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Tomography
Bastian Harrach, Jin Keun Seo, and Eung Je Woo,Senior Member, IEEE

Abstract—Time-difference electrical impedance tomography
(tdEIT) requires two data sets measured at two different times.
The difference between them is utilized to produce images of
time-dependent changes in a complex conductivity distribution
inside the human body. Frequency-difference EIT (fdEIT) was
proposed to image frequency-dependent changes of a complex
conductivity distribution. It has potential applications in tumor
and stroke imaging since it can visualize an anomaly without
requiring any time-reference data obtained in the absence of
an anomaly. In this paper, we provide a rigorous analysis for
the detectability of an anomaly based on a constructive and
quantitative physical correlation between a measured fdEIT
data set and an anomaly. From this, we propose a new non-
iterative frequency-difference anomaly detection method called
the factorization method (FM) and elaborate its physical justifi-
cation. To demonstrate its practical applicability, we performed
fdEIT phantom imaging experiments using a multi-frequency
EIT system. Applying the FM to measured frequency-difference
boundary voltage data sets, we could quantitatively evaluate
indicator functions inside the imaging domain, of which values
at each position reveal presence or absence of an anomaly. We
found that the FM successfully localizes anomalies inside an imag-
ing domain with a frequency-dependent complex conductivity
distribution. We propose the new FM as an anomaly detection
algorithm in fdEIT for potential applications in tumor and stroke
imaging.

Index Terms—Electrical impedance tomography (EIT),
anomaly detection, factorization method, complex conductivity,
weighted frequency difference

I. I NTRODUCTION

Electrical impedance tomography (EIT) aims to image a
conductivity distribution inside the human body. As the com-
plex conductivity values of biological tissues and organs are
affected by their physiological and pathological status [1]–[3],
EIT may open up new possibilities in medical diagnosis and
monitoring of vital body functions. We may consider three
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imaging methods in EIT including static, time-difference, and
frequency-difference imaging.

Static EIT aims to image absolute complex conductivity
values inside the human body [4]–[7]. Its image reconstruction
problem suffers from the fundamental ill-posedness combined
with technical difficulties caused by modeling errors in bound-
ary geometry and electrode positions.

Time-difference EIT (tdEIT) visualizes temporal changes
in a complex conductivity distribution by using a difference
in measured data at two different times. The subtraction
diminishes errors and artifacts common to both data and tdEIT
has been successfully applied to clinical settings where a
time-reference data set is available [7]–[12]. For imaging or
detection of tumor or acute stroke [13]–[16], tdEIT is not
feasible since a time-reference data is not available.

Frequency-difference EIT (fdEIT) was proposed to image
frequency-dependent changes of a complex conductivity dis-
tribution [17]–[26]. Most previous studies in fdEIT adopted a
simple subtraction of voltage data at two different frequencies
following the idea of tdEIT. When we assume an anomaly in a
background whose complex conductivity distribution changes
with frequency, this simple subtraction fails to cancel out
common errors and artifacts at both frequencies. Based on this
observation, a new fdEIT method using a weighted voltage
difference has been suggested to diminish effects of common
errors and artifacts [27].

Though weighted fdEIT has been validated by numerical
simulations and phantom experiments [28], it still lacks a
solid mathematical basis since there is no rigorous analysis
on the connection between a complex conductivity perturba-
tion and the weighted frequency-difference voltage data. To
characterize the performance of a fdEIT image reconstruction
algorithm, it is necessary to analyze this nonlinear connection.
In this paper, we derive a constructive and quantitative physical
correlation between weighted frequency-difference data and
an anomaly. From this, we obtain a new and self-contained
physical justification of the so-called factorization method
(FM) [29]–[36], which is a non-iterative anomaly detection
method. We propose a numerical algorithm that provides a
criterion for determining presence or absence of an anomaly at
each location in the imaging domain. The physical justification
of the FM in fdEIT enables us to assess the performance of
the anomaly detection algorithm in a practical environment.
We present experimental results of applying the new FM to
measured data sets from a conductivity phantom using a multi-
frequency EIT system, KHU Mark1 [12], [37], [38].

This is the accepted version of an article that has been published in  
IEEE Transactions on Medical Imaging 29 (11), 1918-1926, 2010 (http://dx.doi.org/10.1109/TMI.2010.2053553) ©IEEE



2

The distinguishability concept has played an important role
to quantify the ability of a measured voltage data set in per-
ceiving a difference between two conductivity images [39]. In
this paper, we present an analysis about the detectability, which
could be a basis for deeper understanding of the nonlinearity
in EIT. We will show that it enables us to achieve better
quantitative results in the fdEIT anomaly detection problem.

In section II, we describe a mathematical model for the
weighted fdEIT. Section III contains the main contribution
of the paper where we derive a constructive and quantitative
physical correlation between a weighted frequency-difference
voltage data set and a conductivity anomaly. This leads to
a new physical justification of the FM and also an anomaly
detection algorithm in a practical setting of fdEIT. In section
IV, we describe how to numerically implement a variant of
the FM for measured fdEIT data sets. Section V explains
fdEIT experiments using a phantom comprising a background
and anomalies whose complex conductivities vary with fre-
quency. We illustrate experimental results by plotting indicator
functions localizing anomalies. Validating the new detection
algorithm with experimental fdEIT data sets, we propose
further fdEIT studies to apply the method in tumor and acute
stroke imaging.

II. W EIGHTED FREQUENCY-DIFFERENCEEIT

A. Problem Definition

Let Ω ⊂ Rn (n = 2 or 3) denote a smooth domain
occupying an electrically conducting object. We denote the
complex conductivity at a positionx ∈ Ω and angular
frequencyω as γω(x) = σω(x) + iωεω(x) whereσω(x) and
εω(x) are conductivity and permittivity, respectively.

Using anN -channel multi-frequency EIT system, we attach
N electrodes to the boundary∂Ω. We assume that the size
of the electrodes is small compared to∂Ω, so that they can
be modeled aspoint electrodesat positionsξj ∈ ∂Ω, j =
1, . . . , N . We inject sinusoidal current with a frequency of
ω/2π and an amplitude ofI between two adjacent electrodes
ξj andξj+1. In this paper, we use the conventionξN+1 = ξ1
andξ0 = ξN . The resulting complex potentialuω

j is governed
by the following partial differential equation:

∇ · (γω(x)∇uω
j (x)) = 0 in Ω, (1)

γω(x)∂νu
ω
j (x)|∂Ω = Iδ(x− ξj)− Iδ(x− ξj+1) (2)

whereδ(x) is the Dirac delta function andν = ν(x) is the
outward unit normal vector on∂Ω.

We assume that the objectΩ includes one or more anomalies
occupying a regionD in a homogeneous background so that

γω(x) = γω
0 + γω

D(x)χD(x) (3)

where γω
0 is a background complex conductivity,γω

D(x) a
complex conductivity jump of the anomalyD, and χD its
characteristic function. We sequentially inject currents be-
tween all pairs of adjacent electrodes and measure the resulting
boundary voltages between adjacent electrode pairs excluding
the two current-carrying electrodes for each injection. We are
provided with the boundary voltage dataUω

j,k = uω
j (ξk) −

ξj

ξj+1
ξk

ξk+1I Uω
j,k

D

Ω

Fig. 1. Sketch of the measurement setup.

uω
j (ξk+1) for j, k = 1, . . . , N and k 6∈ {j − 1, j, j + 1} as

shown in Fig. 1.
The measured boundary voltage data set is expressed in a

data matrix as

U
ω =











Uω
1,1 Uω

1,2 Uω
1,3 . . . Uω

1,N

Uω
2,1 Uω

2,2 Uω
2,3 . . . Uω

2,N
...

...
. . .

...
Uω
N,1 Uω

N,2 Uω
N,3 . . . Uω

N,N











(4)

where we fill the three missing entries ofUj,j−1, Uj,j and
Uj,j+1 by zero in each row,j = 1, . . . , N . We can view the
matrix U

ω as a current-to-voltage or Neumann-to-Dirichlet
(NtD) map. The problem of this paper is to identify the
anomalyD from two data setsUω1 and U

ω2 measured at
two different angular frequenciesω1 andω2.

B. Weighted Frequency-difference Data

Scaling the complex conductivityγω(x) 7→ cγω(x) by a
complex constantc ∈ C results in a data matrix scaled byc−1,
i.e., Uω 7→ c−1

U
ω . This means thatγω

0 U
ω is the data that

one would measure from a complex conductivity distribution
of 1 + (γω

0 )
−1γω

D(x)χD(x).
We set a weighted frequency-difference data matrixV as

V := γω1

0 U
ω1 − γω2

0 U
ω2 . (5)

The first and second terms in the right hand side of (5)
correspond to the following complex conductivity distributions

1+(γω1

0 )−1γω1

D (x)χD(x) and1+(γω2

0 )−1γω2

D (x)χD(x), (6)

respectively. We note that the two complex conductivity dis-
tributions in (6) differ only on the anomalyD, that is, their
complex conductivity distributions in the backgroundΩ \ D
are identical. This indicates that the weighted difference in (5)
conveys anomaly information without being affected by the
background. Numerical simulations and phantom experiments
in [27], [28] provide comparative results between the simple
and weighted differences.

We now derive a first analytic relation betweenV and the
anomalyD. The (j, k)th entry ofV is

Vj,k = vj(ξk)− vj(ξk+1) for j, k = 1, . . . , N, (7)

where vj(x) := γω1

0 uω1

j (x) − γω2

0 uω2

j (x) is the weighted
frequency difference of the solutionsuω1

j (x) and uω2

j (x) of
(1), (2) with ω = ω1 andω2, respectively.
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From (1) and (3), we obtain

∇ · (γω1(x)∇vj(x)) (8)

= ∇ ·
(

γω1(x)∇
(

γω1

0 uω1

j (x)− γω2

0 uω2

j (x)
))

= ∇ ·
(

γω1(x)∇
(

−γω2

0 uω2

j (x)
))

= ∇ ·
(

(γω2(x)γω1

0 − γω1(x)γω2

0 )∇uω2

j (x)
)

= ∇ ·
(

(γω1

0 γω2

D (x) − γω2

0 γω1

D (x))χD(x)∇uω2

j (x)
)

,

in Ω. Equation (2) yields the insulated boundary condition

∂νvj |∂Ω = 0 on ∂Ω. (9)

The conductivity jump in the anomalyD has become a source
term for the weighted frequency-difference potentialvj in (8).

From (2), Green’s identity, and (1), we obtain

Vj,k = vj(ξk)− vj(ξk+1) (10)

=
1

I

∫

∂Ω

vj(s)γ
ω1

0 ∂νu
ω1

k (s) ds

=
1

I

∫

Ω

γω1(x)∇vj(x) · ∇uω1

k (x) dx.

We apply Green’s identity again and use (8) and (9) to deduce

Vj,k =
1

I

∫

D

(γω1

0 γω2

D (x)−γω2

0 γω1

D (x))∇uω1

j (x)·∇uω2

k (x) dx.

(11)
This means that we may interpretVj,k as a response of the
anomalyD to the potentialuω1

j resulting from a current atω1

between thejth and(j+1)th electrodes and the potentialuω2

k

resulting from a current atω2 between thekth and(k + 1)th
electrodes.

By superposition, it follows that for any two vectorsg, h ∈CN ,

g ·Vh =

N
∑

j,k=1

gjVj,khk (12)

=
1

I

∫

D

(γω1

0 γω2

D (x)− γω2

0 γω1

D (x))∇uω1

g (x) · ∇uω2

h (x) dx

whereuω1

g =
∑N

j=1 gju
ω1

j is a potential resulting from the
sum of currents of the strengthgj between thejth and(j +
1)th electrodes anduω2

h is defined similarly. In section III, we
will apply this analytic relation to determine points inside the
anomalyD.

Assuming thatγω1

D (x) andγω2

D (x) are small, we get

∇u
ωj

k (x) ≈
1

γ
ωj

0

∇u
(0)
k (x) (13)

whereu
(0)
k is the potential inΩ with γ = 1 subject to an

injection current ofI between thekth and(k+1)th electrodes.
Since the same holds foruω2

j ,

Vj,k ≈
1

I

∫

D

(

γω2

D (x)

γω2

0

−
γω1

D (x)

γω1

0

)

∇u
(0)
j (x) · ∇u

(0)
k (x) dx

(14)

and an analogous expression holds forg ·Vh.

C. Contrast in Frequency-difference EIT

The contrast in fdEIT essentially depends onγω2

D (x)/γω2

0 −
γω1

D (x)/γω1

0 in (14). Note that the same term appears in (8),
(11), and (12) up to multiplicative constants. For general
biological tissues showing complicated frequency dependent
characteristics, we cannot simplify this term.

To obtain a useful interpretation, we consider a simplifying
assumption that bothσ and ε do not change with frequency
and bothγω1

D andγω2

D are constant. Then,

γωj(x) = σ(x) + iωjε(x) for j = 1, 2, (15)

σ(x) = σ0 + σDχD(x), (16)

ε(x) = ε0 + εDχD(x), (17)

and
γω2

D (x)

γω2

0

−
γω1

D (x)

γω1

0

=
i

γω1

0 γω2

0

(ω2 −ω1)(εDσ0 − σDε0). (18)

The contrast increases with the frequency gapω2 − ω1 and
fdEIT is capable of imaging a purely dielectric anomaly (σD =
0 6= εD) as well as a purely conducting anomaly (σD 6= 0 =
εD). Irrespective of frequency, the factorεDσ0−σDε0 may be
zero when jumps inσ andε are exactly same. In such a rare
case, the weighted frequency-difference data in (5) is zero, and
the anomaly is invisible from the data.

III. A NOMALY DETECTION

We now derive a constructive and quantitative physical
correlation between the weighted frequency-difference data
V and the anomalyD. Our arguments stem from a non-
iterative anomaly detection method called the factorization
method (FM) and its variant called the linear sampling method
(LSM). Mathematically rigorous treatments of these methods
are available in [29]–[36]. In the mathematical literature, they
are analyzed for the idealized case of continuous boundary
measurements. Their rigorous mathematical descriptions are
beyond the scope of this paper (see e.g. [36] for the case of
fdEIT).

In this section, we provide a self-contained analysis and
description of the FM and LSM bearing their practical appli-
cations in mind. We will explain a new physical justification
of these methods for the anomaly detection using fdEIT. We
start by introducing a main tool to correlate an anomaly with
boundary data. We will derive the correlation for the linearized
case first and then for the nonlinear case.

A. Electric Dipole Source

Consider an electric potentialϕz,d in a homogeneous do-
main Ω subject to a dipole source at a pointz ∈ Ω with a
directiond. It satisfies

∇2ϕz,d(x) = d · ∇δ(x− z), x ∈ Ω (19)

with the insulated boundary condition∂νϕz,d(x)|∂Ω = 0 on
∂Ω. For the setup in section II, such a dipole source would
give rise to the following voltage measurements

Φz,d =







ϕz,d(ξ1)− ϕz,d(ξ2)
...

ϕz,d(ξN )− ϕz,d(ξ1)






∈ RN . (20)
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By the same arguments as in the derivation of (11), thekth
component ofΦz,d is the same asd · ∇u

(0)
k (z) whereu(0)

k (x)
is the potential inΩ with γ = 1 subject to an injection current
between thekth and(k + 1)th electrodes.

B. Anomaly Detection: Linearized Case

We derive a physical correlation between the dataV and
the anomalyD under the assumption thatγω1

D (x) andγω2

D (x)
are small so that the linearized equation (14) holds. Without
loss of generality, we assume thatI = 1. We denote byV−1

the pseudo-inverse ofV and assume thathz,d = V
−1Φz,d is

a current pattern for which the voltage measurements agree
with those of the dipole, i.e.,Vhz,d = Φz,d. Note that such a
current pattern will only exist ifΦz,d lies in the range ofV.
We will later replaceV by its real part and then this property
can be guaranteed, cf. our remark at the end of this section.

By using superposition and (14), we obtain

d · ∇u(0)
g (z) = g · Φz,d = g ·Vhz,d (21)

≈

∫

D

(

γω2

D (x)

γω2

0

−
γω1

D (x)

γω1

0

)

∇u(0)
g (x) · ∇u

(0)
hz,d

(x) dx

for all vectorsg ∈ CN . It follows from the Schwartz inequality
that
∣

∣

∣
d · ∇u(0)

g (z)
∣

∣

∣
(22)

≤

√

∫

D

∣

∣

∣

∣

γω2

D

γω2

0

−
γω1

D

γω1

0

∣

∣

∣

∣

2

|∇u
(0)
hz,d

|2dx

√

∫

D

|∇u
(0)
g |2dx.

Since (22) holds for allg ∈ CN , we have

max
g∈CN

|d · ∇u
(0)
g (z)|

√

∫

D
|∇u

(0)
g (x)|2dx

(23)

≤

√

∫

D

∣

∣

∣

∣

γω2

D

γω2

0

−
γω1

D

γω1

0

∣

∣

∣

∣

2 ∣
∣

∣
∇u

(0)
hz,d

∣

∣

∣

2

dx.

We call a pointz 6∈ D well-separatedfrom D if there is a
current patterng for which the ratio

|d · ∇u
(0)
g (z)|

√

∫

D |∇u
(0)
g (x)|2dx

(24)

is very large for some directiond, i.e., if the current flux
resulting fromg is very small inD but very large atz in some
direction (see figure 2). Note that this depends not only on the
distance betweenz andD but also on their relative locations.
Since the right hand side of (23) depends continuously onhz,d,
‖hz,d‖ = ‖V−1Φz,d‖ is large for allz that arewell-separated
from D. A plot of ‖V−1Φz,d‖ is likely to reveal the anomaly
and this is the discrete version of the LSM.

These arguments explain why‖hz,d‖ is large whenz is
well-separated fromD, but they do not explain why it should
be small insideD. To gain a better indicator for presence or
absence of the anomaly, one has to use additional definiteness
properties. We replaceV by a matrix<(V) containing only
real parts of the entries ofV and lethz,d = <(V)−1Φz,d.

D

z

Fig. 2. Large current flows through a pointz that is well separated from the
almost current-free anomalyD.

Suppose that there are two positive constantsc∗ and c∗ such
that

c∗ ≤ <

(

γω2

D (x)

γω2

0

−
γω1

D (x)

γω1

0

)

≤ c∗, x ∈ D. (25)

From (23), we have

1

c∗
max
g∈RN

|d · ∇u
(0)
g (z)|

‖∇u
(0)
g ‖D

≤ ‖∇u
(0)
hz,d

‖D. (26)

Hence,‖∇u
(0)
hz,d

‖D must be large for a pointz that is well-
separated fromD.

We now consider the case whenz ∈ D. From (14) and
superposition, we obtain

d · ∇u
(0)
hz,d

(z) = hz,d · <(V)hz,d (27)

≈

∫

D

<

(

γω2

D (x)

γω2

0

−
γω1

D (x)

γω1

0

)

|∇u
(0)
hz,d

(x)|2 dx.

The consequences of (27) are twofold. The first is

c∗‖∇u
(0)
hz,d

‖2
D ≤ d · ∇u

(0)
hz,d

(z). (28)

If z ∈ D and the distance betweenz and ∂D is r, it
follows from the mean value property of the harmonic function
d · ∇ u

(0)
hz,d

(z) that

d · ∇u
(0)
hz,d

(z) ≤
1

cr
‖∇u

(0)
hz,d

‖D (29)

where cr is the square root of the volume of the ball with
radiusr, and so

‖∇u
(0)
hz,d

(x)‖D ≤
1

c∗cr
. (30)

The second consequence is that

‖<(V)−1/2Φz,d‖ = Φz,d · <(V)−1Φz,d = hz,d · <(V)hz,d

(31)
fulfills

c∗‖∇u
(0)
hz,d

(x)‖2
D ≤ hz,d · <(V)hz,d ≤ c∗‖∇u

(0)
hz,d

(x)‖2
D.
(32)

Here,<(V)1/2 denotes the matrix-valued square root of the
positive-semidefinite symmetric real matrix<(V).

By combining the estimates (26), (30), and (32), we have
the following (for all directionsd):

• If z ∈ D and the distance betweenz and∂D is r, then
∣

∣Φz,d · <(V)−1Φz,d

∣

∣ ≤
c∗

(c∗cr)2
. (33)
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• If z /∈ D, then

∣

∣Φz,d · <(V)−1Φz,d

∣

∣ ≥
c∗

(c∗)2

(

max
g∈RN

|d · ∇u
(0)
g (z)|

‖∇u
(0)
g ‖D

)2

.

(34)

For the case where the contrast (25) is negative and bounded
from above by a negative constant, the same arguments hold
true with−<(V)−1 instead of<(V)−1. We can combine both
cases by replacing<(V) with its matrix-valued absolute value
|<(V)|.

The quantity
∣

∣Φz,d · |<(V)|−1Φz,d

∣

∣ (35)

is small inside the anomalyD and large at all pointsz 6∈ D
that are well-separated fromD. Plotting this quantity will
therefore reveal the inclusion and this is the discrete version
of the FM. Note that in the estimates (30) and (32), all the
quantities exceptc∗ andc∗ are computable. If we havea priori
knowledge aboutc∗ and c∗ (anomaly conductivity contrast),
we can determine presence or absence of the anomaly at each
locationz with a quantitative confidence level unless the size
of the anomaly is too small.

C. Anomaly Detection: Nonlinear Case

We can follow the arguments in section III-B without
linearization. Using (12) instead of its linearized version, we
obtain

d · ∇u(0)
g (z) = g · Φz,d = g ·Vhz,d (36)

=

∫

D

(

γω2

D (x)

γω2

0

−
γω1

D (x)

γω1

0

)

∇uω1

g (x) · ∇uω2

hz,d
(x) dx

for all vectorsg ∈ CN . Up to multiplicative constants, the
quantity ‖∇uω1

g ‖D can be estimated from above and below

by ‖∇u
(0)
g ‖D. Forγ = σ (real), this follows from [40, Lemma

2.1] and [40, Lemma 2.5], and the same proof holds for
γ = σ + iωε (complex). With the same arguments as in
section III-B, hz,d must hence be large for all points that
are well-separated from the anomalyD. The LSM indicator
function holds for the nonlinear case too.

Furthermore, (27) must be replaced by

d · ∇u
(0)
hz,d

(z) = hz,d · <(V)hz,d (37)

=

∫

D

<

(

γω2

D (x)

γω2

0

−
γω1

D (x)

γω1

0

)

∇uω1

hz,d
(x) · ∇uω2

hz,d
(x) dx.

Under appropriate assumptions on the contrast, the right hand
side of (37) is bounded from above and below up to multiplica-
tive constants by‖∇u

(0)
hz,d

(x)‖2
D for the case of continuous

boundary measurements [36]. Since the same arguments hold
for the case of a finite number of electrodes, all the arguments
in section III-B can be carried over to the nonlinear case, which
justifies the FM indicator function in the nonlinear case also.

From the same bound it also follows that the nullspace
of <(V) consists of the vectors with constant entries. Since
the entries ofΦz sum up to zero,Φz lies orthogonal to this
nullspace. Hence, by symmetry of<(V), it follows that Φz

lies in the range of<(V).

IV. N UMERICAL IMPLEMENTATION

We assume two measurement matricesU
ω1 and U

ω2 at
two different frequencies as described in section II-A. To
form the weighted frequency-difference data matrixV, we
first estimate the unknown background complex conductivity
from the data. We proceed similar to [27] and note thatU

ωj

is approximately proportional to(γωj

0 )−1. An estimate ofγωj

0

up to a real constant iscj := 1 − αj i whereαj solves the
following quadratic minimization problem:

min ‖αj<(U
ωj )−=(Uωj )‖ . (38)

The minimizer is given by

αj = <(Uωj ) : =(Uωj )/ (<(Uωj ) : <(Uωj )) (39)

where ”:” denotes the double dot matrix inner product. Since
we set the unreliable entries ofUωj

k,k−1, Uωj

k,k, andUωj

k,k+1 in
each row by zero, they have no effect in the calculation ofαj .

Assuming that the conductivityσ does not change with
frequency, both estimatesc1 andc2 differ from γω1

0 andγω2

0 by
the same real constant. We can takeM := <(c1U

ω1−c2U
ω2)

as an estimate for<(V) used in the FM. According to
section II-C, the sign of the contrast depends only on the sign
of ω1−ω2. This allows us to utilize voltage data at more than
two frequencies to increase the contrast. For this, we takeM

as the sum of real parts of several sorted pairs of weighted
frequency-difference voltages.

In every row of M, three values ofMj,j−1, Mj,j , and
Mj,j+1 are zero. This has a rather drastic effect destroying
the definiteness property ofM that the FM relies on. Taking
the matrix-valued absolute value|M| restores this definiteness.
Though we have observed the method working well with
this simple heuristic approach, more elaborate strategies to
deal with these unreliable entries may further enhance the
performance and should be the subject of further studies.

We now turn to the dipole function. For special geometries,
solutions of (19) are known explicitly. For the two-dimensional
unit circle, it is given by [33] as

ϕz,d =
1

π

(z − x) · d

|z − x|2
, (40)

so thatΦz,d is obtained from (20). For more complicated ge-
ometries,Φz,d can be calculated by solving the homogeneous
forward problems for every pair of adjacent currents and using
the first equality in (21).

In the idealized case of complete boundary measurements
using inifinitely many electrodes, an arbitrary dipole direction
d can be taken. In our practical setting,d determines the
direction in which the localized current flux is orientated.
Depending on the position of the point relative to the elec-
trodes, the current flux has a preferred direction. To obtain
a symmetric indicator, we combine dipoles in all orthogonal
basis directionsek ∈ Rn, by taking the sum of squared
respective indicator functions. We normalize the indicator
functions with respect to the dipole norm. Best results are
usually obtained by plotting the indicator functions in the
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logarithmic scale. We plot

log

(

1 +
Φz,e1 · |M|−1Φz,e1 + . . .+Φz,en · |M|−1Φz,en

Φz,e1 · Φz,e1 + . . .+Φz,en · Φz,en

)

(41)
as a function ofz ∈ Ω.

Note that we have implemented|M|−1Φz,d without any
regularization and this works reasonably well for the practi-
cally important case of a small number of electrodes. When
the number of electrodes gets larger, the matrixM becomes
ill-conditioned and the calculation of|M|−1Φz,d requires a
regularization method to prevent an excessive amplification of
measurement noise.

V. FREQUENCY-DIFFERENCEEIT EXPERIMENTS

A. Experimental Setup

We tested our new anomaly detection algorithm based on
the FM on the same data sets described in [28]. The imaging
object was a cylindrical phantom of200 mm diameter and
100 mm height. We placed 16 equally spaced electrodes
around the phantom to create a physical model of the two-
dimensional unit circle with 16 equally spaced point elec-
trodes. As described in section II-A, current injections and
voltage measurements were carried out at chosen frequencies
of 1, 5, 10, 50, 100, 250, and 500 kHz using a 16-channel
multi-frequency EIT system KHU Mark1 [12], [37], [38]. In
order to simulate a realistic complex conductivity distribution
of organic tissues, we filled the phantom by 0.5% saline
background (B1), by a mixture of carrot pieces with 1%
saline (B2), and by macerated banana (B3). As anomalies
we used cylindrical pieces of banana (A1) and carrot (A2).
Table I summarizes the measured complex conductivity values
of the five materials used in the imaging experiments. Complex
conductivity values at other frequencies are reported in Ohet
al. [12].

B. Experimental Results

As described in section IV, we combined several pairs of
frequencies by adding up respective real parts of the weighted
frequency-difference voltages. Fig. 3 shows the results for the
following six configurations:

(a) a banana anomaly (A1) placed in the background of the
mixture of 1% saline and carrot pieces (B2),

(b) a carrot anomaly (A2) placed in the background of
macerated banana (B3),

(c) two anomalies of carrot and banana (A1 and A2) placed
in the background of the mixture of 1% saline and carrot
pieces (B2),

(d) two anomalies of banana and carrot (A1 and A2) placed
in the background of macerated banana (B3),

(e) two anomalies of carrot and banana (A1 and A2) placed
in the 0.5% saline background (B1),

(f) four banana anomalies (A1) placed in the background
of the mixture of 1% saline and carrot pieces (B2).

The middle column of Fig. 3 plots the indicator functions
without thresholding. The anomalies in (a)–(c) are recon-
structed relatively well. In (d) and (e), the carrot anomaly

appears to be more prominent than the banana anomaly. In
(e), the contrast discussed in section II-C depends only on the
permittivity of the anomalies since the saline background has a
negligible permittivity effect. In (f), all four banana anomalies
are reconstructed but the indicator function is significantly
high in the central area surrounded by them. This effect can
be explained by our physical justification of the FM. For those
points surrounded by the four banana anomalies, the current
flux can hardly be made large without making it large also
inside the banana anomalies.

VI. D ISCUSSION

Though the anomalies are visually spotted in the indicator
plots shown in the middle columns of Fig. 3, it is not clear how
to fix a threshold value for segmenting the anomaly region
from the domain. According to estimates (33) and (34), it
would be difficult to fix a threshold when the sizes of the
anomalies are very small. In the right columns of Fig. 3, we
show plots of the indicator functions with its scale bar cropped
to the lower 15%, which visualize the anomalies rather well
in some cases. We have chosen the cropping parameter with
the true anomalies’ locations in mind which may be regarded
as tweaking crime(changing the cropping parameter setting
to improve performance) according to [41]. Since the same
cropping works well for different experiments, we do however
expect that the necessary threshold can be chosen empirically
in practice.

Comparing measured complex conductivity values in Table
I and the indicator plots in Fig. 3, we can see that the FM
supplies information about the detectability of an anomaly not
about the actual contrast in complex conductivity values. We
may take advantage of the shape information from the FM
to improve the image quality using conventional reconstruc-
tion methods. The middle columns of Fig. 4 show standard
linearized reconstructions that we obtained by discretizing the
linearized equation (14), and solving the resulting linear sys-
tem using the Tikhonov regularization. In the right columns,
we used the indicator function (41) as a pixelwise weight for
the Tikhonov regularization term. Consequently, the lower the
chance of presence of an anomaly is in some region (according
to the FM), the more regularization is being applied in that
region. For both methods, only a single frequency pair,5 and
50 kHZ, was used and the regularization parameters were
chosen by hand for one of the examples and then kept the
same for all others. This simple combination strategy improves
the shape of the reconstructed inclusions and lessens boundary
artifacts, especially in the case of multiple inclusions.

The focus of this work is on the justification of the
factorization method as an anomaly detection algorithm and
we did not conduct an accurate error analysis of this simple
combination strategy. Nevertheless let us try to give a very
rough quantification of the possible improvements in terms
of background smoothness and anomaly shape accuracy. The
black circles in Fig. 4 show rough estimates of the true inclu-
sions that we obtained by manually estimating the inclusions
radii to be approximately one sixth of that of the phantom
and positioning their centers in the middle between local
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TABLE I
MEASURED COMPLEX CONDUCTIVITY VALUES AT1, 5 AND 50 KHZ.

Measured complex conductivity in S/m
saline background (B1) carrot background (B2) banana background (B3) banana anomaly (A1) carrot anomaly (A2)
σ ωε σ ωε σ ωε σ ωε σ ωε

1 kHz 0.130 0 0.208 0.102 0.221 0.109 0.023 0.011 0.035 0.016
5 kHz 0.130 0 0.208 0.103 0.228 0.110 0.031 0.012 0.043 0.017
50 kHz 0.130 0 0.232 0.123 0.283 0.150 0.100 0.050 0.102 0.052

(a) (d)

(b) (e)

(c) (f)

Fig. 3. Measurement setups (left column), reconstructions using all available weighted frequency differences with full color axis (middle column), and with
color axis cropped to lower 15% (right column).

maxima in the reconstructions. Then we normalized the values
to the unit interval and calculated the variance of the values
outside the inclusions as a measure of background smoothness,
see table II. In all examples, the background variance in the
FM-weighted reconstructions is lowered by at least 20%. To
estimate shape accuracy we compared the level set of the
medium value0.5 in the reconstructions with the inclusions
shape and counted the relative number of wrongly associated
pixels, see again table II. In all examples, the FM-weight
almost halves this number.

Let us however note that certain effects are not visible
in the rough quantitative estimates in table II. In example
(f) the reconstructions using the FM-weight look slightly
elongated into the center of the domain, which may be caused
by the above explained difficulties of the FM to distinguish
a point surrounded by anomalies from a point inside the
anomalies. More elaborate ways of combining the FM with
linearized strategies will surely lead to further enhancements
and will be the subject of further studies. For an idealized
theoretical setting, Harrach and Seo proved that it is possible
to enhance linearized strategies by globally convergent shape
reconstruction properties [42]. For more numerical results on
combining the FM and linearized reconstructions including a
detailed description of the implementation, we refer the reader
to [43].

VII. C ONCLUSION

We have derived a constructive and quantitative physical
correlation between a frequency-difference boundary voltage
data set and a conductivity anomaly. This enabled us to

TABLE II
ROUGH ESTIMATE OF THE IMPROVEMENTS IN BACKGROUND SMOOTHNESS

AND SHAPE ACCURACY OBTAINED BY FM-WEIGHTED REGULARIZATION.

Background variance Shape error
Standard FM-weighted Standard FM-weighted

(a) 0.0101 0.0078 13.9% 5.3%
(b) 0.0130 0.0094 8.6% 3.7%
(c) 0.0143 0.0113 27.6% 11.4%
(d) 0.0180 0.0127 15.2% 7.4%
(e) 0.0107 0.0048 4.1% 2.1%
(f) 0.0136 0.0106 16.5% 4.3%

physically justify the FM in fdEIT and develop a new anomaly
detection method. Numerically implementing the method and
performing fdEIT phantom experiments, we could assess its
performance in a practical setting of fdEIT.

Without any a priori information or empirical knowledge
on sizes of anomalies, the method can indicate only their
locations. In this sense, the scope of the FM stays qualitative
not quantitative. The more electrodes are used, the better
the current flux can be concentrated or localized at points
outside the anomalyD. This will help the indicator functions
to visualize the anomaly more clearly assuming that we can
accurately measure a small voltage difference between a pair
of closely positioned electrodes. When a point is surrounded
by anomalies, one cannot concentrate the current flux at
the point without also raising the current flux through the
anomalies. In such a case, the point may wrongly be identified
as an anomaly.

Though the interpretation of the data set as a matrix or
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(a) (d)

(b) (e)

(c) (f)

Fig. 4. Measurement setups (left column), linearized reconstructions with standard Tikhonov regularization (middle column), and with FM-weighted Tikhonov
regularization(right column).

operator arguably makes the method not easily accessible from
a practical point of view, our numerical implementation and
experimental results verified that the new method is practically
feasible. The analysis presented in this paper could be a basis
for deeper understanding of the effect of nonlinearity in EIT,
which is often ignored in difference imaging methods. In
future studies, we hope to achieve more quantitative results for
evaluating the detectability of an anomaly in fdEIT. We plan
to undertake comparative studies with other anomaly detection
methods for the experimental validation of the FM in fdEIT.
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