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Factorization Method and Its Physical Justification
In Frequency-Difference Electrical Impedance
Tomography
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Abstract—Time-difference electrical impedance tomography imaging methods in EIT including static, time-difference, and
(tdEIT) requires two data sets measured at two different times. frequency-difference imaging.
The difference between them is utilized to produce images of Static EIT aims to image absolute complex conductivity

time-dependent changes in a complex conductivity distribution o . .
inside the human body. Frequency-difference EIT (fdEIT) was values inside the human body [4]-[7]. Its image reconstruction

proposed to image frequency_dependent Changes of a Comp|expr0b|em suffers from the fundamental |||-posedneSS combined
conductivity distribution. It has potential applications in tumor  with technical difficulties caused by modeling errors in bound-
and stroke imaging since it can visualize an anomaly without ary geometry and electrode positions.

requiring any time-reference data obtained in the absence of Time-difference EIT (tdEIT) visualizes temporal changes
an anomaly. In this paper, we provide a rigorous analysis for . L AT . .

the detectability of an anomaly based on a constructive and !n a complex conductivity d's_t”buuon .by using a d'ﬁerenqe

quantitative physical correlation between a measured fdEIT in measured data at two different times. The subtraction
data set and an anomaly. From this, we propose a new non- diminishes errors and artifacts common to both data and tdEIT
iterative frequency-difference anomaly detection method called has been successfully applied to clinical settings where a
the factorization method (FM) and elaborate its physical justifi- time-reference data set is available [7]-[12]. For imaging or

cation. To demonstrate its practical applicability, we performed - -
fdEIT phantom imaging experiments using a multi-frequency detection of tumor or acute stroke [13]-[16], tdEIT is not

EIT system. Applying the FM to measured frequency-difference feasible since a time-reference data is not available.
boundary voltage data sets, we could quantitatively evaluate  Frequency-difference EIT (fdEIT) was proposed to image
indicator fun_c_tions inside the imaging domain, of which values frequency-dependent Changes of a Comp|ex COﬂdUCtiViW dis-
at each position reveal presence or absence of an anomaly. Wey;ip, ;tjon [17]-[26]. Most previous studies in fdEIT adopted a
found that the FM successfully localizes anomalies inside an imag- _. . . .
ing domain with a frequency-dependent complex conductivity S|mpI¢ subtrqctlon of voltage data at two different frequenges
distribution. We propose the new FM as an anomaly detection following the idea of tdEIT. When we assume an anomaly in a
algorithm in fdEIT for potential applications in tumor and stroke ~ background whose complex conductivity distribution changes
imaging. with frequency, this simple subtraction fails to cancel out
Index Terms—Electrical impedance tomography (EIT), common errors and artifacts at both frequencies. Based on this
anomaly detection, factorization method, complex conductivity, observation, a new fdEIT method using a weighted voltage
weighted frequency difference difference has been suggested to diminish effects of common
errors and artifacts [27].
Though weighted fdEIT has been validated by numerical
. INTRODUCTION simulations and phantom experiments [28], it still lacks a

Electrical impedance tomography (EIT) aims to image splid mathematical basis since there is no rigorous analysis
conductivity distribution inside the human body. As the conf2n the connection between a complex conductivity perturba-

plex conductivity values of biological tissues and organs af@" and the weighted frequency-difference voltage data. To

affected by their physiological and pathological status [1]_[3(]:,haracterize the performance of a fdEIT image reconstruction

EIT may open up new possibilities in medical diagnosis arfjgorithm, it is necessary to analyze this nonlinear connection.

monitoring of vital body functions. We may consider thred this paper, we derive a constructive and quantitative physical
correlation between weighted frequency-difference data and
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The distinguishability concept has played an important role

to quantify the ability of a measured voltage data set in per- I & Ekt1 Us,
ceiving a difference between two conductivity images [39]. In Eiva ”
this paper, we present an analysis about the detectability, which D Sk

could be a basis for deeper understanding of the nonlinearity ) '
in EIT. We will show that it enables us to achieve better
guantitative results in the fdEIT anomaly detection problem.
In section I, we describe a mathematical model for the . Q

weighted fdEIT. Section Ill contains the main contribution R
of the paper where we derive a constructive and quantitative

. . . . Fig. 1.
physical correlation between a weighted frequency-dlfferencg
voltage data set and a conductivity anomaly. This leads to
a new physical justification of the FM and also an anomally@(gk D for gk =1 Nandk ¢ {j—1,5,j + 1} as
detection algorithm in a practical setting of fdEIT. In sectio fj10wr11L in Fig 1 Y 7
IV, we describe how to numerically implement a variant of o neasyred boundary voltage data set is expressed in a
the FM for measured fdEIT data sets. Section V explawb%ta matrix as
fdEIT experiments using a phantom comprising a background 3 3 3 5
and anomalies whose complex conductivities vary with fre- Uy Ui, Urs ... Uiy

Sketch of the measurement setup.

guency. We illustrate experimental results by plotting indicator w Usp Usz Uss ... Uy
) . . o . U¥ = ] ] 4)
functions localizing anomalies. Validating the new detection : : . :
algorithm with experimental fdEIT data sets, we propose Ue . Ue. Uv. ... U
further fdEIT studies to apply the method in tumor and acute . ot N’? _ N3 _ NN
stroke imaging. where we fill the three missing entries 6% ;_,, U;; and
Uj j+1 by zero in each rowj = 1,..., N. We can view the

matrix U as a current-to-voltage or Neumann-to-Dirichlet
o (NtD) map. The problem of this paper is to identify the
A. Problem Definition anomaly D from two data setdJ“' and U2 measured at

Let @ ¢ R™ (n = 2 or 3) denote a smooth domaintwo different angular frequencies, andws.
occupying an electrically conducting object. We denote the
complex conductivity at a positionr €  and angular B. Weighted Frequency-difference Data
frequencyw as~*(z) = o“(x) 4 iwe*(x) whereos“(z) and
e (z) are conductivity and permittivity, respectively.

Using anN-channel multi-frequency EIT system, we attac
N electrodes to the boundagf). We assume that the size
of the electrodes is small compared d€, so that they can
be modeled agoint electrodesat positionsé; € 09, j =
1,...,N. We inject sinusoidal current with a frequency of
w/2m and an amplitude of between two adjacent electrodes V= At U — 45202, (5)
& and&;4q. In this paper, we use the convention; = &
and§p = &n. The resulting complex potential’ is governed
by the following partial differential equation:

V- @) VesE) =0 in 0, @ OB @xo() and1+(05) 9 @)xo (@), ©)

Y (2)0pus (2)|on = I6(x — &) — I6(x — &41)  (2) rgspgctive_ly. We note that the two complex condqctivity_dis—
tributions in (6) differ only on the anomaly, that is, their
where§(z) is the Dirac delta function and = v(z) is the complex conductivity distributions in the backgroufid\ D
outward unit normal vector ofi€2. are identical. This indicates that the weighted difference in (5)
We assume that the objeetincludes one or more anomaliesconveys anomaly information without being affected by the
occupying a regiorD in a homogeneous background so thapackground. Numerical simulations and phantom experiments
w w w in [27], [28] provide comparative results between the simple
77 (@) =1 + b (@)xp () (3) and weighted differences.
where ¢ is a background complex conductivitys)(z) a We now derive a first analytic relation betwe®hand the
complex conductivity jump of the anomalp, and xp its anomalyD. The (j, k)th entry of V is
characteristic function. We sequentially inject currents be- . ——
tween all pairs of adjacent electrodes and measure the resulting Vi =03(&) = 0j(&41) for jik=1,....N, (7)
boundary voltages between adjacent electrode pairs excludimitere v;(z) = 5" ui'(z) — 75°u;*(z) is the weighted
the two current-carrying electrodes for each injection. We afiequency difference of the solutions; (x) and uj*(x) of
provided with the boundary voltage datg’, = uf(§k) — (1), (2) withw = w; andws, respectively.

Il. WEIGHTED FREQUENCY¥DIFFERENCEEIT

Scaling the complex conductivity”(x) — c¢y“(x) by a
complex constant € C results in a data matrix scaled by!,
€., U¥ — ¢~1U%. This means thatyU¥ is the data that
one would measure from a complex conductivity distribution
of 1+ (7§) "% (2)xp(@).

We set a weighted frequency-difference data ma¥fivas

The first and second terms in the right hand side of (5)
correspond to the following complex conductivity distributions
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From (1) and (3), we obtain C. Contrast in Frequency-difference EIT
The contrast in fdEIT essentially depends-gii(z)/v5> —
(7 (@) V(@ ))w y o (®) “i(x)/74" in (14). Note that the same term appears in (8),
= V- (v (2)V (76" (2) = 75°us? (2))) (11) and (12) up to multiplicative constants. For general
(7w1 (z)V ( wzu‘;z (x))) biological tissues showing complicated frequency dependent
(( W2 ()@t 1 (1)2) Vs (x)) characteristics, we cannot simplify this term.
7w . 7w . J " To obtain a useful interpretation, we consider a simplifying
V- (6" p (@) = 677D (@) xp (@) Vus® (z)) assumption that botlr and e do not change with frequency
in 2. Equation (2) yields the insulated boundary condition and bothyp;" and~p* are constant. Then,
Vi (z) = o(z) +iwje(z) for j=1,2, (15)
Ovvjloa =0 on o0 ®) o(z) =00 +opxp(z), (16)
The conductivity jump in the anomalp has become a source é(z) = eo + epxp (), (17)
term for the weighted frequency-difference potentialn (8). 54
From (2), Green'’s identity, and (1), we obtain N2 (z) A (x) i
Dwg - le = w1 _ws (wQ - wl)(EDUO - UDEO)' (18)
Vi = v;(&k) — vj(€k+1) (10) o w6
1 oo o The contrast increases with the frequency gap- w; and
=7 /aQ v (s)75 " Ovuy* (s) ds fdEIT is capable of imaging a purely dielectric anomaty,(=
1 . . 0 # ep) as wgll as a purely conducting anomabyp(# 0 =
= f/QV Hz)Vuj(z) - Vuy? (z) da. ep). Irrespective of frequency, the factepo, — opeg may be

zero when jumps i ande are exactly same. In such a rare
We apply Green’s identity again and use (8) and (9) to deducase, the weighted frequency-difference data in (5) is zero, and
1 the anomaly is invisible from the data.
Vie =7 [ G55 @ =158 @)V (@) Vi o) do.
(11)
This means that we may interpré} , as a response of the
anomalyD to the potentiak;” resulting from a current ab;
between theith and(j + 1)th electrodes and the potentigf*
resulting from a current at, between théith and(k + 1)th

IIl. ANOMALY DETECTION

We now derive a constructive and quantitative physical
correlation between the weighted frequency-difference data
V and the anomalyD. Our arguments stem from a non-
iterative anomaly detection method called the factorization
method (FM) and its variant called the linear sampling method

electrodes.

e (LSM). Mathematically rigorous treatments of these methods

C Ey superposition, it follows that for any two vectoysh € are available in [29]-[36]. In the mathematical literature, they
' are analyzed for the idealized case of continuous boundary
N measurements. Their rigorous mathematical descriptions are
g-Vh= Z 95 Vil (12) beyond the scope of this paper (see e.g. [36] for the case of

Jk=1 fdEIT).
1 w1 w3 wa wn wr wa In this section, we provide a self-contained analysis and
I /D (%" D" (®) =767 7p' (@) Vg (2) - Vui* () dw description of the FM and LSM bearing their practical appli-

cations in mind. We will explain a new physical justification
whereusr = Y% g;us" is a potential resulting from the of these methods for the anomaly detection using fdEIT. We
sum of currents of the strengﬂ) between thejth and(j +  start by introducing a main tool to correlate an anomaly with
1)th electrodes and;* is defined similarly. In section Ill, we poundary data. We will derive the correlation for the linearized

will apply this analytic relation to determine points inside thease first and then for the nonlinear case.
anomalyD.

Assuming thaty;)' (z) and~7? (z) are small, we get A. Electric Dipole Source
o 1 ©) Consider an electric potential. ; in a homogeneous do-
Vuy’ (v) = — Vuy, ' (2) (13) main Q subject to a dipole source at a pointe Q with a
To directiond. It satisfies
Whereuéo) is the potential inQ2 with v = 1 subject to an Vi, a(z)=d-Viz—z2), z€Q (19)

injection current off between théth and(k+1)th electrodes.

b B with the insulated boundary conditia®), ¢, 4(x =0on
Since the same holds far??, y ®z,d(z) o0

09. For the setup in section Il, such a dipole source would
1 w2 w1 give rise to the following voltage measurements
Vik = 5 / (—WDW(;T ) WDw(fC)) vul? (z) - Vu (z) d
I'Jp\ % o 0z,d(&1) — ¢z,a(62)
D, 4= ; € RV, (20)
and an analogous expression holds §orV . ©0zd(€Nn) — ¢=,a(&1)

(14)



This is the accepted version of an article that has been published in
IEEE Transactions on Medical Imaging 29 (11), 1918-1926, 2010 (http://dx.doi.org/10.1109/TMI.2010.2053553) ©IEEE 4

By the same arguments as in the derivation of (11) itie
component of®, 4 is the same ad-VuEc (z )whereu )( )
is the potential irf2 with v = 1 subject to an injection current ‘ ,
between theth and(k + 1)th electrodes. D

B. Anomaly Detection: Linearized Case . ‘ ,

We derive a physical correlation between the dstand
the anomalyD under the assumption thaf)' (z) and~? (x) —
are small so that the linearized equation (14) holds. Without
loss of generality, we assume that= 1. We denote byV — 1 allngSt Ct?:gst(;?er;egagz]\/\s@through a poiatthat is well separated from the
the pseudo-inverse & and assume thdt, ; = V~1®, 4 is
a current pattern for which the voltage measurements agree
with those of the dipole, i.eVh, s = ©. 4. Note that such a Suppose that there are two positive constantand ¢* such
current pattern will only exist ifb, 4 lies in the range oV. that
We will later replaceV by its real part and then this property (z) 15 (x) (z) .
can be guaranteed, cf. our remark at the end of this section. ¢+ = R ( N - ) <c¢, zebD. (25)

By using superposition and (14), we obtain From (23), we have 0

d- VUl (z) = g- .y =g Vh.g (21) d- Vul ()] (0)
- i 1 V8 E < :
N e (x) _ L(I) vl (z) - VU(O) (z) da c* qH€1]R)§ (IVu (O)H = Hvuhz,d”D (26)
p\ 7%’ 7" I et

N , .. Hence, HVuh) || p must be large for a point that is well-
for all vectorsg € C*. It follows from the Schwartz inequality separated fronD.

that We now consider the case whene D. From (14) and
‘d Vu 0) (22) superposition, we obtain
d-Vuy (2)=hea R(V)h.a (27)
(0) 2 (0) 2 ' w
— — | |V d \% dz. 2
\// ‘ ‘ [V, | x”/D| ug - |*dz %/ 8%<7Dw(2) VDM( )>|V (0) (@) da
D Yo Yo
Since (22) holds for aly € CV, we have The consequences of (27) are twofold. The first is
(0) 13 < d- vl 28
L ld V() 3 eVl 1% < d- Vull) (2). (28)
geCy \/fDW“ 0)( )2z If 2 € D and the dlstance betweefl and 9D is r, it

follows from the mean value property of the harmonic function
d- Vv ugoz)d(z) that

dx.

’Vugg)d

RV
We call a pointz ¢ D well-separatedrom D if there is a d Vuhm( ||Vu H p (29)

current patterry for which the ratio wherec, is the square root of the volume of the ball with
(0) radiusr, and so
|d - Vug ( )l (24)

(0) 1
\/fp Vuy) (z)2de IV, @)l o < CuCr (30)

is very large for some directiod, i.e., if the current flux 1Ne second consequence is that

resulting fromg is very small inD but very large at in some | R(V)~1/2¢, 4| = &, , - R(V) 1D, g="h.g - R(V)hog
direction (see figure 2). Note that this depends not only on the ' ' (31)
distance between and D but also on their relative locations.yfills

Since the right hand side of (23) depends continuousliy.on

. (0) 2 * (0) 2
Izl = [V~1®. 4] is large for allz that arewell-separated ¢+ [V, (@)|D < g - R(V)hza < ¢V, | (2)][D-
from D. A plot of |[V~=1®, 4| is likely to reveal the anomaly _ (32)
and this is the discrete version of the LSM. Here, R(V)'/? denotes the matrix-valued square root of the

These arguments explain whif. 4| is Positive-semidefinite symmetric real matiy(V).
well-separated fronD, but they do not explain why it should BY combining the estimates (26), (30), and (32), we have
be small insideD. To gain a better indicator for presence of€ following (for all directionsi): _
absence of the anomaly, one has to use additional definiteness If z € D and the distance betweenanddD is r, then
properties. We replac¥ by a matrix2(V) containing only 1 c*
real parts of the entries oV and leth. , = R(V) "' 4. @0 ROV) ™ 20| < (33)

(cucr)?’
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e If 2 ¢ D, then IV. NUMERICAL IMPLEMENTATION
2 .
~ ¢ d-vul®(z We assume two measurement matridgs: and U+2 at
|®.0-R(V)'®. 4| > — [ max —2—"4 ; ; ; ; ;
z,d 24 =12 | genn 1vaO|p two different frequencies as described in section II-A. To
: g9

(34) form the weighted frequency-difference data maftkx we

For the case where the contrast (25) is negative and boun(?é%} etit'm datte tr:f\}/ unknowr:j bgcligrotundzg omp:jlex ior:dugﬂwty
from above by a negative constant, the same arguments ho € data. WVe proceed simiiar _01[ ] and note U%E.
true with—%(V)~! instead ofR(V)~!. We can combine both IS approximately proportional toy,”)™". An estimate ofy,

cases by replacin@ (V) with its matrix-valued absolute value P 1 & real constant ig; := 1 — a;i wherea; solves the
IR(V)). following quadratic minimization problem:

The quantity min [lo;R(U7) — (U] (38)

‘(I)z,d : |~§R(V)|_1¢z,d‘ (35) . . .
The minimizer is given by

is small inside the anomal and large at all points ¢ D
that are well-separated fromb. Plotting this quantity will a; = RU7) : F(U7)/ (R(U7) : R(UY)) (39)
therefore reveal the inclusion and this is the discrete version
of the FM. Note that in the estimates (30) and (32), all thehere *” denotes the double dot matrix inner product. Since
quantities except, andc* are computable. If we hawepriori  we set the unreliable entries 6f.%,_,, U, andU, ., in
knowledge about, and c* (anomaly conductivity contrast), each row by zero, they have no effect in the calculation pf
we can determine presence or absence of the anomaly at eagkssuming that the conductivity does not change with
location z with a quantitative confidence level unless the sizgequency, both estimates andc, differ from ~;* and~;? by

of the anomaly is too small. the same real constant. We can t&de:= R(c; U« — ¢, U%?)
as an estimate fofR(V) used in the FM. According to
C. Anomaly Detection: Nonlinear Case section II-C, the sign of the contrast depends only on the sign

W foll th ts i tion 1II-B with of wy —ws. This allows us to utilize voltage data at more than
_ We can Tollow the arguments in section 1li-B wi OUttwo frequencies to increase the contrast. For this, we Mke
linearization. Using (12) instead of its linearized version, WES the sum of real parts of several sorted pairs of weighted

obtain frequency-difference voltages.
d-Vul(2) =g - ®.q0=9 Vh.a (36) In every row of M, three values ofM; ;_1, M;;, and
V2 (z) Y (2) M; ;11 are zero. This has a rather drastic effect destroying
= Lo - B Vg (z) - Vug? (x) da the definiteness property &I that the FM relies on. Taking
D Yo Yo =

the matrix-valued absolute valli®| restores this definiteness.

for all vectorsg € CV. Up to multiplicative constants, the Though we have observed the method working well with

quantity |Vug'|| p can be estimated from above and belowhis simple heuristic approach, more elaborate strategies to

by ||vuf]0)||D, For~y = o (real), this follows from [40, Lemma deal with these unreliable entries may further enhance the

2.1] and [40, Lemma 2.5], and the same proof holds f@erformance and should be the subject of further studies.

v = o + iwe (complex). With the same arguments as in We now turn to the dipole function. For special geometries,

section 1I-B, h. 4 must hence be large for all points thasolutions of (19) are known explicitly. For the two-dimensional

are well-separated from the anomdl}; The LSM indicator unit circle, it is given by [33] as

function holds for the nonlinear case too.
Furthermore, (27) must be replaced by

d- Vugli?d(z) =hzq  R(V)hs g (37)

1(z—2x)-d

Pad = o |z — 22’

(40)

ws wi so that®, ; is obtained from (20). For more complicated ge-
= / R (Lw(f) — Lw(fc)) Vit d(x) - Vug? d(x) dx. ometries,® 4 can be calculated by solving the homogeneous
D To To - v forward problems for every pair of adjacent currents and using
Under appropriate assumptions on the contrast, the right hahd first equality in (21).
side of (37) is bounded from above and below up to multiplica- In the idealized case of complete boundary measurements
tive constants b)A\VuEz)d(a:)HQD for the case of continuous using inifinitely many electrodes, an arbitrary dipole direction
boundary measurements [36]. Since the same arguments hbldan be taken. In our practical settind, determines the
for the case of a finite number of electrodes, all the argumendisection in which the localized current flux is orientated.
in section IlI-B can be carried over to the nonlinear case, whiéhepending on the position of the point relative to the elec-
justifies the FM indicator function in the nonlinear case alstrodes, the current flux has a preferred direction. To obtain
From the same bound it also follows that the nullspa@ symmetric indicator, we combine dipoles in all orthogonal
of (V) consists of the vectors with constant entries. Sindgasis directionse;, € R™, by taking the sum of squared
the entries ofd, sum up to zero®, lies orthogonal to this respective indicator functions. We normalize the indicator
nullspace. Hence, by symmetry &f(V), it follows that &, functions with respect to the dipole norm. Best results are
lies in the range oft(V). usually obtained by plotting the indicator functions in the
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logarithmic scale. We plot appears to be more prominent than the banana anomaly. In
. 1 5. 1 (e), the contrast discussed in section II-C depends only on the
Pz M Poer £ F % M| ®-.., permittivity of the anomalies since the saline background has a
D, Py ...+ D, Do, (1) negligible permittivity effect. In (f), all four banana anomalies
as a function of: ¢ O are reconstructed but the indicator function is significantly
Note that we havé implemented|~'®. , without any high in the central area surrounded by them. This effect can
regularization and this works reasonably i/vell for the prac IP—e explained by our physical justification of the FM. For those
: oints surrounded by the four banana anomalies, the current
cally important case of a small number of electrodes. When . L
the number of electrodes gets larger, the malvixbecomes riux can hardly be made !arge without making it large also
ill-conditioned and the calculation diM|~'®, , requires a inside the banana anomalies.

regularization method to prevent an excessive amplification of

log (1 +

measurement noise. VI. DIScUssION
Though the anomalies are visually spotted in the indicator
V. FREQUENCYDIFFERENCEEIT EXPERIMENTS plots shown in the middle columns of Fig. 3, it is not clear how
A. Experimental Setup to fix a threshold value for segmenting the anomaly region

We tested our new anomaly detection algorithm based @M the domain. According to estimates (33) and (34), it
the FM on the same data sets described in [28] The |magiwguld be difficult to fix a threshold when the sizes of the
object was a cylindrical phantom @00 mm diameter and anomalies are very small. In the right columns of Fig. 3, we
100 mm height. We placed 16 equally spaced electrodggow plots of the indicator functions with its scale bar cropped
around the phantom to create a physical model of the twé the lower 15%, which visualize the anomalies rather well
dimensional unit circle with 16 equally spaced point eledd some cases. We have chosen the cropping parameter with
trodes. As described in section 1I-A, current injections ari€ true anomalies’ locations in mind which may be regarded
voltage measurements were carried out at chosen frequend@iveaking crime(changing the cropping parameter setting
of 1, 5, 10, 50, 100, 250, and 500 kHz using a 16-channel t0 improve performance) according to [41]. Since the same
multi-frequency EIT system KHU Mark1 [12], [37], [38]. In cropping works well for different experiments, we do however
order to simulate a realistic complex conductivity distributiofXPect that the necessary threshold can be chosen empirically
of organic tissues, we filled the phantom by 0.5% salif@ practice.
background (B1), by a mixture of carrot pieces with 1% Comparing measured complex conductivity values in Table
saline (B2), and by macerated banana (B3). As anomaliegnd the indicator plots in Fig. 3, we can see that the FM
we used cylindrical pieces of banana (A1) and carrot (A23upplies information about the detectability of an anomaly not
Table | summarizes the measured complex conductivity valu&igout the actual contrast in complex conductivity values. We
of the five materials used in the imaging experiments. Complgi@y take advantage of the shape information from the FM

conductivity values at other frequencies are reported ire©hto improve the image quality using conventional reconstruc-
al. [12]. tion methods. The middle columns of Fig. 4 show standard

linearized reconstructions that we obtained by discretizing the
linearized equation (14), and solving the resulting linear sys-
_ _ _ ) ~ tem using the Tikhonov regularization. In the right columns,
As described in section IV, we combined several pairs gfe ysed the indicator function (41) as a pixelwise weight for
frequencies by adding up respective real parts of the weightgd Tikhonov regularization term. Consequently, the lower the
frequency-difference voltages. Fig. 3 shows the results for thgance of presence of an anomaly is in some region (according
following six configurations: to the FM), the more regularization is being applied in that
(@) a banana anomaly (A1) placed in the background of thegion. For both methods, only a single frequency gaand
mixture of 1% saline and carrot pieces (B2), 50 kHZ, was used and the regularization parameters were
(b) a carrot anomaly (A2) placed in the background @fhosen by hand for one of the examples and then kept the
macerated banana (B3), same for all others. This simple combination strategy improves
(c) two anomalies of carrot and banana (Al and A2) placefe shape of the reconstructed inclusions and lessens boundary
in the background of the mixture of 1% saline and carreitifacts, especially in the case of multiple inclusions.
pieces (B2), The focus of this work is on the justification of the
(d) two anomalies of banana and carrot (A1 and A2) placgglctorization method as an anomaly detection algorithm and
in the background of macerated banana (B3), we did not conduct an accurate error analysis of this simple
(e) two anomalies of carrot and banana (Al and A2) placg@mbination strategy. Nevertheless let us try to give a very
in the 0.5% saline background (B1), rough quantification of the possible improvements in terms
(f) four banana anomalies (A1) placed in the backgrouns} background smoothness and anomaly shape accuracy. The
of the mixture of 1% saline and carrot pieces (B2). plack circles in Fig. 4 show rough estimates of the true inclu-
The middle column of Fig. 3 plots the indicator functionsions that we obtained by manually estimating the inclusions
without thresholding. The anomalies in (a)—(c) are reconadii to be approximately one sixth of that of the phantom
structed relatively well. In (d) and (e), the carrot anomalgind positioning their centers in the middle between local

B. Experimental Results
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TABLE |

MEASURED COMPLEX CONDUCTIVITY VALUES AT1, 5AND 50KHz.

Measured complex conductivity in S/m

saline background (B1) carrot background (B2) banana background (B3) banana anomaly (A1) carrot anomaly (A2)
g we ag we ag we g we ag we
1kHz | 0.130 0 0.208 0.102 0.221 0.109 0.023 0.011 0.035 0.016
5kHz | 0.130 0 0.208 0.103 0.228 0.110 0.031 0.012 0.043 0.017
50 kHz | 0.130 0 0.232 0.123 0.283 0.150 0.100 0.050 0.102 0.052

(@)

(b)

Fig. 3. Measurement setups (left column), reconstructisisguall available weighted frequency differences with full color axis (middle column), and with
color axis cropped to lower 15% (right column).

. . . . TABLE Il
maxima in the reconstructions. Then we normalized the valugSycH esTiMATE OF THE IMPROVEMENTS IN BACKGROUND SMOOTHNESS

to the unit interval and calculated the variance of the values!ip SHAPE ACCURACY OBTAINED BY FM-WEIGHTED REGULARIZATION.
outside the inclusions as a measure of background smoothness,

see table II. In all examples, the background variance in the Background variance Shape error
FM-weighted reconstructions is lowered by at least 20%. To - S(gaonld(?{d FM(')V‘(’)%ggted Sgng;fd FM-Vé/eég/htEd
- a, . . . 0 . (]
estlmate shape accuracy we compared 'Fhe Ieve_:l set_of the ®) 00130 0.0004 55% 7%
medium value0.5 in the reconstructions with the inclusions (©) | 0.0143 0.0113 57.6% 11.4%
shape and counted the relative number of wrongly associated _(d) | 0.0180 0.0127 15.2% 7.4%
; ; wei (e) | 0.0107 0.0048 4.1% 2.1%
pixels, see again table Il. In all examples, the FM-weight 00136 i B —

almost halves this number.

Let us however note that certain effects are not visible
in the rough quantitative estimates in table Il. In example
(f) the reconstructions using the FM-weight look slightlyphysically justify the FM in fdEIT and develop a new anomaly
elongated into the center of the domain, which may be caussgetection method. Numerically implementing the method and
by the above explained difficulties of the FM to distinguisiperforming fdEIT phantom experiments, we could assess its
a point surrounded by anomalies from a point inside thgerformance in a practical setting of fdEIT.
anomalies. More elaborate ways of combining the FM with Without anya priori information or empirical knowledge
linearized strategies will surely lead to further enhancemens sizes of anomalies, the method can indicate only their
and will be the subject of further studies. For an idealizedcations. In this sense, the scope of the FM stays qualitative
theoretical setting, Harrach and Seo proved that it is possilplet quantitative. The more electrodes are used, the better
to enhance linearized strategies by globally convergent shape current flux can be concentrated or localized at points
reconstruction properties [42]. For more numerical results @utside the anomaly). This will help the indicator functions
combining the FM and linearized reconstructions includingt@ visualize the anomaly more clearly assuming that we can
detailed description of the implementation, we refer the readgtcurately measure a small voltage difference between a pair
to [43]. of closely positioned electrodes. When a point is surrounded

by anomalies, one cannot concentrate the current flux at
VIl. CONCLUSION the point without also raising the current flux through the

We have derived a constructive and quantitative physicahomalies. In such a case, the point may wrongly be identified
correlation between a frequency-difference boundary voltage an anomaly.
data set and a conductivity anomaly. This enabled us toThough the interpretation of the data set as a matrix or
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(@)

(b)

Fig. 4. Measurement setups (left column), linearized rettoaons with standard Tikhonov regularization (middle column), and with FM-weighted Tikhonov
regularization(right column).

operator arguably makes the method not easily accessible fra@ N. K. Soni, A. Hartov, C. Kogel, S. P. Poplack, and K. D. Paulsen,

a practical point of view, our numerical implementation and ~Mult-reduency electiica Impedace tomography of the breast: new
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