Vorlesung im Sommersemester 2017


Prof. Dr. C.P.Schnorr
Goethe-Universität, Frankfurt am Main

Ort und Zeit der Vorlesung.

  • Freitag 10 -- 12 Uhr, RM 10, Raum 711 (klein)

    Der Vorlesungsbeginn ist Mittwoch, der 19.04.2017.

    Ort und Zeit des Tutorium.


    Ein inoffizielles (!) Skript aus einer vergangenen Veranstaltung:

    Weiteres Material.

    Victor Shoup, Lower Bounds for Discrete Logarithms and Related Problems, Eurocrypt 97, LNCS 1233, pp. 256-266 pp. 256-266.
    Neal Koblitz and Alfred Menezes: Another Look at Generic Groups, Advances in Mathematics of Communications, Vol. 1, 2007, pp. 13-28.
    Ueli M. Maurer, Towards the Equivalence of Breaking the Diffie-Hellman Protocol and Computing Discrete Logarithms, Crypto 94, LNCS 839, 1994, pp.271-281.
    Schnorr : Efficient Signature Generation by Smart Cards, Journal of Cryptology (1991), pp. 161-174.
    Pointcheval und Stern: Security Arguments for Digital Signatures and Blind Signatures, J. Cryptology (2000) 13, pp. 361--396
    Federal Information Sandard(DSS)
    Serge Vaudenay : Hidden Collisions on DSS, CRYPTO"96, LNCS 1109, pp.83-88, 1996.
    Yannick Seurin: On the Exact Security of Schnorr-Type signatures in the Random Oracle Model, eprint.iacr.org/2012/029.
    C.P. Schnorr: Security of Blind Discrete Log Signatures against Interactive Attacks, ICICS 2001. LNCS 2229, ps
    David Wagner: A Generalized Birthday Problem, Crypto 2002. ps
    V. Shoup, J. Cryptology 1999: On the Security of a Practical Identification Scheme pdf
    E. Brickell and K. McCurley: An Interactive Identification Scheme Based on Discrete Logarithms and Factoring, J. Cryptology 1992, pdf
    R.L. Rivest, A.Shamir, and L.Adleman: A Method for Obtai/ning Digital Signatures and Public-Key Cryoptosystems, Com. ACM vol 21(2) pp.1290-128, 1978. pdf
    M.O. Rabin: Digitalized Signatures and Public Key Functions as Intractable as Factorization, MIT/LCS/TR-212, pdf
    A. Fiat and A. Shamir: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. CRYPTO 1986, pdf
    H. Ong and C.P. Schnorr: Fast Signature Generation with a Fiat Shamir -- Like Scheme, EUROCRYPT'90, pdf
    C.P. Schnorr: Security of 2^t -- Root Identification and Signatures, CRYPTO'96, LNCS 1109, pdf
    C.P.Schnorr: Correction to CRYPTO'96 paper, rump session Eurocrypt 1997, pdf
    G. Poupard and J. Stern: Fair Encryption of RSA Keys. Eurocrypt 2000, pdf
    D.Bleichenbacher: Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS#1,LNCS 1462, Crypto'98, pdf
    C. Gentry: The Geometry of Provable Security: Some Proofs of Security in Which Lattices Make a Surprise Appearance, in The LLL Algorithm, Eds, P.O.Nguyen and B. Vallee, Springer Verlag 2010, pdf
    D. Coppersmith: Finding a small root of a univariate modular equation. Eurocrypt 96, pdf
    Alexi, Chor, Goldreich, Schnorr: RSA and Rabin Function: Certain Parts are as Hard as the Whole, SIAM.Journal on Computing, Vol. 17, pp,194-209,1988, pdf
    Folgende Arbeiten sind in den Proceedings, CRYPTO 2001, LNCS 2139:



    Nr. Aufgabenblatt
    1   pdf
    2   pdf
    3   pdf
    4   pdf
    5   pdf
    6   pdf
    7   pdf
    8   pdf
    9   pdf
    10   pdf
    11   pdf