k2Kq)
−1γ ∗6, (5)

which shows that 3(q) is a compact self-adjoint linear operator.
We will show in Section 3 that there is a monotonicity relation between the scattering coefficient q

and the Neumann-to-Dirichlet-operator 3(q). Increasing q will increase 3(q) in the sense of operator
definiteness up to finitely many eigenvalues. The number of eigenvalues that do not follow the increase
will be bounded by the number defined in the following lemma. Note that here, and throughout the paper,
we always count the number of eigenvalues of a compact self-adjoint operator with multiplicity according
to the dimension of the associated eigenspaces.

Lemma 2.1. Given k > 0 and q ∈ L∞(�), let d(q) be the number of eigenvalues of K + k2Kq that are
larger than 1, and let V (q) be the sum of the associated eigenspaces. Then d(q) = dim(V (q)) ∈ N0 is
finite, and ∫

�

(|∇v|2− k2q|v|2) dx ≥ 0 for all v ∈ V (q)⊥,

where V (q)⊥ denotes the orthocomplement of V (q) in H 1(�).

Proof. Since

〈(I − K − k2Kq)v, v〉 =

∫
�

(|∇v|2− k2q|v|2) dx,

the assertion follows from the spectral theorem for compact self-adjoint operators. �

We will show in Lemma 3.10 that d(q) agrees with the number of positive Neumann eigenvalues of
1+ k2q. If q(x) ≤ qmax ∈ R for all x ∈ � (a.e.) then d(q) ≤ d(qmax), and d(qmax) is the number of
Neumann eigenvalues of the Laplacian 1 that are larger than −k2qmax; see Corollary 3.11.

2B. Resonance frequencies. We now summarize some results on the solvability of the Helmholtz equa-
tion (2) outside of resonance frequencies.

Lemma 2.2. Let q ∈ L∞(�).

(a) For each k ≥ 0, the following properties are equivalent:

(i) For each F ∈ L2(�) and g ∈ L2(∂�), there exists a unique solution u ∈ H 1(�) of

(1+ k2q)u = F in �, ∂νu|∂� = g, (6)

and the solution depends linearly and continuously on F and g.
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(ii) The homogeneous Neumann problem

(1+ k2q)u = 0 in �, ∂νu|∂� = 0, (7)

admits only the trivial solution u ≡ 0.

(iii) The operator I − K − k2Kq : H 1(�)→ H 1(�) is continuously invertible.

We call k a resonance frequency if the properties (i)–(iii) do not hold.

(b) If q 6≡ 0, then the set of resonance frequencies is countable and discrete.

Proof. (a) Clearly, (i) implies (ii), and, using the equivalence of (2) and (4), (ii) implies that I −K −k2Kq

is injective. Since K and Kq are compact, the operator I − K − k2Kq is Fredholm of index 0. Hence,
injectivity of I − K − k2Kq already implies that I − K − k2Kq is continuously invertible, so that (ii)
implies (iii). Finally, u ∈ H 1(�) solves (6) if and only if∫

�

(∇u · ∇v− k2quv) dx =−
∫
�

Fv dx +
∫
∂�

gv|∂� dS for all v ∈ H 1(�).

This is equivalent to

〈(I − K − k2Kq)u, v〉 = −
∫
�

F j (v) dx +
∫
∂�

gγ∂�(v) ds for all v ∈ H 1(�),

and thus equivalent to

(I − K − k2Kq)u =− j∗F + γ ∗∂�g,

so that (iii) implies (i).

(b) We extend I , K, and Kq to the Sobolev space of complex-valued functions

I, K , Kq : H 1(�;C)→ H 1(�;C).

For k ∈ C we then define

R(k) := K + k2Kq : H 1(�;C)→ H 1(�;C).

R(k) is a family of compact operators depending analytically on k ∈ C. The analytic Fredholm theorem,
see, e.g., [Reed and Simon 1972, Theorem VI.14], now implies that either I − R(k) is not invertible for
all k ∈C, or that there is a countable discrete set Z ⊆C such that I − R(k) is continuously invertible when
k ∈ C \ Z . Hence, to prove (b), it suffices to show that there exists k ∈ C for which I − R(k) is invertible.

We will show that this is the case for any 0 6= k ∈ C with Re(k2)= 0. In fact, (I − R(k))u = 0 implies

0=
∫
�

(∇u · ∇v− k2quv) dx for all v ∈ H 1(�;C).

Using v := ū and taking the real part yields that 0=
∫
�
|∇u|2 dx , which shows that u must be constant,

and that ∫
�

k2quv dx = 0 for all v ∈ H 1(�;C).
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Together with k2
6= 0, and q 6≡ 0, this shows that u ≡ 0. Hence, I − R(k) is injective and thus invertible

for all 0 6= k ∈ C with Re(k2)= 0. �

2C. Unique continuation. We will make use of a unique continuation property for the Helmholtz
equation from sets of positive measure. In two dimensions, this follows from a standard reduction to
quasiconformal mappings. However, since we could not find a proof in the literature, we will first give
the argument following [Alessandrini 2012] and references therein (in fact [Alessandrini 2012] proves
strong unique continuation for more general equations). See also [Astala et al. 2009] for basic facts on
quasiconformal mappings in the plane.

Lemma 2.3. Let �⊂ R2 be a connected open set, and suppose that u ∈ H 1
loc(�) is a weak solution of

− div(A∇u)+ du = 0 in �,

where A ∈ L∞(�,Rn×n) is symmetric and satisfies A(x)ξ · ξ ≥ c0|ξ |
2 for some c0 > 0, and d ∈ Lq/2(�)

for some q > 2. If u vanishes in a set E of positive measure, then u ≡ 0 in �.

Proof. It is enough to show that u vanishes in some ball, since then weak (or strong) unique continuation
[Alessandrini 2012] implies that u ≡ 0. Let x0 be a point of density 1 in E and let Ur := Br (x0) and
Er := E ∩Ur . There is r0 > 0 so that if r < r0, then Ur ⊂� and Er has positive measure.

We will now work in Ur . Observe first that there is p > 2 so that u ∈ W 1,p(Ur ) [Astala et al. 2009,
Theorem 16.1.4]. In particular u is Hölder continuous and we may assume (after removing a set of
measure zero from E) that u(x)= 0 for all x ∈ Er . The first step is to show that ∇u = 0 a.e. on Er . Let
N1 be the set of points in Er where u is not differentiable, and let N2 be the set of points of density < 1
in Er . Then N1 and N2 have zero measure. Fix a point x ∈ Er \ (N1 ∪ N2) and a unit direction e. There
is a sequence (x j ) with x j ∈ B(x, 1/j)∩ Er so that

∣∣(x j − x)/|x j − x | − e
∣∣≤ 1/j for j large (for if not,

then all points in Er near x would be outside a fixed sector in direction e, which contradicts the fact that
x has density 1). Since u is differentiable at x ,

u(x j )− u(x)=∇u(x) · (x j − x)+ o(|x − x j |).

Dividing by |x − x j | and using that u(x j ) = u(x) = 0 implies that ∇u(x) · e = 0. It follows that ∇u
vanishes in Er \ (N1 ∪ N2), so indeed

u = 0 in Er , ∇u = 0 a.e. in Er . (8)

The next step is to reduce to the case where d = 0. As in [Alessandrini 2012, Proposition 2.4], we
choose r small enough so that there is a nonvanishing w ∈W 1,p(Ur ) satisfying

− div(A∇w)+ dw = 0 in Ur ,

1
2 ≤ w ≤ 2 in Ur , ‖∇w‖L p(Ur ) ≤ 1.

We write v = u/w. It follows that v ∈W 1,p(Ur ) is a weak solution of

− div( Ã∇v)= 0 in Ur ,
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where Ã = w2 A is L∞ and uniformly elliptic. Moreover, (8) implies that

v = 0 in Er , ∇v = 0 a.e. in Er . (9)

To prove the lemma, we will show that v ≡ 0 in some ball.
Let J =

( 0
1
−1

0

)
. Since Ã∇v is divergence-free, there is a real-valued function ṽ ∈ H 1(Ur ) satisfying

∇ṽ = J ( Ã∇v). (10)

Such a function ṽ is unique up to an additive constant. Define

f = v+ i ṽ.

As in [Alessandrini 2012], f ∈ H 1(Ur ) solves an equation of the form

∂z̄ f = µ∂z f + ν∂̄z f in Ur ,

where ‖µ‖L∞(Ur )+‖ν‖L∞(Ur )< 1. It follows that f is a quasiregular map and by the Stoilow factorization
[Astala et al. 2009, Theorem 5.5.1] it has the representation

f (z)= F(χ(z)), z ∈U,

where χ is a quasiconformal map C→ C and F is a holomorphic function on χ(U ).
Finally, the Jacobian determinant J f of f is given by

J f (z)= F ′(χ(z))Jχ (z).

Using (9) and (10), we see that J f = 0 a.e. in Er . Moreover, since χ is quasiconformal, Jχ can only
vanish in a set of measure zero [Astala et al. 2009, Corollary 3.7.6]. It follows that F ′(χ(z))= 0 for a.e.
z ∈ Er . Then the Taylor series of the analytic function F ′ at χ(x0) must vanish (otherwise one would have
F ′(χ(z))= (χ(z)−χ(x0))

N g(χ(z)), where g(χ(x0)) 6= 0 and the only zero near x0 would be z = x0).
Thus F ′ = 0 near x0, so F is constant, f is also constant, and v = 0 near x0. �

We can now state the unique continuation property for any dimension n ≥ 2 in the form that we will
utilize in the later sections. As in [Harrach and Ullrich 2013, Definition 2.2] we say that a relatively open
subset O ⊆� is connected to 6 if O is connected and 6 ∩ O 6=∅.

Theorem 2.4. (a) Let u ∈ H 1(�) solve

(1+ k2q)u = 0 in �. (11)

If u|E = 0 for a subset E ⊆� with positive measure then u(x)= 0 for all x ∈� (a.e.)

(b) Let u ∈ H 1(�), 1u ∈ L2(�), and

(1+ k2q)u = 0 in � \C

for a closed set C for which � \C is connected to 6. If u|6 = 0 and ∂νu|6 = 0, then u(x)= 0 for
all x ∈� \C (a.e.)
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Proof. For n = 2, (a) follows from Lemma 2.3. For n ≥ 3, (a) is shown in [Harrach and Ullrich 2017,
Theorem 4.2] (see also [Regbaoui 2001, proof of Theorem 2.1]) by combining the following two results:

(i) If u ∈ H 1(�) solves (11) and vanishes on a measurable set of positive measure then u has a zero
of infinite order; see, e.g., [de Figueiredo and Gossez 1992, Proposition 3; Hadi and Tsouli 2001,
Theorem 2.1].

(ii) The trivial solution u ≡ 0 is the only H 1(�)-solution of (11) that has a zero of infinite order; see,
e.g, [Hörmander 1985, Theorem 17.2.6].

Part (b) follows from (a) by extending u by zero on B \�, where B is a small ball with B ∩ ∂�⊆6;
see the proof of Lemma 4.4(c) in [Harrach and Ullrich 2017]. �

3. Monotonicity and localized potentials for the Helmholtz equation

In this section we show that increasing the scattering coefficient leads to a larger Neumann-to-Dirichlet
operator in a certain sense. For this result, the Neumann-to-Dirichlet operators are ordered by an extension
of the Loewner order of compact self-adjoint operators that holds up to finitely many negative eigenvalues.

3A. A Loewner order up to finitely many eigenvalues. We start by giving a rigorous definition and
characterization of this ordering.

Definition 3.1. Let A, B : X→ X be two self-adjoint compact linear operators on a Hilbert space X . For
a number d ∈ N0, we write

A ≤d B or 〈Ax, x〉 ≤d 〈Bx, x〉

if B− A has at most d negative eigenvalues. We also write A ≤fin B if A ≤d B holds for some d ∈ N0,
and we write A ≤ B if A ≤d B holds for d = 0.

Note that for d = 0 this is the standard partial ordering of compact self-adjoint operators in the sense
of operator definiteness (also called Loewner order). Also note that “≤fin” and “≤d” (for d 6= 0) are not
partial orders since they are clearly not antisymmetric. Obviously, “≤fin” and ”≤d” are reflexive, and
“≤fin” is also transitive (see Lemma 3.4 below) and thus a so-called preorder.

To characterize this new ordering, we will make use of the following lemma.

Lemma 3.2. Let A : X→ X be a self-adjoint compact linear operator on a Hilbert space X with inner
product 〈 · , · 〉 inducing the norm ‖ · ‖. Let d ∈ N0 and r ∈ R, r ≥ 0.

(a) The following statements are equivalent:

(i) A has at most d eigenvalues larger than r.

(ii) There exists a compact self-adjoint operator F : X→ X with

dim(R(F))≤ d and 〈(A− F)x, x〉 ≤ r‖x‖2 for all x ∈ X,

where R(F) stands for the range of F.
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(iii) There exists a subspace W ⊂ X with codim(W )≤ d such that

〈Aw,w〉 ≤ r‖w‖2 for all w ∈W.

(iv) There exists a subspace V ⊂ X with dim(V )≤ d such that

〈Av, v〉 ≤ r‖v‖2 for all v ∈ V⊥.

(b) The following statements are equivalent:

(i) A has (at least) d eigenvalues larger than r.

(ii) There exists a subspace V ⊂ X with dim(V )≥ d such that

〈Av, v〉> r‖v‖2 for all v ∈ V .

Proof. (a) We start by showing that (i) implies (ii). Let A have at most d eigenvalues larger than r ≥ 0.
Let (λk)k∈N be the nonzero eigenvalues of A, ordered in such a way that λk ≤ r for k > d. Let N (A)
denote the kernel of A and let (vk)k∈N ∈ X be a sequence of corresponding eigenvectors forming an
orthonormal basis of N (A)⊥. Then

Ax =
∞∑

k=1

λkvk〈vk, x〉 for all x ∈ X,

and (ii) follows with F : X→ X defined by

F : x 7→
d∑

k=1

λkvk〈vk, x〉 for all x ∈ X.

The implication from (ii) to (iii) follows by setting W :=N (F) since

codim(W )= dim(W⊥)= dim(R(F))≤ d

and
〈Aw,w〉 = 〈(A− F)w,w〉 ≥ 0.

Part (iii) implies (iv) by setting V :=W⊥.
To show that (iv) implies (i), we assume that (i) is not true, so that A has at least d + 1 eigenvalues

larger than r ≥ 0. We sort the positive eigenvalues of A in decreasing order to obtain

λ1 ≥ · · · ≥ λd ≥ λd+1 > r.

Then, by the Courant–Fischer–Weyl min-max principle, see, e.g., [Lax 2002, p. 318], we have that the
minimum over all d-dimensional subspaces V ⊂ X must satisfy

min
V⊂X

dim(V )=d

max
v∈V⊥
‖v‖=1

〈Av, v〉 = λd+1 > r,

which shows that (iv) cannot be true. Hence, (iv) implies (i).
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(b) This can be shown analogously to (a). Part (ii) follows from (i) by choosing V as the sum of
eigenspaces for eigenvalues larger than r , and (ii) implies (i) by using the Courant–Fischer–Weyl min-max
principle. �

Corollary 3.3. Let A, B : X → X be two self-adjoint compact linear operators on a Hilbert space X
with inner product 〈 · , · 〉. For any number d ∈ N0, the following statements are equivalent:

(a) A ≤d B.

(b) There exists a compact self-adjoint operator F : X→ X with

dim(R(F))≤ d and 〈(B− A+ F)x, x〉 ≥ 0 for all x ∈ X.

(c) There exists a subspace W ⊂ X with codim(W )≤ d such that

〈(B− A)w,w〉 ≥ 0 for all w ∈W.

(d) There exists a subspace V ⊂ X with dim(V )≤ d such that

〈(B− A)v, v〉 ≥ 0 for all v ∈ V⊥.

Proof. This follows from Lemma 3.2(a) with r = 0 and A replaced by A− B. �

Lemma 3.4. Let A, B,C : X→ X be self-adjoint compact linear operators on a Hilbert space X. For
d1, d2 ∈ N0

A ≤d1 B and B ≤d2 C implies A ≤d1+d2 C,

A ≤fin B and B ≤fin C implies A ≤fin C.

Proof. This follows from the characterization in Corollary 3.3(b). �

3B. A monotonicity relation for the Helmholtz equation. With this new ordering, we can show a mono-
tonicity relation between the scattering index and the Neumann-to-Dirichlet-operators. Note that the
dimension bound in the last line of the following theorem has recently been improved to d(q2)−d(q1) in
[Harrach et al. 2019].

Theorem 3.5. Let q1, q2 ∈ L∞(�) \ {0}. Assume that k > 0 is not a resonance for q1 or q2, and let
d(q2) ∈ N0 be defined as in Lemma 2.1.

Then there exists a subspace V ⊂ L2(6) with dim(V )≤ d(q2) such that∫
6

g(3(q2)−3(q1))g ds ≥
∫
�

k2(q2− q1)|u
(g)
1 |

2 dx for all g ∈ V⊥.

In particular
q1 ≤ q2 implies 3(q1)≤d(q2) 3(q2).

Remark 3.6. Note that by interchanging q1 and q2, Theorem 3.5 also yields that there exists a subspace
V ⊂ L2(6) with dim(V )≤ d(q1) such that∫

6

g(3(q2)−3(q1))g ds ≤
∫
�

k2(q2− q1)|u
(g)
2 |

2 dx for all g ∈ V⊥.
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To prove Theorem 3.5 we will use the following lemmas.

Lemma 3.7. Let q1, q2 ∈ L∞(�) \ {0}. Assume that k > 0 is not a resonance for q1 or q2. Then, for all
g ∈ L2(6),∫
6

g(3(q2)−3(q1))g ds+
∫
�

k2(q1− q2)|u
(g)
1 |

2 dx =
∫
�

(|∇(u(g)2 − u(g)1 )|2− k2q2|u
(g)
2 − u(g)1 |

2) dx,

where u(g)1 , u(g)2 solve the Helmholtz equation (2) with Neumann boundary data g and q = q1, q = q2

respectively.

Proof. Define the bilinear form

Bq(u, v)=
∫
�

(∇u · ∇v− k2quv) dx, u, v ∈ H 1(�).

Writing u1 = u(g)1 and u2 = u(g)2 , from the definition of the NtD map and from (3) we have∫
6

g3(q1)g ds =
∫
6

(∂νu1)u1 ds = 2
∫
6

(∂νu2)u1 ds−
∫
6

(∂νu1)u1 ds = 2Bq2(u2, u1)− Bq1(u1, u1)

and ∫
6

g3(q2)g ds =
∫
6

(∂νu2)u2 ds = Bq2(u2, u2).

We thus obtain that∫
6

g(3(q2)−3(q1))g ds = Bq2(u2, u2)− 2Bq2(u2, u1)+ Bq1(u1, u1)

= Bq2(u2− u1, u2− u1)− Bq2(u1, u1)+ Bq1(u1, u1). �

We will show that the bilinear forms in the right-hand sides in Lemma 3.7 are positive up to a
finite-dimensional subspace.

Lemma 3.8. Let q1, q2 ∈ L∞(�) \ {0} for which k > 0 is not a resonance. There exists a subspace
V ⊂ L2(6) with dim(V )≤ d(q2) such that for all g ∈ V⊥∫

�

(
|∇(u(g)2 − u(g)1 )|2− k2q2|u

(g)
2 − u(g)1 |

2) dx ≥ 0.

Proof. Using Lemma 2.1, we have∫
�

(
|∇(u(g)2 − u(g)1 )|2− k2q2|u

(g)
2 − u(g)1 |

2) dx ≥ 0

for all g ∈ L2(6) with u(g)2 − u(g)1 ∈ V (q2)
⊥. The solution operators

Sj : L2(6)→ H 1(�), g 7→ u(g)j , where u(g)j ∈ H 1(�) solves (2), j ∈ {1, 2},

are linear and bounded, and

(S2− S1)g = u(g)2 − u(g)1 ∈ V (q2)
⊥ if and only if g ∈ ((S2− S1)

∗V (q2))
⊥.

Since dim(S2− S1)
∗V (q2)≤ dim V (q2)= d(q2), the assertion follows with V := (S2− S1)

∗V (q2). �
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Proof of Theorem 3.5. This now immediately follows from combining Lemmas 3.7 and 3.8. �

3C. The number of negative eigenvalues. We will now further investigate the number d(q)∈N0 (defined
in Lemma 2.1) that bounds the number of negative eigenvalues in the monotonicity relations derived
in Section 3B. We will show that d(q) depends monotonously on the scattering index q and show that
d(q) is less than or equal to the number of Neumann eigenvalues for the Laplacian which are larger than
−k2qmax, where qmax ≥ q(x) for all x ∈� (a.e.).

Lemma 3.9. Let q1, q2 ∈ L∞(�). Then q1 ≤ q2 implies d(q1)≤ d(q2).

Proof. The inequality q1 ≤ q2 implies that Kq1 ≤ Kq2 . Hence, the assertion follows from the equivalence
of (a) and (c) in Corollary 3.3. �

Lemma 3.10. Let q ∈ L∞(�), and k ∈ R.

(a) There is a countable and discrete set of real values

λ1 ≥ λ2 ≥ λ3 · · · → −∞

(called Neumann eigenvalues) such that

(1+ k2q)u = λu in �, ∂νu|∂� = 0, (12)

admits a nontrivial solution (called a Neumann eigenfunction) 0 6≡ u ∈ H 1(�) if and only if λ ∈
{λ1,λ2, . . .}, and there is an orthonormal basis (u1, u2, . . .) of L2(�) such that u j ∈ H 1(�) is a Neumann
eigenfunction for λj .

(b) If λ is not a Neumann eigenvalue, then the problem

(1+ k2q)u = λu+ F in �, ∂νu|∂� = g, (13)

has a unique solution u ∈ H 1(�) for any F ∈ L2(�) and g ∈ L2(∂�), and the solution operator is linear
and bounded.

(c) Let N+ := span{u j : λj > 0}. Then dim(N+) <∞,

N− := span{u j : λj ≤ 0} = {v ∈ H 1(�) : v ⊥L2 N+} (14)

is a complement of N+ (in H 1(�)), and∫
�

|∇v|2− k2qv2 dx < 0 for all v ∈ N+, (15)∫
�

|∇v|2− k2qv2 dx ≥ 0 for all v ∈ N−, (16)

where the closure in (14) is taken with respect to the H 1(�)-norm, and ⊥L2 denotes orthogonality with
respect to the L2 inner product.

(d) d(q) is the number of positive Neumann eigenvalues of 1+ k2q; i.e., d(q)= dim(N+).

(e) 0 is a Neumann eigenvalue if and only if k > 0 is a resonance frequency.
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Proof. (a) Define c := k2
‖q‖L∞(�)+ 1> 0 and R := I − K − k2Kq + cK. Then R is coercive and thus

continuously invertible. Using the equivalent variational formulation of (12), we have that λ ∈ R is a
Neumann eigenvalue with Neumann eigenfunction u 6≡ 0 if and only if∫

�

(−∇u · ∇v+ k2quv) dx = λ
∫
�

uv dx for all v ∈ H 1(�),

which is equivalent to

(I − K − k2Kq)u =−λK u

and thus to

Ru = (I − K − k2Kq + cK )u = (c− λ)K u. (17)

This shows that c cannot be a Neumann eigenvalue since Ru 6≡ 0 for u 6≡ 0. Moreover, using K = j∗ j ,
the invertibility of R, and the injectivity of j , we have that (17) is equivalent to

1
c− λ

( ju)= j R−1 j∗( ju).

This shows that λ ∈ R is a Neumann eigenvalue with Neumann eigenfunction u ∈ H 1(�) if and only
if ju ∈ L2(�) is an eigenfunction of j R−1 j∗ : L2(�)→ L2(�) with eigenvalue 1/(c− λ). Since j is
injective, and every eigenfunction of j R−1 j∗ lies in the range of j , this is a one-to-one correspondence,
and the dimension of the corresponding eigenspaces is the same. Since j R−1 j∗ is a compact, self-adjoint,
positive operator, the assertions in (a) follow from the spectral theorem on self-adjoint compact operators.

(b) This follows from the fact that I − K − k2Kq − λK is Fredholm of index 0 and thus continuously
invertible if it is injective.

(c) dim(N+) <∞ follows from (a). We define

N− := span{u j : λj ≤ 0} and Ñ− := {v ∈ H 1(�) : v ⊥L2 N+}.

Ñ− is closed with respect to the H 1-norm and contains all u j with λj ≤ 0, so that N− ⊆ Ñ−. To show
N− = Ñ−, we argue by contradiction. If N− ( Ñ−, then there would exist a 0 6= v ∈ Ñ− with 〈u j , v〉 = 0
for all u j with λj ≤ 0. Using

0= 〈u j , v〉 =

∫
�

(∇u j · ∇v+ u jv) dx

=

∫
�

(∇u j · ∇v− k2qu jv) dx +
∫
�

(1+ k2q)u jv dx

=

∫
�

(1+ k2q − λj )u jv dx,

and the fact that λj →−∞, it would follow that v ⊥L2 u j for all but finitely many u j . Since v ⊥L2 N+,
and (u1, u2, . . .) is an orthonormal basis of L2(�), v must then be a finite combination of u j with λj ≤ 0,
which would imply that v = 0. Hence, N− = Ñ−, so that the equality in (14) is proven.
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Obviously, N+ ∩ N− = 0 and every v ∈ H 1(�) can be written as

v =
∑
λj>0

(∫
�

vu j dx
)

u j +

(
v−

∑
λj>0

(∫
�

vu j dx
)

u j

)
∈ N++ N−,

which shows that N− is a complement of N+.
To show (15), we use the L2-orthogonality of the u j to obtain for all v =

∑
λj>0 αj u j ∈ N+∫

�

(|∇v|2− k2qvv) dx =
∑
λj>0

αj

∫
�

(∇u j · ∇v− k2qu jv) dx

=−

∑
λj>0

αjλj

∫
�

u jv dx =−
∑
λj>0

α2
j λj

∫
�

u2
j dx < 0.

Since every v ∈ N− is an H 1(�)-limit of finite linear combinations of u j with λj ≤ 0, (16) follows with
the same argument.

(d) Inequality (15) can be written as

〈(K + k2Kq)v, v〉> ‖v‖
2 for all v ∈ N+.

Lemma 3.2(b) implies that the number d(q) of eigenvalues of K + k2Kq larger than 1 must be at least
dim(N+). Likewise, (16) can be written as

〈(K + k2Kq)v, v〉 ≤ ‖v‖
2 for all v ∈ N−.

Hence, Lemma 3.2(a) shows that d(q) is at most codim(N−)= dim(N+).

(e) This is trivial. �

Corollary 3.11. If q ∈ L∞(�) and q(x) ≤ qmax ∈ R for all x ∈ � (a.e.), then d(q) ≤ d(qmax), and
d(qmax) is the number of Neumann eigenvalues of the Laplacian 1 that are larger than −k2qmax.

Proof. Obviously, the number of positive Neumann eigenvalues of 1+ k2qmax agrees with the number of
Neumann eigenvalues of the Laplacian 1 that are greater than −k2qmax. Hence, the assertion follows
from Lemmas 3.9 and 3.10(d). �

Remark 3.12. One can show, by using constant potentials, that for the Helmholtz equation 3q2−3q1 can
actually have negative eigenvalues when q1 ≤ q2. This shows that in Theorem 3.5 it is indeed necessary
to work modulo a finite-dimensional subspace. The details will appear in a subsequent work.

4. Localized potentials for the Helmholtz equation

We now extend the result in [Gebauer 2008] to the Helmholtz equation and prove that we can control the
energy terms appearing in the monotonicity relation in spaces of finite codimension. We will first state
the result and prove it using a functional analytic relation between operator norms and the ranges of their
adjoints in Section 4A. Section 4B then gives an alternative proof that is based on a Runge approximation
argument.
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4A. Localized potentials. Our main result on controlling the solutions of the Helmholtz equation in
spaces of finite codimension is the following theorem.

Theorem 4.1. Let q ∈ L∞(�) \ {0} for which k > 0 is not a resonance. Let B, D ⊆ � be measurable,
B \ D possess positive measure, and � \ D be connected to 6.

Then for any subspace V ⊂ L2(6) with dim V <∞, there exists a sequence (gj )j∈N ⊂ V⊥ such that∫
B
|u(gj )

q |
2 dx→∞ and

∫
D
|u(gj )

q |
2 dx→ 0,

where u(gj )
q ∈ H 1(�) solves the Helmholtz equation (2) with Neumann boundary data gj .

The arguments that we will use to prove Theorem 4.1 in this subsection also yield a simple proof for
the following elementary result. We formulate it as a theorem since we will utilize it in the next section
to control energy terms in monotonicity inequalities for different scattering coefficients.

Theorem 4.2. Let q1, q2 ∈ L∞(�) \ {0} for which k > 0 is not a resonance. If q1(x) = q2(x) for all x
(a.e.) outside a measurable set D ⊂�, then there exist constants c1, c2 > 0 such that

c1

∫
D
|u(g)1 |

2 dx ≤
∫

D
|u(g)2 |

2 dx ≤ c2

∫
D
|u(g)1 |

2 dx for all g ∈ L2(6),

where u(g)1 , u(g)2 ∈ H 1(�) solve the Helmholtz equation (2) with Neumann boundary data g and q = q1,
q = q2 respectively.

To prove Theorems 4.1 and 4.2 we will formulate and prove several lemmas. Let us first note that the
assertion of Theorem 4.1 already holds if we can prove it for a subset of B with positive measure. We
will use the subset B ∩C , where C is a small closed ball constructed in the next lemma.

Lemma 4.3. Let B, D⊆� be measurable, B \D possess positive measure, and�\D be connected to 6.
Then there exists a closed ball C such that B ∩C has positive measure, C ∩ D =∅, and � \ (D ∪C) is
connected to 6.

Proof. Let x be a point of Lebesgue density 1 in B \ D. Then the closure C of a sufficiently small ball
centered in x will satisfy B ∩C has positive measure, C ∩D =∅, and �\ (D∪C) is connected to 6. �

Now we follow the general approach in [Gebauer 2008]. We formulate the energy terms in Theorem 4.1
as norms of operator evaluations and characterize their adjoints. Then we characterize the ranges of
the adjoints using the unique continuation property, and prove Theorem 4.1 using a functional-analytic
relation between norms of operator evaluations and ranges of their adjoints.

Lemma 4.4. Let q ∈ L∞(�) \ {0} for which k > 0 is not a resonance. For a measurable set D ⊂� we
define

L D : L2(6)→ L2(D), g 7→ u|D,

where u ∈ H 1(�) solves (2). Then L D is a compact linear operator, and its adjoint satisfies

L∗D : L
2(D)→ L2(6), f 7→ v|6,
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where v solves
1v+ k2qv = f χD, ∂νv|∂� = 0. (18)

Proof. With the operators I , j , and Kq defined as in Section 2A and (4) we have

L D = RD j (I − K − k2Kq)
−1γ ∗6,

where RD : L2(�)→ L2(D) is the restriction operator v→ v|D . Hence, L D is a linear compact operator,
and its adjoint is

L∗D = γ6(I − K − k2Kq)
−1 j∗R∗D.

Thus L∗D f = v|6 , where v ∈ H 1(�) solves

(I − K − k2Kq)v = j∗R∗D f ;

i.e., for all w ∈ H 1(�),∫
�

(∇v · ∇w− k2qvw) dx = 〈(I − K − k2Kq)v,w〉 = 〈 j∗R∗D f, w〉 =
∫

D
fw dx,

which is the variational formulation equivalent to (18). �

Lemma 4.5. Let q ∈ L∞(�) \ {0} for which k > 0 is not a resonance. Let B, D ⊆� be measurable and
C ⊆� be a closed set such that B ∩C has positive measure, C ∩ D =∅, and � \ (D ∪C) is connected
to 6. Then,

R(L∗B∩C)∩R(L
∗

D)= {0}, (19)

and R(L∗B∩C),R(L
∗

D)⊂ L2(6) are both dense (and thus in particular infinite-dimensional).

Proof. It follows from the unique continuation property in Theorem 2.4(a) that L B∩C and L D are injective.
Hence R(L∗B∩C) and R(L∗D) are dense subspaces of L2(6).

The characterization of the adjoint operators in Lemma 4.4 shows that

B ∩C ⊆ C implies R(L∗B∩C)⊆R(L∗C).

Hence, (19) follows a fortiori if we can show that

R(L∗C)∩R(L
∗

D)= {0}.

To show this let h ∈R(L∗C)∩R(L
∗

D). Then there exist fC ∈ L2(C), fD ∈ L2(D), and vC , vD ∈ H 1(�)

such that
1vC + k2qvC = fCχC , ∂νv|∂� = 0,

1vD + k2qvD = fDχD, ∂νv|∂� = 0,
and vC |6 = h = vD|6 .

It follows from the unique continuation property in Theorem 2.4(b) that vC = vD on the connected set
� \ (C ∪ D). Hence,

v :=


vC = vD on � \ (C ∪ D),
vC on D,
vD on C
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defines an H 1(�)-function solving

1v+ k2qv = 0, ∂νv|∂� = 0,

so that v = 0 and thus h = vC |6 = vD|6 = v|6 = 0. �

Lemma 4.6. Let X , Y and Z be Hilbert spaces, and A1 : X → Y and A2 : X → Z be linear bounded
operators. Then

∃c > 0 : ‖A1x‖ ≤ c‖A2x‖ ∀x ∈ X if and only if R(A∗1)⊆R(A∗2).

Proof. This is proven for reflexive Banach spaces in [Gebauer 2008, Lemma 2.5]. Note that one direction
of the implication also holds in nonreflexive Banach spaces; see [Gebauer 2008, Lemma 2.4]. �

Lemma 4.7. Let V, X, Y ⊂ Z be subspaces of a real vector space Z. If

X ∩ Y = {0} and X ⊆ Y + V,

then dim(X)≤ dim(V ).

Proof. Let (x j )
m
j=1⊂ X be a linearly independent sequence of m vectors. Then there exist (yj )

m
j=1⊂ Y and

(vj )
m
j=1 ⊂ V such that x j = yj + vj for all j = 1, . . . ,m. We will prove the assertion by showing that the

sequence (vj )
m
j=1 is linearly independent. To this end let

∑m
j=1 ajvj = 0 with aj ∈R, j = 1, . . . ,m. Then

m∑
j=1

aj x j =

m∑
j=1

aj (yj + vj )=

m∑
j=1

aj yj ∈ Y,

so that
∑m

j=1 aj x j =0. Since (x j )
m
j=1⊂ X is linearly independent, it follows that aj =0 for all j=1, . . . ,m.

This shows that (vj )
m
j=1 is linearly independent. �

Proof of Theorem 4.1. Let q ∈ L∞(�) \ {0} for which k > 0 is not a resonance. Let B, D ⊆ � be
measurable, B \D possess positive measure, and �\D be connected to 6. Using Lemma 4.3 we obtain a
closed set C ⊆� such that B ∩C has positive measure, C ∩ D =∅, and � \ (D ∪C) is connected to 6.

Let V ⊂ L2(6) be a subspace with d := dim(V ) <∞. Since V is finite-dimensional and thus closed,
there exists an orthogonal projection operator PV : L2(6)→ L2(6) with

R(PV )= V, P2
V = PV , and PV = P∗V .

From Lemma 4.5, we have that R(L∗B∩C)∩R(L
∗

D)= 0 and that R(L∗B∩C) is infinite-dimensional. So
it follows from Lemma 4.7 that

R(L∗B∩C) 6⊆R(L∗D)+ V =R(L∗D)+R(P∗V ).

Since B ∩C ⊆ B implies that R(L∗B∩C)⊆R(L∗B), and since (using block operator matrix notation)

R((L∗D P∗V ))⊆R(L∗D)+R(P∗V ),
we obtain that

R(L∗B) 6⊆R((L∗D P∗V ))=R
((

L D

PV

)∗)
.
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It then follows from Lemma 4.6 that there cannot exist a constant C > 0 with

‖L B g‖2 ≤ C2
∥∥∥∥(L D

PV

)
g
∥∥∥∥2

= C2
‖L Dg‖2+C2

‖PV g‖2 for all g ∈ L2(6).

Hence, there must exist a sequence (g̃k)k∈N ⊆ L2(6) with

‖L B g̃k‖→∞ and ‖L D g̃k‖, ‖PV g̃k‖→ 0.

Thus, gk := g̃k − PV g̃k ∈ V⊥ ⊆ L2(6) and

‖L B gk‖ ≥ ‖L B g̃k‖−‖L B‖‖PV g̃k‖→∞ and ‖L Dgk‖→ 0,

which shows the assertion. �

Proof of Theorem 4.2. Let q1, q2 ∈ L∞(�) for which k > 0 is not a resonance, and let q1(x)= q2(x) for
all x (a.e.) outside a measurable set D⊂�. We denote by Lq1,D and Lq2,D the operators from Lemma 4.4
for q = q1 and q = q2. For f ∈ L2(D), we then have

L∗q1,D f = v1|6 and L∗q2,D f = v2|6,

where v1, v2 ∈ H 1(�) solve

1v1+ k2q1v1 = f χD, ∂νv1|∂� = 0,

1v2+ k2q2v2 = f χD, ∂νv2|∂� = 0.
Since this also implies

1v1+ k2q2v1 = f χD + k2(q2− q1)v1, ∂νv1|∂� = 0,

1v2+ k2q1v2 = f χD + k2(q1− q2)v2, ∂νv2|∂� = 0,

and q1− q2 vanishes (a.e.) outside D, it follows that

v1|6 = L∗q2,D( f + k2(q2− q1)v1) and v2|6 = L∗q1,D( f + k2(q1− q2)v2).

Hence, R(L∗q1,D)=R(L∗q2,D), so that the assertion follows from Lemma 4.6. �

4B. Localized potentials and Runge approximation. In this subsection we give an alternative proof of
Theorem 4.1 that is based on a Runge approximation argument that characterizes whether a given function
ϕ ∈ L2(O) on a measurable subset O ⊆� can be approximated by functions in a subspace of solutions
of the Helmholtz equation in �. Throughout this subsection let q ∈ L∞(�) \ {0} for which k > 0 is not a
resonance. We will prove the following theorem.

Theorem 4.8. Let D ⊆ � be a measurable set and C ⊂ � be a closed ball for which C ∩ D = ∅, and
� \ (C ∪ D) is connected to 6.

Then for any subspace V ⊂ L2(6) with dim V <∞, there exists a function ϕ ∈ L2(C ∪ D) that can be
approximated (in the L2(C ∪ D)-norm) by solutions u ∈ H 1(�) of

(1+ k2q)u = 0 in � with ∂νu|∂�\6 = 0, ∂νu|6 ∈ V⊥,
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and satisfies
ϕ|D ≡ 0 and ϕ|B 6≡ 0

for all subsets B ⊆ C with positive measure.

Before we prove Theorem 4.8, let us first show that it implies Theorem 4.1.

Corollary 4.9. Let B, D ⊆� be measurable, B \ D possess positive measure, and � \ D be connected
to 6. Then for any subspace V ⊂ L2(6) with dim V <∞, there exists a sequence (gj )j∈N ⊂ V⊥ such
that ∫

B
|u(gj )

q |
2 dx→∞ and

∫
D
|u(gj )

q |
2 dx→ 0,

where u(gj )
q ∈ H 1(�) solves the Helmholtz equation (2) with Neumann boundary data gj .

Proof. As in Lemma 4.3, we can find a closed ball C ⊂� so that B∩C has positive measure, C ∩D =∅,
and � \ (D ∪C) is connected to 6. Using Theorem 4.8, there exists ϕ ∈ L2(C ∪ D) and a sequence of
solutions (ũ( j))j∈N ⊂ H 1(�) of (1+ k2q)ũ( j)

= 0 in � with ∂ν ũ( j)
|∂�\6 = 0, ∂ν ũ( j)

|6 ∈ V⊥,

‖ũ( j)
|B∩C‖L2(B∩C)→‖ϕ‖L2(B∩C) > 0 and ‖ũ( j)

|D‖L2(D)→ 0.

Obviously, the scaled sequence

g( j)
:=

∂ν ũ( j)
√

‖ũ( j)
|D‖L2(D)

∈ V⊥

satisfies the assertion. �

To prove Theorem 4.8, we start with an abstract characterization showing whether a given function
ϕ ∈ L2(O) on a measurable set O⊆� is a limit of functions from a subspace of solutions of the Helmholtz
equation in �. For the sake of readability, we write vχO ∈ L2(�) for the zero extension of a function
v ∈ L2(O), and we write the dual pairing on H−1/2(∂�)× H 1/2(∂�) as an integral over ∂�.

Lemma 4.10. Let O ⊆ � be measurable. Let H ⊆ H 1(�) be a (not necessarily closed) subspace of
solutions of (1+ k2q)u = 0 in �.

A function ϕ ∈ L2(O) can be approximated on O by solutions u ∈ H in the sense that

inf
u∈H
‖ϕ− u‖L2(O) = 0

if and only if
∫

O ϕv dx = 0 for all v ∈ L2(O) for which the solution w ∈ H 1(�) of

(1+ k2q)w = vχO and ∂νw|∂� = 0 (20)

satisfies
∫
∂�
∂νu|∂�w|∂� ds = 0 for all u ∈ H.

Proof. Let
R := {u|O : u ∈ H} ⊆ L2(O).

Let v ∈ L2(O) and w ∈ H 1(�) solve (20). Then v ∈R⊥ if and only if, for all u ∈ H,

0=
∫

O
uv dx =

∫
�

u(1+k2q)w dx =
∫
�

w(1+k2q)u dx−
∫
∂�

∂νu|∂�w|∂� ds=−
∫
∂�

∂νu|∂�w|∂� ds.
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Hence, the assertion follows from R= (R⊥)⊥ (where orthogonality and closures are taken with respect
to the L2(O) inner product). �

Now we characterize the functions w appearing in Lemma 4.10 for a setting that will be considered in
the proof of Theorem 4.8.

Lemma 4.11. Let V be a finite-dimensional subspace of L2(6), and O ⊂� be a closed set for which the
complement � \ O is connected to 6.

We define the spaces

W : = {w ∈ H 1(�) : ∃v ∈ L2(O) s.t. (1+ k2q)w = vχO , ∂νw|∂� = 0, w|6 ∈ V },

W0: = {w ∈ H 1(�) : ∃v ∈ L2(O) s.t. (1+ k2q)w = vχO , ∂νw|∂� = 0, w|6 = 0}.

Then the codimension d := dim(W/W0) of W0 in W is at most dim(V ); i.e., there exist functions
w1, . . . , wd ∈W such that every w ∈W can be written as

w = w0+

d∑
j=1

ajwj ,

with (w-dependent) w0 ∈W0 and a1, . . . , ad ∈ R.

Proof. W0 is the kernel of the restricted trace operator

γ6|W :W → V, w 7→ w|6.

Hence, the codimension of W0 as a subspace of W is

dim(W/W0)= dim(R(γ6|W ))≤ dim(V ),

which proves the assertion. �

Proof of Theorem 4.8. Let D ⊆� be a measurable set and C ⊂� be a closed ball for which C ∩ D =∅
and � \ (C ∪ D) is connected to 6. Let V be a finite-dimensional subspace of L2(6).

To apply Lemma 4.10, we set O := C ∪ D and

H := {u ∈ H 1(�) : (1+ k2q)u = 0 in �, ∂νu|∂�\6 = 0, ∂νu|6 ∈ V⊥}.

Then w ∈ H 1(�) satisfies (20) and ∫
∂�

∂νu|∂�w|∂� ds = 0

for all u ∈ H if and only if w ∈W, with W defined in Lemma 4.11. Hence, by Lemma 4.10, a function
ϕ ∈ L2(C ∪ D) can be approximated by solutions u ∈ H if and only if∫

C∪D
ϕ(1+ k2q)w dx = 0 for all w ∈W. (21)

Thus, the assertion of Theorem 4.8 follows if we can show that there exists ϕ ∈ L2(C ∪ D) that satisfies
(21) and vanishes on D but not on any subset of C having positive measure.
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To construct such a ϕ, we first note that the Helmholtz equation (2) on � is uniquely solvable for
all Neumann data g ∈ L2(6), and by unique continuation, linearly independent Neumann data yield
solutions whose restrictions to the open ball C◦ are linearly independent. Hence, there exists an infinite
number of linearly independent solutions

ϕj ∈ H 1(C◦) with (1+ k2q)ϕj = 0 in C◦, j ∈ N. (22)

We extend ϕj by zero on D ∪ ∂C to ϕj ∈ L2(O).
Every w0 ∈W0, with W0 from Lemma 4.11, must possess zero Cauchy data w0|∂C = 0 and ∂νw0|∂C = 0

by unique continuation. Hence, for all w0 ∈W0, and j ∈ N,∫
O
ϕj (1+ k2q)w0 dx =

∫
C
ϕj (1+ k2q)w0 dx =

∫
∂C
(ϕj |∂C∂νw0|∂C − ∂νϕj |∂Cw0|∂C) ds = 0.

Moreover, by a dimensionality argument, there must exist a nontrivial finite linear combination ϕ of
the infinitely many linearly independent ϕj such that∫

O
ϕ(1+ k2q)wk dx = 0

for the finitely many functions w1, . . . , wd ∈W from Lemma 4.11. Thus, using Lemma 4.11, we have
constructed a function ϕ ∈ L2(O) with ϕ|D ≡ 0, ϕ|C◦ 6≡ 0, and∫

O
ϕ(1+ k2q)w dx = 0 for all w ∈W =W0+ span{w1, . . . , wd}.

Moreover, ϕ solves (22), so that the unique continuation result from measurable sets in Theorem 2.4 also
yields that ϕ|B 6≡ 0 for all B ⊆ C◦ with positive measure. Since ∂C is a null set, the latter also holds for
all B ⊆ C with positive measure. As explained above, the assertion of Theorem 4.8 now follows from
Lemma 4.10. �

5. Local uniqueness for the Helmholtz equation

We are now able to prove the first main result in this work, announced as Theorem 1.1 in the Introduction,
and extend the local uniqueness result in [Harrach and Ullrich 2017] to the case of negative potentials
and n ≥ 2.

As in Section 2A, let � ⊂ Rn, n ≥ 2, denote a bounded Lipschitz domain, and let 6 ⊆ ∂� be an
arbitrarily small, relatively open part of the boundary ∂�. For q1, q2 ∈ L∞(�) let

3(q1),3(q2) : L2(6)→ L2(6), 3(q1) : g 7→ u1|6, 3(q2) : g 7→ u2|6,

be the Neumann-to-Dirichlet operators for the Helmholtz equation

(1+ k2q)u = 0 in �, ∂νu|∂� =
{

g on 6,
0 else,

(23)

with q = q1 and q = q2 respectively, and let k > 0 be such that it is not a resonance for q1 or q2.
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Theorem 5.1. Let q1 ≤ q2 in a relatively open set O ⊆� that is connected to 6. Then

q1|O 6≡ q2|O implies 3(q1) 6=3(q2).

Moreover, in that case, 3(q2)−3(q1) has infinitely many positive eigenvalues.

Proof. If q1|O 6≡ q2|O then there exists a subset B ⊆ O with positive measure, and a constant c > 0 such
that q2(x)− q1(x) ≥ c for all x ∈ B (a.e.). From the monotonicity inequality in Theorem 3.5 we have
that 3(q2)−3(q1)≥fin A, where

A : L2(6)→ L2(6),

∫
6

h Ag ds =
∫
�

k2(q2− q1)u
(g)
1 u(h)1 dx .

Note that A = S∗1 j∗k2 Mq1−q2 j S1, where S1 : g 7→ u(g)1 is the solution operator and j : H 1(�)→ L2(�)

is the compact inclusion, so A is indeed a compact, self-adjoint linear operator on L2(6).
We will now prove the assertion by contradiction and assume that 3(q2)−3(q1) ≤fin 0. Then, the

transitivity result in Lemma 3.4 gives that A ≤fin 0. By the characterization in Corollary 3.3, there would
exist a finite-dimensional subspace V ⊆ L2(∂�), with

0≥
∫
�

k2(q2− q1)|u
(g)
1 |

2 dx

=

∫
O

k2(q2− q1)|u
(g)
1 |

2 dx +
∫
�\O

k2(q2− q1)|u
(g)
1 |

2 dx

≥ c
∫

B
k2
|u(g)1 |

2 dx −C
∫
�\O

k2
|u(g)1 |

2 dx

for all g ∈ V⊥, where C := (‖q1‖L∞(�)+‖q2‖L∞(�)) and u(g)1 solves (23) with q = q1.
However, using the localized potentials from Theorem 4.1 with D :=�\O, there must exist a Neumann

datum g ∈ V⊥ with

c
∫

B
k2
|u(g)1 |

2 dx > C
∫
�\O

k2
|u(g)1 |

2 dx,

which contradicts the above inequality. Hence, 3(q2) − 3(q1) must have infinitely many negative
eigenvalues, and in particular 3(q2) 6=3(q1). �

Proof of Theorem 1.1. The result is an immediate consequence of Theorem 5.1. �

Theorem 5.1 shows that two scattering coefficient functions can be distinguished from knowledge
of the partial boundary measurements if their difference is of definite sign in a neighborhood of 6 (or
any open subset of 6 since 3(6) determines the boundary measurements on all smaller parts). This
definite sign condition is satisfied for piecewise-analytic functions, see, e.g., [Harrach and Ullrich 2013,
Theorem A.1], but the authors are not aware of other named function spaces, with less regularity, where
infinite oscillations between positive and negative values when approaching the boundary can be ruled
out. In the following corollary the term piecewise-analytic is understood with respect to a partition in
finitely many subdomains with piecewise C∞-boundaries; see [Harrach and Ullrich 2013] for a precise
definition.
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Corollary 5.2. If q1− q2 is piecewise-analytic on � then

3(q1)=3(q2) if and only if q1 = q2.

Proof. This follows from Theorem 1.1 and [Harrach and Ullrich 2013, Theorem A.1]. �

6. Detecting the support of a scatterer

We will now show that an unknown scatterer, where the refraction index is either higher or lower than an
otherwise homogeneous background value, can be reconstructed by simple monotonicity comparisons.

6A. Scatterer detection by monotonicity tests. As before, let �⊂Rn, n ≥ 2, be a bounded domain with
Lipschitz boundary. The domain is assumed to contain an open set (the scatterer) D ⊆� with D ⊂�
and connected complement � \ D. We assume that the scattering index satisfies q(x)= 1 in � \ D (a.e.)
and that there exist constants qmin, qmax ∈ R so that either

1< qmin ≤ q(x)≤ qmax for all x ∈ D (a.e.)

or
qmin ≤ q(x)≤ qmax < 1 for all x ∈ D (a.e.).

3(q) denotes the Neumann-to-Dirichlet operator for the domain containing the scatterer, and 3(1) is the
Neumann-to-Dirichlet operator for a homogeneous domain with q ≡ 1. For both cases, we assume that
k > 0 is not a resonance.

For an open set B ⊆� (e.g., a small ball), we define the operator

TB : L2(6)→ L2(6),

∫
6

gTBh ds :=
∫

B
k2u(g)1 u(h)1 dx,

where u(g)1 , u(h)1 ∈ H 1(�) solve (2) with q ≡ 1 and Neumann boundary data g and h respectively. Obvi-
ously, TB is a compact self-adjoint linear operator.

The following two theorems show that D can be reconstructed by comparing 3(q)−3(1) with TB in
the sense of the Loewner order up to finitely many eigenvalues introduced in Section 3A.

Theorem 6.1. Let
1< qmin ≤ q(x)≤ qmax for all x ∈ D (a.e.),

and let d(qmax) be defined as in Lemma 2.1 (which also equals the number of Neumann eigenvalues of the
Laplacian 1 that are larger than −k2qmax; see Corollary 3.11).

(a) If B ⊆ D then
αTB ≤d(qmax) 3(q)−3(1) for all α ≤ qmin− 1.

(b) If B 6⊆ D then, for all α > 0, 3(q)−3(1)−αTB has infinitely many negative eigenvalues.

Theorem 6.2. Let
qmin ≤ q(x)≤ qmax < 1 for all x ∈ D (a.e.),
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and let d(1) be defined as in Lemma 2.1 (which also equals the number of Neumann eigenvalues of the
Laplacian 1 that are larger than −k2; see Corollary 3.11).

(a) If B ⊆ D then there exists αmax > 0 such that

αTB ≤d(1) 3(1)−3(q) for all α ≤ αmax.

(b) If B 6⊆ D then, for all α > 0, 3(1)−3(q)−αTB has infinitely many negative eigenvalues.

6B. Proof of Theorems 6.1 and 6.2. We prove both results by combining the monotonicity relations and
localized potentials results from the last subsections.

Proof of Theorem 6.1. By the monotonicity relation in Theorem 3.5 there exists a subspace V ⊂ L2(6)

with dim(V )≤ d(q)≤ d(qmax) (see Corollary 3.11) and∫
6

g(3(q)−3(1))g ds ≥
∫
�

k2(q − 1)|u(g)1 |
2 dx for all g ∈ V⊥.

If B ⊆ D and α ≤ qmin− 1, then q − 1≥ αχB , so that for all g ∈ L2(6)∫
�

k2(q − 1)|u(g)1 |
2 dx ≥

∫
B

k2α|u(g)1 |
2 dx = α

∫
6

gTB g ds.

Hence, if B ⊆ D and α ≤ qmin− 1, then∫
6

g(3(q)−3(1))g ds ≥ α
∫
6

gTB g ds for all g ∈ V⊥,

which proves (a).
To prove (b) by contradiction, let B 6⊆ D, α > 0, and assume that

3(q)−3(1)≥fin αTB . (24)

Using the monotonicity relation in Remark 3.6 together with Theorem 4.2, there exists a finite-dimensional
subspace V ⊂ L2(6) and a constant C > 0, so that for all g ∈ V⊥∫

6

g(3(q)−3(1))g ds ≤
∫

D
k2(q − 1)|u(g)q |

2 dx ≤ C
∫

D
k2(q − 1)|u(g)1 |

2 dx . (25)

Combining (24) and (25) using the transitivity result from Lemma 3.4, there exists a finite-dimensional
subspace Ṽ ⊂ L2(6) with

α

∫
B

k2
|u(g)1 |

2 dx ≤ C
∫

D
k2(q − 1)|u(g)1 |

2 dx for all g ∈ Ṽ⊥.

However, this is contradicted by the localized potentials result in Theorem 4.1, which guarantees the
existence of a sequence (gj )j∈N ⊂ Ṽ⊥ with∫

B
|u(gj )

1 |
2 dx→∞ and

∫
D
|u(gj )

1 |
2 dx→ 0.

Hence, 3(q)−3(1)−αTB cannot have only finitely many negative eigenvalues. �
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Proof of Theorem 6.2. The proof is analogous to that of Theorem 6.1. We state it for the sake of
completeness. Let

qmin ≤ q(x)≤ qmax < 1 for all x ∈ D (a.e.).

If B ⊆ D, then by the monotonicity relation in Remark 3.6, together with Theorem 4.2, we have∫
6

g(3(q)−3(1))g ds ≤d(1)

∫
�

k2(q − 1)|u(g)q |
2 dx ≤−

∫
D

k2(1− qmax)|u(g)q |
2 dx

≤−c(1− qmax)

∫
D

k2
|u(g)1 |

2 dx ≤−c(1− qmax)

∫
B

k2
|u(g)1 |

2 dx

=−c(1− qmax)

∫
6

gTB g ds,

with a constant c > 0 from Theorem 4.2. This shows that B ⊆ D implies

αTB ≤d(1) 3(1)−3(q) for all α ≤ c(1− qmax)=: αmax,

so that (a) is proven.
To prove (b) by contradiction, let B 6⊆ D, α > 0, and assume that

3(1)−3(q)≥fin αTB . (26)

By the monotonicity relation in Theorem 3.5, we have∫
6

g(3(1)−3(q))g ds ≤fin

∫
D

k2(1− q)|u(g)1 |
2 dx . (27)

Combining (26) and (27) using the transitivity result from Lemma 3.4, we have

α

∫
B

k2
|u(g)1 |

2 dx ≤fin

∫
D

k2(1− q)|u(g)1 |
2 dx .

However, this is contradicted by Theorem 4.1, which guarantees (for each finite-dimensional space
V ⊂ L2(6)) the existence of a sequence (gj )j∈N ⊂ V⊥ with∫

B
|u(gj )

0 |
2 dx→∞ and

∫
D
|u(gj )

0 |
2 dx→ 0.

Hence, 3(1)−3(q)−αTB cannot have only finitely many negative eigenvalues, which shows (b). �

6C. Remarks and extensions. We finish this section with some remarks on possible extensions of our re-
sults. Theorems 6.1 and 6.2 hold with analogous proofs also for the case that the homogeneous background
scattering index is replaced by a known inhomogeneous function q0 ∈ L∞(�). Using the concept of the
inner and outer support from [Harrach and Ullrich 2013] (see also [Kusiak and Sylvester 2003; Gebauer
and Hyvönen 2008; Harrach and Seo 2010] for the origins of this concept), we can also treat the case where
�\D is not connected or where there is no clear jump of the scattering index. The monotonicity tests will
then determine D up to the difference of the inner and outer support. Moreover, the so-called indefinite
case that the domain contains scatterers with higher and lower refractive indices can be treated by shrinking
a large test region analogously to [Harrach and Ullrich 2013]; see also [Garde and Staboulis 2019].
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