
Factoring Integers by CVP Algorithms

Claus Peter Schnorr

Fachbereich Informatik und Mathematik,
Goethe-Universität Frankfurt, PSF 111932,

D-60054 Frankfurt am Main, Germany.
schnorr@cs.uni-frankfurt.de

work in progress 20.07.2016

Abstract. We use pruned enumeration algorithms to find lattice vectors close to a specific target
vector for the prime number lattice L(Bn,c). These algorithms generate triples of pn-smooth inte-
gers u, v, |u − vN | that factorize the integer N . The algorithm New Enum performs the stages of
exhaustive enumeration of close lattice vectors in order of decreasing success rate. For example an
integer N ≈ 1014 can be factored by about 90 prime number relations modulo N for the 90 smallest
primes. So far our randomized algorithm generates 91 such relations and factors N in 6.2 seconds.
It is a challenge to optimize this method towards factorizing integers in average polynomial time.

Keywords. Factoring integers, enumeration of close lattice vectors, the prime number lattice.

1 Introduction and surview

The enumeration algorithm for short / close lattice vectors Enum of [SE94, SH95] locally performs
stages in order of decreasing success rate and finds short / close vectors much faster than previous
SVP and CVP algorithms of Kannan [Ka87] and Fincke, Pohst [FP85] that disregard the
success rate of stages. The New Enum algorithm for SVP / CVP presented in section 3 performs
all stages in order of decreasing success rate, stages with high success rate are done first. This
greatly reduces the number of stages that precede the finding of a shortest / closest lattice vector.

Section 4 summarizes results on time bounds of New Enum for SVP / CVP for a basis
B = [b1, ...,bn] that satisfies GSA (meaning that the local reduction strength of the reduced basis
is ”uniform” for all 2-dimensional basis blocks). Prop. 1 shows that New Enum finds under ”linear
pruning” a shortest lattice vector b that behaves randomly (SA) under the volume heuristics in
polynomial time if rd(L) = o(n−1/4) holds for the relative density rd(L) of L. Theorem 1 shows
that the maximal SVP-time of New Enum ranges between 2O(n) and nO(n) depending on rd(L).
Cor. 3 translates Prop. 1 from SVP to CVP proving pol. time under similar conditions as Prop.1
if ‖L − t‖ = O(λ1) holds for the target vector t. Cor.1 translates Theorem 1 from SVP to CVP
and shows that CVP for L and the target vector t ∈ span(L) is solved in time 2O(n) and linear
space if rd(L) = O(n−1/2), ‖L − t‖ = O(λ1) and a sufficiently short vector b1 of L is given.

Sections 5 and 6 study factoring integers N from CVP solutions for the prime number lattice
L(Bn,c) and a target vector Nc that represents N . These CVP solutions provide pn-smooth triples
of integers u, v, |u − vN |. Given n such triples we can easily factor N . For given N,n, c we can
easily determine δ ∈ R+ that maximizes the number of pn-smooth triples u, v, |u−vN | in the range
1
2
Nδ ≤ v ≤ Nδ, |u− vN | ≤ p3n. We can enumerate these pn-smooth triples by the CVP-algorithm

for the lattice L(Bn,c), target vector Nc and a particular c = c(N,n, δ). Under heuristic assumptions
this CVP-algorithm is polynomial time. We explain as example the factorization of some N ≈ 1014

using the n = 90 smallest primes and clever pruning of New Enum in 6.2 seconds. This algorithm
can be further optimized, in particular for large n,N .

2 Lattices

Let B = [b1, ...,bn] ∈ Rm×n be a basis matrix consisting of n linearly independent column vectors
b1, ...,bn ∈ Rm. They generate the lattice L(B) = {Bx |x ∈ Zn} consisting of all integer linear
combinations of b1, ...,bn, the dimension of L is n. The determinant of L is detL = (det BtB)1/2

for any basis matrix B and the transpose Bt of B. The length of b ∈ Rm is ‖b‖ = (btb)1/2.

Let λ1, . . . , λn denote the successive minima of L and λ1 = λ1(L) is the length of the shortest
nonzero vector of L. The Hermite constant γn is the minimal γ such that λ2

1 ≤ γ(detL)2/n holds
for all lattices of dimension n.

Let B = QR ∈ Rm×n, R = [ri,j]1≤i,j≤n ∈ Rn×n the unique QR-factorization: Q ∈ Rm×n is
isometric (with pairwise orthogonal column vectors of length 1) and R ∈ Rn×n is upper-triangular
with positive diagonal entries ri,i. The QR-factorization provides the Gram-Schmidt coefficients
µj,i = ri,j/ri,i which are rational for integer matrices B. The orthogonal projection b∗i of bi in
span(b1, ...,bi−1)⊥ has length ri,i = ‖b∗i ‖, r1,1 = ‖b1‖, .

LLL-bases. A basis B = QR is LLL-reduced or an LLL-basis for δ ∈ (1
4
, 1] if

1. |ri,j |/ri,i ≤ 1
2

for all j > i, 2. δr2i,i ≤ r2i,i+1 + r2i+1,i+1 for i = 1, ..., n− 1.

Obviously, LLL-bases satisfy r2i,i ≤ α r2i+1,i+1 for α := 1/(δ− 1
4
). [LLL82] introduced LLL-bases

focusing on δ = 3/4 and α = 2. A famous result of [LLL82] shows that LLL-bases for δ < 1 can be
computed in polynomial time and that they nicely approximate the successive minima :

3. α−i+1 ≤ ‖bi‖2λ−2
i ≤ α

n−1 for i = 1, ..., n, 4. ‖b1‖2 ≤ α
n−1
2 (detL)2/n.

A basis B = QR ∈ Rm×n is an HKZ-basis (Hermite, Korkine, Zolotareff) if |ri,j |/ri,i ≤ 1
2

for all j > i, and if each diagonal entry ri,i of R = [ri,j] ∈ Rn×n is minimal under all transforms
of B to BT, T ∈ GLn(Z) that preserve b1, ...,bi−1.

A basis B = QR ∈ Rm×n. R = [ri,j] is a BKZ-basis for block size k, i.e., a BKZ-k basis if the
matrices [ri,j]h≤i,j<h+k ∈ Rk×k form HKZ-bases for h = 1, ..., n− k + 1, see [SE94].

A famous problem is the shortest vector problem (SVP): Given a basis of L find a shortest
nonzero vector of L, i.e., a vector of length λ1.

Closest vector problem (CVP): Given a basis of L and a target t ∈ span(L) find a closest vector
b′ ∈ L such that ‖t− b′‖ = ‖t− L‖ =def min{ ‖t− b‖ | b ∈ L}.

The efficiency of our algorithms depends on the lattice invariant rd(L) := λ1γ
−1/2
n (detL)−1/n

which we call the relative density of L. Note that rd(L) = λ1(L)/maxλ1(L′) holds for the maximum
of λ1(L′) over all lattices L′ of dimL = dimL′ and detL = detL′.

Clearly 0 < rd(L) ≤ 1 holds for all L, and rd(L) = 1 if and only if L has maximal density.
Lattices of maximal density and γn are known for n = 1, ..., 8 and n = 24.

3 A novel enumeration of short lattice vectors

We first outline the novel SVP-algorithm based on the success rate of stages. New Enum improves
the algorithm Enum of [SE94, SH95]. We recall Enum and present New Enum as a modification
that essentially performs all stages of Enum in decreasing order of success rates. Previous SVP-
algorithms solve SVP by a full exhaustive search, disregard the success rate of stages, and prove to
have found a shortest nonzero lattice vector. Our novel SVP-algorithm New Enum finds a shortest
lattice vector b rather fast by performing the stages in order of decreasing success rate.

Let B = [b1, ...,bn] = QR ∈ Zm×n, R = [ri,j]1≤i,j≤n ∈ Rn×n be the given basis of L = L(B).
Let πt : span(b1, ...,bn)→ span(b1, ...,bt−1)⊥ = span(b∗t , ...,b

∗
n) for t = 1, ..., n denote the orthog-

onal projections and let Lt = L(b1, ...,bt−1).

The success rate of stages. The vector b =
∑n
i=t uibi ∈ L and A ≥ λ2

1 are given at stage (ut, ..., un)
of ENUM [SH95]. That stage calls the substages (ut−1, ..., un) such that ‖πt−1(

∑n
i=t−1 uibi)‖

2 ≤ A.

Note that ‖
∑n
i=1 uibi‖

2 = ‖ζt +
∑t−1
i=1 uibi‖

2 + ‖πt(b)‖2, where ζt := b − πt(b) ∈
spanLt is b’s orthogonal projection in spanLt. Stage (ut, ..., un) and its substages exhaustively
enumerate the intersection Bt−1(ζt, ρt) ∩ Lt for the sphere Bt−1(ζt, ρt) ⊂ spanLt with radius ρt :=
(A− ‖πt(b)‖2)1/2 and center ζt.

The Gaussian volume heuristics estimates |Bt−1(ζt, ρt) ∩ Lt| for t = 1, ..., n to

βt =def volBt−1(ζt, ρt) / detLt.

Here volBt−1(ζt, ρt) = Vt−1ρ
t−1
t , Vt−1 = π

t−1
2 /(t−1

2
)! ≈ (2eπ

t−1
)
t−1
2 /
√
π(t− 1) is the volume of the

unit sphere of dimension t− 1 and detLt = r1,1 · · · rt−1,t−1. If ζt mod Lt is uniformly distributed

2

the expected size of this intersection satisfies Eζt [#
(
|Bt−1(ζt, ρt) ∩ Lt

)
] = βt. This holds because

1/ detLt is the number of lattice points of Lt per volume in spanLt.
The success rate βt has been used in [SH95] to speed up Enum by cutting stages of very small

success rate. New Enum proceeds differently, it first performs all stages with βt ≥ 2−st and collects
during this process the stages with βt < 2−st in the list L. Thereafter New Enum performs the
stages of L with βt ≥ 2−s−1t. The test βt ≥ 2−st gives priority to stages of small t, stages of large t
require a higher success rate. The initial value s = 10 guarantes for n ≤ 100 that 2−s/n > 0.097 and
can be increased for larger n. The analysis in section 4 is independent of the factor t in βt < 2−st.

We will use that A := n
4

(det BtB)1/n > λ2
1 holds for n ≥ 10 since γn <

n
4

for n ≥ 10.
Optimal value of A. If λ1 is known it is best to set the input A to A := λ2

1.

Outline of New Enum

INPUT BKZ-basis B = QR ∈ Zm×n, R = [ri,j] ∈ Rn×n for block size 32,
OUTPUT a sequence of b ∈ L(B) of decreasing length terminating with ‖b‖ = λ1.
1. s := 10, L := ∅, A := n

4
(det BtB)1/n (we call s the level)

2. Perform via algorithm Enum of [SE94, SH95], all stages with βt ≥ 2−st:
Upon entry of stage (ut, ..., un) compute βt. If βt < 2−st store information
about (ut, ..., un) in the list L of delayed stages. Otherwise perform stage
(ut, ..., un) on level s, and as soon as some b ∈ L − 0 of length ‖b‖2 ≤ A has
been found, give out b and set A := ‖b‖2 − 1.

3. s := s+ 1, IF L 6= ∅ THEN GO TO 2 (to perform all stages (ut, ..., un) of L

with βt ≥ 2−st.) ELSE terminate.

Running in linear space. If instead of storing the list L we restart New Enum in step 3 on the level
s+ 1 then New Enum runs in linear space and its running time increases at most by a factor n.

Practical optimization. New Enum computes R, βt, Vt, ρt, ct in floating point and b, ‖b‖2 in exact
arithmetic. The final output b has length ‖b‖ = λ1, but this is only known when the more expensive
final search does not find a vector shorter than the final b.

Reason of efficiency. For short vectors b =
∑n
i=1 uibi ∈ L the stages (ut, ..., un) have large success

rate βt. If b is short then so are the projections πt(b). (On average ‖πt(b)‖2 ≈ n−t+1
n
‖b‖2 holds

for a random b ∈R Bn(0, λ) of length λ.) Therefore ρ2t = A−‖πt(b)‖2 and βt are large. New Enum
tends to output very short lattice vectors b first.

Consider the case A = λ2
1. Prior to finding the shortest lattice vector b′ =

∑n
i=1 u

′
ibi New

Enum essentially performs only stages (ut, ..., un) of success rate βt = Vt−1ρ
t−1
t / detLt where on

average ρ2t = λ2
1 − ‖πt(b′t)‖2 ≈ t−1

n
λ2
1 since on average ‖πt(b′)‖2 ≈ n−t+1

n
λ2
1. While Enum calls

nearly all stages (ut, ..., un) of βt > 0 New Enum only calls about a (n−t+1
n

)
n−t+1

2 fraction of them
prior to finding b′ and delays the rest to be performed later than (u′t, ..., u

′
n).

New Enum is particularly fast for small λ1. The size of its search space is proportional to λn1 ,
and is by Prop. 1 heuristically polynomial if rd(L) = o(n−1/4). Having found b′ New Enum proves
‖b′‖ = λ1 in exponential time by a complete exhaustive enumeration.

Notation. We use the following function ct : Zn−t+1 → R :

ct(ut, ..., un) = ‖πt(
∑n
i=t uibi)‖

2 =
∑n
i=t(

∑n
j=i ujri,j)

2.

Hence ct(ut, ..., un) = (
∑n
i=t uirt,i)

2 + ct+1(ut+1, ..., un).
Given ut+1, ..., un Enum tests for ut the integers closest to −yt := −

∑n
i=t+1 uirt,i/rt,t in order

of increasing distance to −yt adding to the initial ut := −dytc iteratively bνt/2c(−1)νtσt where
σt := sign(ut + yt) ∈ {±1} and νt is the number of iterations starting with νt = 0 :

−dytc, −dytc − σt, −dytc+ σt, −dytc − 2σt, −dytc+ 2σt, · · · ,−dytc+ bνt/2c(−1)νtσt, · · ·
Let sign(0) := 1 and let drc denote a nearest integer to r ∈ R. The iteration does not decrease
|ut + yt| and ct(ut, ..., un), it does not increase ρt and βt. Enum performs the stages (ut, ..., un)
for fixed ut+1, ..., un in order of increasing ct(ut, ..., un) and decreasing success rate βt. The center
ζt = b− πt(b) =

∑n
i=t ui(bi − πt(bi)) ∈ span(Lt) changes continously within New Enum.

3

Algorithm Enum adapted from [SH95]

INPUT BKZ-basis B = QR ∈ Zm×n, R = [ri,j] ∈ Rn×n for block size 20,
OUTPUT b ∈ L(B) such that b 6= 0 has minimal length.

1. FOR i = 1, ..., n DO ci := ui := yi := 0

u1 := 1, t := tmax := 1, c̄1 := c1 := ‖b1‖2. (ct = ct(ut, ..., un) always holds
for the current t, c̄1 is the current minimum of c1)

2. WHILE t ≤ n #perform stage (ut, ..., un):
ct := ct+1 + (ut + yt)

2r2t,t

IF ct < c̄1 and t > 1 THEN [t := t− 1, νt := 1, yt :=
∑tmax
i=t+1 uirt,i/rt,t

ut := −dytc σt := sign(ut − yt)]
ELSE [IF ct < c̄1 and t = 1 THEN c̄1 := c1, b :=

∑n
i=1 uibi, t := t+ 1

tmax := max(t, tmax), IF t = tmax THEN ut := ut + 1, νt := 1
ELSE ut := −dytc+ bνt/2c(−1)νtσt, νt := νt + 1.].

3. output b

New Enum for SVP
INPUT BKZ-basis B = QR ∈ Zm×n, R = [ri,j] ∈ Rn×n for block length 32,

OUTPUT a sequence of b ∈ L(B) such that ‖b‖ decreases to λ1.

1. L := ∅, t := tmax := 1, s := 10, FOR i = 1, ..., n DO ci := ui := yi := 0, νt := u1 := 1,
c1 := r21,1, A := n

4
(det BtB)1/n (ct = ct(ut, ..., un) always holds for the current t)

2. WHILE t ≤ n #perform stage (ut, ..., un):
ct := ct+1 + (ut − yt)2r2t,t,
IF ct ≥ A THEN GO TO 2.1,
ρt := (A− ct)1/2, βt := Vt−1ρ

t−1
t /(r1,1 · · · rt−1,t−1),

IF t = 1 THEN [b :=
∑n
i=1 uibi,

IF ‖b‖2 < A THEN output b, A := ‖b‖2 − 1, GO TO 2.1],
IF βt ≥ 2−st THEN [t := t− 1, yt :=

∑tmax
i=t+1 uirt,i/rt,t, ut := −dytc,

σt := sign(ut − yt), νt := 1, GO TO 2]
ELSE store (ut, ...un, yt, ct, σt, νt) in L.

2.1. t := t+ 1, tmax := max(t, tmax),
IF t = tmax THEN ut := ut + 1, νt := 1, yt := 0

ELSE ut := −dytc+ bνt/2c(−1)νtσt, νt := νt + 1.

3. s := s+ 1, perform all delayed stages (ut, ..., un, yt, ct, σt, νt) of L on level
s and delete them. Delay new stages with βt′ < 2−st′, t′ ≤ t and store
(ut′ , ..., νt′) in L.

4. IF L 6= ∅ THEN GO TO 3 ELSE terminate.

Performing in step 3 a delayed stage (ut, ..., un, yt, ct, σt, νt) means to restart the algorithm in
step 2 with that information. The recursion initiated by this restart does not perform any stages
(ut”, ..., un) with t” > t. These stages have already been performed. Therefore, within step 2.1 the
running t-value t′ must be restricted not to surpass by the t-value at the restart.

Pruned New Enum for CVP. Given a target vector t =
∑n
i=1 τibi ∈ span(L) ⊂ Rm we minimize

‖t − b‖ for b ∈ L(B). [Ba86] solves ‖t − b‖2 ≤ 1
4

∑n
i=1 r

2
i,i in polynomial time for an LLL-basis

B = QR, R = [ri,j].

Adaption of New Enum to CVP. We adapt New Enum to solve ‖t − b‖2 < Ä. Initially we set
Ä := 0.01 + 1

4

∑n
i=1 r

2
i,i so that ‖t − L‖2 < Ä. Having found some b ∈ L such that ‖t − b‖2 < Ä

New Enum gives out b and decreases Ä to ‖t− b‖2.

Optimal value of Ä. If the distance ‖t−L‖ or a close upper bound of it is known then we initially
choose Ä to be that close upper bound. This prunes away many irrelevant stages.

At stage (ut, ..., un) New Enum searches to extend the current b =
∑n
i=t uibi ∈ L to some

b′ =
∑n
i=1 uibi ∈ L such that ‖t− b′‖2 < Ä. The expected number of such b′ is for random t:

β̈t = Vt−1ρ̈
t−1
t /detL(b1, ...,bt−1) for ρ̈t := (Ä− ‖πt(t− b)‖2)1/2.

4

Previously, stage (ut+1, ..., un) determines ut to yield the next integer minimum of

ct(τt − ut, ..., τn − un) := ‖πt(t− b)‖2

= (
∑n
i=t(τi − ui)rt,i)

2 + ct+1(τt+1 − ut+1, ..., τn − un).

Given ut+1, ..., un, ‖πt(t− b)‖2 is minimal for ut = d−τt −
∑n
i=t+1(τi − ui)rt,i/rt,tc.

New Enum solves CVP for
(
L, t
)

by solving CVP for
(
πt(L), πt(t)

)
for t = n, ..., 1.

New Enum for CVP
INPUT BKZ-basis B = QR ∈ Zm×n for block size 32, R = [ri,j] ∈ Rn×n,

t =
∑n
i=1 τibi ∈ span(L), τ1, ..., τn ∈ Qn, Ä ∈ Q such that ‖t−L(B)‖2 < Ä.

OUTPUT A sequence of b =
∑n
i=1 uibi ∈ L(B) such that ‖t−b‖ decreases to ‖t−L‖.

1. s := 10, t := n, L := ∅, yn := τn, un := dync, c̈n+1 := 0, (We call s the level)
(c̈t = ct(τt − ut, ..., τn − un) always holds for the current t, ut, ..., un)

2. WHILE t ≤ n #perform stage (ut, ..., un):
[[c̈t := c̈t+1 + (ut − yt)2r2t,t,
IF c̈t ≥ Ä THEN GO TO 2.1,
ρ̈t := (Ä− c̈t)1/2, β̈t := Vt−1ρ̈

t−1
t /(r1,1 · · · rt−1,t−1),

IF t = 1 THEN [output b :=
∑n
i=1 uibi, Ä := ‖t− b‖2, GO TO 2.1]

IF β̈t ≥ 2−st THEN [t := t− 1, yt := τt +
∑n
i=t+1(τi − ui)rt,i/rt,t,

ut := dytc, σt := sign(ut − yt), νt := 1, GO TO 2]
ELSE store (ut, ..., un, yt, c̈t, σt, νt) in L,

2.1. t := t+ 1, ut := dytc+ bνt/2cσt, νt := νt + 1, σt := −σt]]
3. s := s+ 1, perform all delayed stages (ut, ..., un, yt, c̈t, σt, νt) of L on level s

and delete them from L. Delay all new stages with β̈t′ < 2−st′, t′ ≤ t and store
(ut′ , ..., un, yt′ , c̈t′ , σt′ , νt′) in L.

4. IF L 6= ∅ THEN GO TO 3 ELSE terminate.

4 Performance of pruned New Enum for SVP and CVP

Proposition 1 bounds under linear pruning the time to solve ||b′|| = λ1 with b′ ∈ L(B). Finding
an unproved shortest vector b′ is easier than proving ‖b′‖ = λ1. New Enum finds an unproved
shortest lattice vector b′ in polynomial time under the following conditions and assumptions:

• the given lattice basis B = [b1, ...,bn] and the relative density rd(L) of L(B) satisfy

rd(L) ≤
(√

e π
2n

λ1
‖b1‖

) 1
2 , i.e., both b1 and rd(L) are sufficiently small.

SA: There is vector b ∈ L(B) such that ‖πt(b′)‖2 . n−t+1
n

λ2
1 for t = 1, . . . , n.

(SA assumes a vector b′ ∈ L(B) that satisfies the linear pruning upper bound for SVP. Later we
will use a similar assumption CA for CVP. GSA means that the r2i,i form a geometric series.)

GSA: The basis B = QR = Q[ri,j] satisfies r2i,i/r
2
i−1,i−1 = q for i = 2, ..., n for some q > 0

• the vol. heur. is close: Mρ
t := #Bn−t+1(0, ρt) ∩ πt(L) ≈ Vn−t+1ρ

n−t+1
t

detπt(L) for ρ2t = n−t+1
n

λ2
1.

Remarks. 1. If GSA holds with q ≥ 1 the basis B satisfies ‖bi‖ ≤ 1
2

√
i+ 3λi for all i and

‖b1‖ = λ1. Therefore, q < 1 unless ‖b1‖ = λ1. GSA means that the reduction of the basis is
”locally uniform”. It is easier to work with the idealized property that all ri,i/ri−1,i−1 are equal. In
practice ri,i/ri−1,i−1 slightly increases on the average with i. [BL05] studies ”nearly equality”. B.
Lange [La13] shows that GSA can be replaced by the weaker property that the reduction potential
of B is sufficiently small. GSA has been used in [S03, NS06, GN08, S07, N10] and in the security
analysis of NTRU in [H07, HHHW09].

2. The assumption SA is supported by a fact proven in the full paper of [GNR10]:

Pr[‖πt(b′)‖2 ≤ n−t+1
n

λ2
1 for t = 1, ..., n] = 1

n

for random b′ ∈R span(L) with ||b′|| = λ1. We call pruning to stages (ut, ..., un) satisfying

5

||πt(
∑n
i=t bi)||

2 ≤ n−t+1
n

λ2
1 linear pruning for SVP. Lange [La13, Kor. 4.3.2] proves that the

prob. 1/n increases to 1− e−d
2

by increasing n−t+1
n

of linear pruning to n−t+1
n

+ d/
√
n.

3. Failings of the volume heuristics. For the lattice Zn we have for any a = Θ(1) and n ≥ n0(a):

#{x ∈ Zn | ||x‖2 ≤ an} ≥
(
2e
√
n/a

)√an
= nΘ(

√
n),

whereas the volume heuristics estimates this cardinality to O(1) for a ≤ 1
2eπ

, also see Figure 1
of [MO90]. [GN08] reports that extensive experiments on high density random lattices show only
negligible errors of the volume heuristics.

4. A trade-off between ‖b1‖/λ1 and rd(L) under GSA. B. Lange observed that

‖b1‖/λ1 = ‖b1‖/(rd(L)
√
γn det(L)

1
n) = q

1−n
4 /(rd(L)

√
γn).

Therefore rd(L)
√
γn ‖b1‖/λ1 ≤ 1 implies under GSA that q ≥ 1 and thus ‖b1‖ = λ1. Hence

rd(L) > λ1
||b1||

/
√
γn holds under GSA if ‖b1‖ > λ1. If λ1

‖b1‖
/
√
γn ≤ rd(L) ≤

(
λ1
‖b1‖

√
e π
2n

) 1
2 then

SVP is solvable in pol. time by Prop. 1. Moreover the time bound of Theorem 1 is at best 2O(n).

All our time bounds must be multiplied by the work load per stage, a modest polynomial factor
covering the steps performed at stage (ut, ..., un) of New Enum before going to a subsequent stage.

Proposition 1. Given a basis B = QR, R ∈ Rn×n satisfying rd(L) ≤
(
λ1
‖b1‖

√
e π
2n

) 1
2 and GSA. If

a shortest lattice vector b′ satisfies SA then Enum and New Enum with linear pruning find such
b′ under the volume heuristics in polynomial time.

Proof. For simplicity we assume that λ1 is known. Pruning all stages (ut, ..., un) that satisfy
||πt(

∑n
i=t uibi)||

2 > n−t+1
n

λ2
1 does not cut off any shortest lattice vector b′ satisfying SA. As Enum

only performs stages (ut, ..., un) with the ”spend” length square ||πt(
∑n
i=t uibi)||

2 ≤ n−t+1
n

λ2
1 =: ρ2t

the volume heuristics bounds the number Mρ
t of performed stages (ut, ..., un) to

Mρ
t := #Bn−t+1(0, ρt) ∩ πt(L) ≤ (

√
n−t+1
n

λ1)n−t+1Vn−t+1/(rt,t · · · rn,n)

. (
√

n−t+1
n

λ1)n−t+1
(

2eπ
n−t+1

)n−t+1
2 /(rt,t · · · rn,n)

≤
(
λ1

√
2eπ
n

)n−t+1
/(rt,t · · · rn,n). (4.1)

We used Stirling’s approximation of (n−t+1
2

)! in approximating Vn−t+1. The volume heuristics can
underestimate #Bn−t+1(0, ρt) ∩ πt(L), however New Enum already finds b′ after enumerating a

very small fraction of Bn−t+1(0, ρt) ∩ πt(L). Obviously ‖b∗i ‖ = r1,1q
i−1
2 holds by GSA and thus

(rt,t · · · rn,n)/rn−t+1
1,1 = q

∑n−1
i=t−1 i/2 = q

n(n−1)−(t−1)(t−2)
4 .

For t = 1 this yields q
n−1
4 = (detL)1/n/r1,1 = λ1/(r1,1

√
γnrd(L)). Combining (4.1) with these

equations and γn <
n
eπ

for n > n0 we get

Mρ
t .

(
λ1
r1,1

√
2eπ
n

)n−t+1(√ n
eπ
rd(L)

r1,1
λ1

)n− (t−1)(t−2)
n−1 .

Evaluating this upper bound for rd(L) ≤
(
λ1
r1,1

√
e π
2n

) 1
2 yields

Mρ
t .

(√
n

2 e π

r1,1
λ1

)−n+t−1(√ n
2 e π

r1,1
λ1

)+n
2
− 1

2
(t−1)(t−2)

n−1 .

This upper bound has for t ≤ n its maximum 1 at t = n. This proves Proposition 1. �

Extension of Prop. 1. to GSAm,q-bases , i.e lattice bases that satisfy for 1 ≤ m ≤ n

r2i,i/r
2
i−1.i−1 =

{
q for i ≤ m
1 for i > m

, r2i,i/r
2
i.1 =

{
qi−1 for i ≤ m
qm−1 for i > m

Proposition 2. Let R ∈ Rn×n be a GSAm,q-basis satisfying rd(L) ≤
(
λ1
ri,i

√
e π
2n

) m
2n having a

shortest lattice vector b′ satisfying SA. Then Enum and New Enum with linear pruning find such
b′ under the volume heuristics in polynomial time.

6

Proof. We concentrate on t ≥ m since Mρ
t has its maximum for t ≥ m. There we have that

(rt,t · · · rn,n)/rn−t+1
1,1 = q(n−t+1)m−1

2

(detL)1/n/r1,1 = q
∑m
i=1

i−1
2
/n+m−1

2
n−m
n = λ1

r1,1
√
γn rd(L)

where
∑m
i=1

i−1
2
/n+ m−1

2
n−m
n

= (m+1)m
4n

− m
2n

+ m−1
2

(1− m
n

) = m−1
2

(1− m
2n

).

This yields for t ≥ m and γn ≤ 2n
eπ

that

Mρ
t ≈

(
λ1
r1,1

√
2eπ
n

)n−t+1
/q(n−t+1)m−1

2

=
(
λ1
r1,1

√
2eπ
n

)n−t+1(λ1
r1,1
√
γn rd(L)

) n−t+1
m/2n−1 ≤

((
λ1
r1,1

√
eπ
2n

)1− m
2n
−1
rd(L)

) n−t+1
1−m/2n

Hence Mρ
t . 1 iff rd(L) ≤

(
λ1
r1,1

√
eπ
2n

) m
2n . �

Prop. 2 extends Prop. 1 to the case that ri,i/ri−1,i−1 decreases uniformly for i ≤ m but the
decrease stops completely for i > m. In practice this occurs naturally as the LLL-algorithm nicely
reduces the initial part of a high-dimensional basis but merely performs size-reduction on the rest
of the basis. Prop. 2 indicates that Prop. 1 also holds if the decrease of ri,i/ri−1,i−1 slowly vanishes
for i = 2, ..., n as ri,i/ri−1,i−1 increases from q to 1. Prop. 2 shows that the polynomial time bound

for SVP in practice even holds if rd(L) ≤
(
λ1
r1,1

√
eπ
2n

) 1
2
−ε

for a small ε.

The γ-unique SVP is to solve SVP for a lattice L of dim. n where all vectors b ∈ L of length
0 < ||b|| ≤ γλ1 are parallel to each other. Minkowski’s second theorem shows for such L with

successive minima λ1, ..., λn that λn1 γ
n−1 < λ1 · · ·λn ≤ γn/2n detL and thus

λ2
1 < γ−2+2/nγn(detL)2/n hence rd(L) < γ−2+2/n.

Prop. 1 indicates that SVP for such L is solvable in pol. time under SA and the vol. heur. if

γ−2+2/n ≤
(

λ1
||b1||

√
eπ
2n

)1/2
,

Ajtai, Dwork [AD97] propose a cryptosystem with security based on n8-unique SVP. Prop.1

indicates that such SVP is solvable in pol. time for n ≤ 4000. In fact n8 ≥
(||b1||

λ1

√
2n
eπ

) 1
4−4/n holds

if ||b1|| ≤ n31λ1 since this implies
(||b1||

λ1

√
n
) 1

4−4/n ≤ n8. Also BKZ-reduction with block size 24

of a basis of dimL = n ≤ 4000 yields in practice in pol. time ||b1||/λ1 ≤ 4
4000
23 < 400031. Regev

[Reg04] has build a cryptosystem with security based on n1.5-unique SVP for L of dim. n. Prop. 1

indicates that such n1.5-unique SVP is in practice solvable in pol. time if
(||b1||

λ1

√
2n
eπ

) 1
4−4/n ≤ n1.5.

The latter holds for n ≤ 570 if ||b||
λ:1
≤ n5.44. In fact BKZ-reduction with block size 24 of a basis

with n ≤ 570 yields ||b1||/λ1 ≤ 4
n−1
23 < n5.44 for n ≤ 570.

Prop. 2 shows for rd(L) ≤ 1 the heuristic SVP time bound
(r1,1
λ1

√
2n
eπ

) m
2n

n−m+1
1−m/2n for all GSAm,q-

bases. This time bound takes its maximum
(r1,1
λ1

√
2n
eπ

)(3−2
√
2)n+o(n)

near m = (2−
√

2)n. Suppose

we can reduce the given basis of L in time no(n) so that ||b1|| = r1,1 ≤ nε
√

eπ
2
λ1. Then Prop. 2

yields the SVP time bound n(ε+1/2)(3−2
√
2)n+o(n). This time bound beats for ε ≤ 1/2 the record

SVP time bound n
n
2e

+o(n) of Hanrot, Stehle [HS07] because 3−2
√

2 ≈ 0.17528 < 0.18397 ≈ 1
2e

.

For ε = o(1) this time bound is at most n
n
4e

+o(n).

Theorem 1. Given a lattice basis B ∈ Zm×nsatisfying GSA and ‖b1‖ ≤
√
eπ nb λ1 for some b ≥ 0,

New Enum solves SVP and proves to have found a solution in time 2O(n)(n
1
2
+brd(L))

n+1+o(1)
4 .

Theorem 1 is proven in [S10]. Recall from remark 4 that n
1
2
+brd(L) ≥ 1 holds under GSA for

‖b1‖ ≤
√
eπ nb λ1 or else ‖b1‖ = λ1. Cor. 1 translates Thm. 1 from SVP to CVP, it shows that

the corresponding CVP-algorithm solves many important CVP-problems in simple exponential
time 2O(n) and linear space.

[HS07] proves the time bound nn/2+o(n) for solving CVP by Kannan’s CVP-algorithm [Ka87].
Minimizing ‖b‖ for b ∈ L− {0} and minimizing ‖t− b‖ for b ∈ L require nearly the same work if
‖t− L‖ ≈ λ1. In fact the proof of Theorem 1 yields:

Corollary 1. [S10] Given a basis B = [b1, ...,bn] satisfying GSA, ‖b1‖ ≤
√
eπ nbλ1 with b ≥ 0

and t ∈ span(L) with ‖L − t‖ ≤ λ1, New Enum solves this CVP in time 2O(n)(n
1
2
+brd(L))

n
4 .

7

Corollary 1 proves under GSA, rd(L) = O(n−
1
2
−b) and ‖L − t‖ ≤ λ1 the CVP time bound

2O(n) even using linear space (by iterating New Enum for s = 1, ..., O(n) without storing delayed
stages). Moreover it proves under GSA and ‖b1‖ = O(λ1) and ‖L− t‖ ≤ λ1 the time bound 2O(n).
However subexponential time remains unprovable due to remark 4 of section 4.

CA translates the assumption SA from SVP to CVP:

CA: ‖πt(t− b̈)‖2 . n−t+1
n
‖t− L‖2 holds for t = 1, ..., n and some b̈ ∈ L closest to t.

CA holds with probability 1/n for random b̈ ∈ span(L) such that ||t − b̈|| = ||t − L|| [GNR10].
Obviously linear pruning extends naturally from SVP to CVP. B. Lange [La13] proves that the
probability 1/n increases towards 1 for the increased bounds ‖πt(t−b̈)‖2 . n−t+1

n
‖t−L‖2(1+1/

√
n)

for t = 1, ..., n.

Corollary 2. [S10] Given a basis B = [b1, ...,bn] ∈ Zm×n of L that satisfies GSA, ‖b1‖ = O(λ1)

and rd(L) ≤
(
λ1
‖b1‖

√
e π
2n

) 1
2 . Let some lattice vector b̈ that is closest to the target vector t satisfy

CA then New Enum finds b̈ for random t in average time nO(1)Et[(‖t− L‖/λ1)n].

Cor. 2 eliminates the volume heuristics for a random target vector t. Prop. 1 translates into

Corollary 3. Let a basis B = [b1, ...,bn] ∈ Zm×n of L be given satisfying GSA, ‖b1‖ = O(λ1)

and rd(L) ≤
(
λ1
‖b1‖

√
e π
2n

) 1
2 . Let some lattice vector b̈ that is closest to the target vector t satisfy

CA and let ‖t−L‖ . λ1 then New Enum with linear pruning for CVP finds b̈ under the volume
heuristics in pol. time.

B. Lange [La13] shows that GSA for B can be replaced by a less rigid condition, namely that
the ”reduction potential”

∏
`i≥1 `i for `i = ‖b∗i ‖/(detL)1/n of the basis B is sufficiently small.

5 Factoring by CVP solutions for the Prime Number Lattice

Let N > 2 be an odd integer that is not a prime power, with all prime factors larger than pn the n-th

smallest prime. A classical method factors N via n+O(1) modular equations
∏n
i=1 p

ei
i = ±

∏n
i=1 p

e′i
i

mod N . We construct such modular equations from CVP solutions for the prime number lattice
L(Bn,c) with basis Bn,c = [b1, . . . ,bn] ∈ R(n+1)×n and target vector Nc ∈ Rn+1 for some c > 0 :

Bn,c =

√

ln p1 0 0

0
. . . 0

0 0
√

ln pn
Nc ln p1 · · · Nc ln pn

, Nc =

0
...
0

Nc lnN

, (5.1)

(
detL(Bn,c)

)2
=
(∏n

i=1 ln pi
)

(1 +N2c∑n
i=1 ln pi),(

detL(Bn,c)
)2/n

= ln pn · (1± o(1)) ·N2c/n

as the prime number theorem implies
∏n
i=1 ln p

1/n
i / ln pn = 1 − o(1) for n → ∞. We use that

o(1)→ 0 for n,N →∞.

Outline of the factoring method. We compute vectors b =
∑n
i=1 eibi ∈ L(Bn,c) close to Nc

such that |u− vN | ≤ pO(1)
n factorizes as |u− vN | =

∏n
i=1 p

e′i
i . This yields a non-trivial relation

u =
∏
ei>0 p

ei
i = ±

∏n
i=1 p

e′i
i mod N . (5.2)

We write n + 1 such relations with p0 = −1 as
∏n
i=0 p

ei,j−e′i,j
i = 1 mod N for j = 1, ..., n + 1.

Any solution t1, ..., tn+1 ∈ {0, 1} of the equations∑n+1
j=1 tj(ei,j − e

′
i,j) = 0 mod 2 for i = 0, ..., n (5.3)

solves X2 = 1 mod N by X =
∏n
i=0 p

1
2

∑n+1
j=1 tj(ei,j−e

′
i,j)

i mod N . In case that X 6= ±1 mod N

8

this yields two non-trivial factors gcd(X ± 1, N) /∈ {1, N} of N .
The linear equations (5.3) can be solved within O(n3) bit operations. We neglect this minor part

of the work load of factoring N . This reduces factoring N to finding about n vectors b ∈ L(Bn,c) for
which |u− vN | factorizes over p1, ..., pn. This factoring method goes back to Morrison & Brillhart
[MB75] and let to the first factoring algorithm in subexponetial time by J. Dixon [D81].

We identify each vector b =
∑n
i=1 eibi ∈ L(Bn,c) with the pair (u, v) of relative prime integers

u =
∏
ei>0 p

ei
i , v =

∏
ei<0 p

−ei
i ∈ N.

Clearly uv is square-free if and only if e1, ..., en ∈ {0,±1}. Let ẑb := Nc ln u
v

, ẑb−Nc := Nc ln u
vN

denote the last coordinates of b and b−Nc. As a factor peii of uv contributes ei ln pi to lnuv and
e2i ln pi to ‖b‖2 we have ‖b‖2 ≥ lnuv + ẑ2b with equality if and only if uv is square-free. Similarly

Fact 1. ‖b−Nc‖2 ≥ lnuv + ẑ2b−Nc holds for all u, v of b ∈ L(Bn,c) with equality iff uv is
square-free.

In practice ‖L(Bn,c)−Nc‖2 is close to the minimum of lnuv + ẑ2b−Nc for square-free uv.

Lemma 1. Let (u, v) ∼ b ∈ L(Bn,c) satisfy 1
2
Nδ ≤ v ≤ Nδ and |u− vN | = o(vN). Then

1. ‖b−Nc‖2 ≥ (2δ + 1) lnN ± o(1) + ẑ2b−Nc 2. |u− vN | = Nδ+1−c|ẑb−Nc |(1± o(1)).

Proof. Clearly |u−vN | = o(vN) and 1
2
Nδ ≤ v ≤ Nδ implies |u−vN

vN
| = o(1) and 1

2
N1+δ(1−o(1)) ≤

u ≤ N1+δ(1 + o(1)). Hence lnuv = (2δ + 1) lnN ± o(1) proving 1 by Fact 1. The upper bound
1 is sharp if uv is square-free. Moreover ln(1 + u−vN

vN
) = u−vN

vN
(1 ± o(1)) = ±o(1) and thus

|ẑb−Nc | = Nc |u−vN|
vN

(1± o(1)) = Nc−1−δ|u− vN |(1± o(1)) which proves 2. �

Lemma 5.3 of [M02] proves that λ2
1 > 2c lnN holds if the prime 2 is excluded from the prime

basis. Lemma 2 extends this proof to include the prime 2 and increases the lower bound by 1−o(1).

Lemma 2. λ2
1 > 2c lnN + 1− 1

2
N−c ±Θ(N−2c) holds for the lattice L(Bn,c) for Nc ≥ 103.

Proof. Let b = Bn,cu 6= 0 be a shortest vector of L(Bn,c), corresponding to (u, v). Let u > v,
otherwise change u into −u. Then ln u

v
minimizes for u ≥ v + 1. Hence

ln u
v
≥ ln(1 + 1/v) > ln(1 + 1/

√
uv) since u ≥ v + 1 and

√
uv > v

> 1√
uv
− 1

2
1
uv

= 1√
uv

(1− 1
2

1√
uv

) since ln(1 + x) =
∑∞
i=1(−1)i+1xi/i for |x| < 1.

Hence λ2
1 ≥ lnuv +N2c ln2(u

v
) > lnuv +N2c 1

uv
(1− 1

2
√
uv

)2 =: f(
√
uv)2 where Nc ln u

v
= ẑb is the

last coordinate of b. We abbreviate h :=
√
uv. The derivative ϑf(h)

ϑh
= h−5[2h4+N2c[−2h2+3h−1]]

is zero for some h with Nc − 0.751 < h < Nc − 0.75 and this h determines the minimal value f(h)
of f . Then the Lemma follows from

f(Nc − ε) = ln(Nc − ε)2 + N2c

(Nc−ε)2 (1− 1
2(Nc−ε))

= 2c lnN + 2 ln(1− ε/Nc) + 1 + 2εNc−ε2
(Nc−ε)2 −

N2c

2(Nc−ε)3

≥ 2c lnN + 1− 1
2
N−c ±Θ(N−2c) for |ε− 0.7505| ≤ 10−3 by an easy proof. �

An integer is called y-smooth, if it has no prime factor larger than y. If pn-smooth u, v exist
such that u = v+ 1, u = O(Nc), uv is square-free then λ2

1 = 2c lnN +O(1). Otherwise λ2
1 increases

by the minimum of ẑ2b ≥ N2c ln2(u
v

) for pn-smooth v < u of order u = O(Nc). Let Ψ(X, y) denote
the number of integers in [1, X] that are y-smooth. Dickman [1930] has shown for any fixed z > 0

limy→∞ Ψ(yz, y)y−z = ρ(z). (5.5)

ρ(z) is known as Dickman’s de Bruijn ρ-function, see [G08] for a recent surview. It is known that

ρ(z) = 1− ln z for 1 ≤ z ≤ 2

ρ(z) =
(e±o(1)
z ln z

)z
= 1/zz+o(z) for z →∞ (5.6)

Hildebrand [H84] extended (5.5) to a wide finite range of y and z. For any fixed ε > 0

Ψ(yz, y)y−z = ρ(z)
(
1 +O

(ln(z+1)
ln y

))
(5.7)

9

holds uniformly for 1 ≤ z ≤ y1/2−ε, y ≥ 2 if and only if the Riemann Hypothesis is true.
Let Φ(N, pn, σ) denote the number of triples (u, v, |u − vN |) ∈ N3 that are pn–smooth and

bounded as v, |u− vN | ≤ pσn. We conclude from (5.7) that

Φ(N, pn, σ) = O(2p2σn ρ
(ln(Npσn)

ln pn

)
ρ2(σ)) (5.8)

uniformly holds for lnN
ln pn

+ σ ≤ p
1/2−ε
n if the pn-smoothness events of u, v, |u − vN | are nearly

statistically independent. We will use (5.8) in a range where lnN
ln pn

+ σ < p0.4n and we will neglect
the O(1)-factor of (5.8).

Proof of (5.8). There are 2p2σn pairs of integers u, v such that 0 < v, |u − vN | ≤ pσn. Clearly

u ≤ Npσn + pσn ≤ pzn holds for z = ln(N+1)
ln pn

+ σ. Then (5.7) for yz = pzn = (N + 1)pσn shows that the

fraction of u that are pn-smooth is ρ(z)
(
1 +O

(ln(z+1)
ln pn

))
if lnN

ln pn
+ σ ≤ p0.4n .

Moreover (5.7) for y = pn, z = σ shows that the fraction of 0 < v ≤ pσn that are pn-smooth

is ρ(σ)
(
1 +O

(ln(σ+1)
ln pn

))
if σ ≤ p1/2−εn . Therefore the statistical independence of the pn-smoothness

events of u, v, |u − vN | implies (5.8) if ln(z + 1) = O(ln pn) holds in both cases. The latter holds
due to lnN

ln pn
+ σ ≤ p0.4n .

Example factoring. Let N = 100000980001501 ≈ 1014 and n = 90, p90 = 463. (5.8 shows that
there are Θ(6.4 · 105) relations (5.2) such that v, |u − vN | ≤ 4633 are pn-smooth. Here we use the
values ρ(8.25) ≈ 1.38 · 10−8 and ρ(3) ≈ 4.86 · 10−2 from [G08, table 1]. M. Charlet has constructed
several hundreds such relations (5.2) for the above N . For this N the following program is particular
efficient for Nc = 1010, c ≈ 5/7 and pruned to stages with success rate β̈t ≥ 2−14. For the first time
this recommends to use c < 1 as well as relatively small prime bases and to use extreme pruning.

A program for finding relations (5.2) efficiently. Initially the given basis Bn,c gets
strongly BKZ-reduced with block size 32 and the target vector Nc is shifted modulo lattice vectors
into the ground mesh of the reduced basis. The initial value Ä, the upper bound on ‖Nc−L(Bn,c)‖2
is set to 1

5
1
4

∑n
i=1 r

2
i,i which is 1

5
the standard upper bound.

LOOP. In each round the vectors of the reduced basis of L(Bn,c) and the shifted Nc are
randomly scaled as follows. For i = 1, ..., n with probabiliy 1/2 all i-th coordinates of the basis
vectors and the shifted target vector are multiplied by 2. (This nearly excludes the ”scaled” primes
pi to appear as factors of uv in relations (5.2) resulting from CVP-solutions.) The scaled basis gets
slightly reduced by BKZ-reduction of block size 20. Then New Enum for CVP is called to search
for lattice vectors that are close to the shifted target vector Nc. New Enum always decreases Ä to
the square distance to Nc of the closest found lattice vector. But whenever a relation (5.2) has been
found New Enum stops further decreasing Ä for this round. Whenever a new closer lattice vector
is found it is checked whether it yields a relation (5.2). The scaling per rround makes sure that the
algorithm produces distinct relations (5.2). This program has been implemented by M. Charlet.

Performance. The program of Charlet found in 2012 in one run of 15 minutes and 350 rounds
136 relations. On average it found a relation every 6.6 seconds. This amounts to a factoring time
of 10 minutes. Here are the first 10 of these example relations, they mostly satisfy |u− vN | ≤ p390.

round u v |u− vN |

6 19 · 292 · 31 · 73 · 109 · 139 · 211 · 359 415 22 · 11 · 37 · 439

6 29 · 37 · 83 · 139 · 191 · 269 · 307 · 443 865 2 · 11 · 239 · 383

12 2 · 3 · 172 · 103 · 263 · 317 · 379 · 443 25 13 · 173

14 2 · 5 · 47 · 83 · 157 · 179 · 307 · 331 · 421 469 19 · 43 · 373

19 72 · 13 · 41 · 43 · 107 · 109 · 113 · 131 · 409 · 461 365571 24 · 5 · 112 · 197 · 433

19 2 · 7 · 13 · 31 · 107 · 127 · 149 · 179 · 383 · 397 · 439 1364927 3 · 5 · 11 · 61 · 337 · 419

21 43 · 131 · 139 · 193 · 307 · 353 · 401 · 439 28829 2 · 32 · 52 · 13 · 41 · 107

10

30 19 · 31 · 53 · 61 · 67 · 131 · 163 · 241 · 313 2055 22 · 59 · 71 · 89

31 132 · 17 · 101 · 137 · 199 · 229 · 277 · 331 1661 26 · 3 · 19 · 233

33 19 · 101 · 107 · 127 · 131 · 179 · 191 · 211 · 379 93398 33 · 13 · 29 · 109 · 167

Note that |u− vN | increases with v proportionally to
√
v, |u− vN | ∼

√
v.

M. Charlet’s program, improved in 2014 by A. Schickedan, found for N = 100000980001501 ≈
1014, n = 90, p90 = 463, c = 1/2 and pruned to stages with β̈t ≥ 2−14t 99 relations (5.2) in 32
seconds. This factors N ≈ 1014 in 32 seconds. However for N ≈ 1020 this program took for n = 150,
c = 1/2 about 34.5 seconds per relation (5.2).and factors N in 86 minutes.

Extending the search of relations (5.2) to large v. This is necessary for factoring N � 1014

because the Φ(N,n, σ) values get to small for σ = 3. Let relN,n,δ denote the set of relations (5.2)
consisting of pn-smooth u, v, |u − vN | such that |u − vN | ≤ p3n and 1

2
Nδ ≤ v ≤ Nδ and let

#N,n,δ = card(relN,n,δ). Using (5.7) we neglect the O(ln z+1
ln y

)-term of (5.7). The number of pn-

smooth v ∈ [1
2
Nδ, Nδ] is Ψ(Nδ, pn) − Ψ(Nδ/2, pn) ≈ Nδ

(
ρ(zv) − 1

2
ρ(z′v)

)
for zv = δ lnN

ln pn
z′v =

zv− ln 2
ln pn

. Similarly the number of pn-smooth u ∈ [1
2
N1+δ, N1+δ] is Ψ(N1+δ, pn)−Ψ(N1+δ/2, pn) ≈

N1+δ
(
ρ(zu) − 1

2
ρ(z′u)

)
for zu = (1+δ) lnN

ln pn
, z′u = zu − ln 2/ ln pn. Hence random v ∈R [1

2
Nδ, Nδ]

is pn-smooth with probability close to 2(ρ(zv) − 1
2
ρ(z′v)), and random u ∈R [1

2
Nδ+1, Nδ+1] is pn-

smooth with probability close to 2(ρ(zu) − 1
2
ρ(z′u)). #N,n,δ is the product of the probabilities of

pn-smoothness for random v, u, |u − vN | with 1
2
Nδ, the number of v ∈ [1

2
Nδ, Nδ] and 2p3n the

number of non zero u− vN ∈ [−p3n, p3n]. We have 3 factors 2 and one factor 1/2. This yields

#N,n,δ ≈ 4Nδp3n ρ(3)
(
ρ(zu)− 1

2
ρ(z′u)

)(
ρ(zv)− 1

2
ρ(z′v)

)
(5.9)

assuming that for random u, v, 1
2
Nδ ≤ v ≤ Nδ and u ∈ [1

2
N1+δ, N1+δ] such that |u− vN | ≤ p3n the

pn-smoothness events for u, v and |u−vN | are nearly statistically independent. Hahn has computed
the ρ(z) values for z = 2, .., 200 via [Sage] and we interpolate these values for arbitrary zu, zv.

For the following statstic we have chosen n, δ for N so that #N,n,δ � n and #N,n,δ is nearly
maximal for the given N,n.

N ≈ 1014 1020 2100 2200 2400 2800

n 90 150 300 1500 8200 42000

pn 463 863 1987 12553 84127 506131

δ 0.75 0.78 0.8 1.15 1.65 2.095

#N,n,δ 1.55 · 105 6.4 · 104 9 · 103 1.46 · 104 5 · 104 8.2n

Our prime base is much smaller than the prime base for the quadratic sieve QS. QS requires for

N ≈ 2400 that pn ≥ e1/2
√
lnNlnlnN ≈ 2 · 108 whereas our p8200 = 84127.

Corollary 4. Let b ∈ L(Bn,c), b ∼ (u, v) ∈ relN,n,δ, uv squarefree and p3n = o(N). Then we have
for c = δ + 1− 3 ln pn

lnN
that ||b−Nc||2 = (2δ + 1) lnN + 1± o(1) .

Proof. Lemma 1 part 1 shows ||b−Nc||2 = (2δ + 1) lnN ± o(1) + ẑ2b−Nc Moreover Lemma
1, part 2 shows that |ẑb−Nc | = Nc−1−δ|u− vN |(1± o(1))

≤ Nc−1−δp3n(1± o(1)) = N0(1± o(1)) = 1± o(1)
for c = δ + 1− 3 ln pn

lnN
which proves the claim. �

Consequences. Cor. 4 shows that we can enumerate the square-free (u, v) ∈ relN,n,δ by applying
the CVP algorithm to an unscaled BKZ-reduced basis of L(Bn,c) and the target vector Nc, setting
c := δ+ 1− 3 ln pn

lnN
, and fixing the upper bound A of ||b−Nc||2 to A := (2δ+ 1) lnN + 1. This way

the enumeration also covers many b ∈ L(Bn,c) of non square-free (u, v) ∈ relN,n,δ− for the δ− < δ.

Theorem 3 proves for pn = (lnN)α, α > 2 that rd(L(Bn,c) = o(n−1/4). Hence Prop. 1 shows
that CVP runs under heuristic assumptions, including the volume heuristics, in polynomial time.
Fixing the initial A increases the running time but preserves the pol. time bound of Prop. 1.

Outline of the CVP-algorithm without scaling. Let B = QR = Bn,cT = [b1, ...,bn] ∈
Z(n+1)×n be a BKZ-basis of L(Bn,c), |det(T)| = 1. For u = (u1, ..., un)t ∈ Zn we denote u′ =

11

(u′1, ..., u
′
n)t = Tu so that b := Bn,cu

′ = Bu ∼ (u, v), with pn-smooth u =
∏
u′i>0 p

u′i
i , v =∏

u′i<0 p
−u′i
i ∈ N. We replace the input Nc by its projection τ(Nc) =

∑n
i=1 τibi ∈ span(L), where

τ : Rn+1 → span (L) satisfies Nc − τ(Nc) ∈ L⊥. Then τ(Nc) = dBn,c1 = dB T−11 holds for
d := lnN/(N−2c +

∑n
i=1 ln pi), 1 := (1, ..., 1)t ∈ Zn.

Starting at t = n the algorithm tries to satisfy (5.10) as t decreases to 1.

||πt(b− τ(Nc)) ||2 ≤ n−t+1
n

(2c− 1) lnN + ẑ2b−τ(Nc) for b = Bu ∼ (u, v) (5.10)

(5.10) clearly holds for t = n+1. If (5.10) holds at t = 1 then ||b−τ(Nc)|| and |u−vN | are so small
that they can provide a relation (5.2). We denote c̈t = ct(τt−ut, ..., τn−un) = ||πt(τ(Nc)−Bu)||2.

Recall that β̈t := Vt−1ρ̈
t−1
t /(r1,1 · · · rt−1,t−1) for ρ̈t := (Ä − c̈t)1/2 where Ä ≥ ||L − τ(Nc)||2. The

success rate β̈t increases as c̈t decreases, The stored stages with small success rate β̈t will be done
after all stages with higher success rate β̈t. They can be cut off if β̈t is extremely small or if to many
stages with higher success rate β̈t have been stored and the algorithm runs out of storage space.

New Enum for CVP of the prime number lattice creating relations (5.2)
INPUT B, R = [ri,j] ∈ Rn×n, Bn,c, c, T, τ1, ..., τn, Ä ∈ Q s.t. ||L−Nc||2 < Ä, smax.
OUTPUT A sequence of b =

∑n
i=1 uibi ∈ L where ‖b−Nc‖ decreases to ||L −Nc||.

1. s := 10, t := n, L := ∅, yn := τn, un := dync, c̈n+1 := 0,
c̈t = ct(τt − ut, ..., τn − un) always holds for the current t, ut, ..., un

u := (0, ..., 0, un)t ∈ Zn, b := B · u, u′ := T · u.
2. WHILE t ≤ n #perform stage (t, ut, ..., un, ..., yt):

[[c̈t := c̈t+1 + (ut − yt)2r2t,t,
IF c̈t ≥ Ä THEN GO TO 2.1 # this cuts the present stage
ρ̈t := (Ä− c̈t)1/2, β̈t := Vt−1ρ̈

t−1
t /(r1,1 · · · rt−1,t−1),

IF t = 1 THEN [output b, Ä := c̈1 = ‖b− τ(Nc)‖2, GO TO 2.1]
IF β̈t < 2−st THEN [store the current stage in L GO TO 2.1]

[t := t− 1, yt := τt +
∑n
i=t+1(τi − ui)rt,i/rt,t, σt := sign(ut − yt)

ut := dytc, νt := 1, u′i := u′i + ti,tui for i = 1, ..., n, GO TO 2.]
2.1. IF t < n THEN t := t+ 1, ut := dytc+ dνt/2eσt, νt := νt + 1, σt := −σt.]]
3. perform and eliminate all undone stages of L on level s; hereby update

Ä, delay all new stages with 2−smaxt′ ≤ β̈t′ < 2−st′, t′ ≤ t and store them in L.
4. IF s < smax THEN s := s+ 1 GO TO 3

For the corresponding SVP- algorithm we initially replace Bn,c by [Nc,Bn, c]. Note that BKZ
reduction and New Enum can easily be iterated by iteratively increasing c.

Improving New Enum by continued fractions. A. Schickedanz has extended the New Enum
algorithm for CVP by continued fractions (CF). At stage (t, ut, ..., un)| with t = 1 take b =∑n
j=1 ujbj ∈ L(Bn,c) and the corresponding (u, v) ∼ b, u =

∏
uj>0 p

uj
j and compute all CF hi

ki
of

|δ| := | u
N
− d u

N
c| with denominators ki . p3n.

The CF-algorithm starts with α1 = 1/|δ| and iterates αi+1 := 1/(αi−bαic) for i ≥ 1 as long as αi >
bαic. Then hi

ki
is given by hi = bαichi−1 +hi−2 and ki = bαicki−1 +ki−2 where (h−1, k−1, h0, k0) =

(1, 0, 0, 1) and h1 = 1 , k1 = bα1c. Hence ki ≥
∏i
j=1bαjc and thus each k1, ..., ki increases with

α1 = 1/|δ|. Each hi
ki

is a best approximation under all rational approximations
h′i
ki

of δ| with

denominators k′i ≤ ki. Lagrange has proved that ||δ| − hi
ki
| ≤ 1

kiki+1
, where equality holds if and

only if |δ| = hi+1

ki+1
. This implies

Lemma 3. |ui − viN | ≤ N/ki+1 holds for ui := uki and vi := d u
N
cki + sign(δ)hi

12

Proof. |ui − viN | = |(u− d uN cN)ki − sign(δ)hiN ||
= |(u

N
− d u

N
c − sign(δ)hi

ki
)Nki| = |(δ − sign(δ)hi

ki
)Nki|

≤ N/ki+1 since ||δ| − hi
ki
| ≤ 1

kiki+1
due to Lagrange’s inequality. �

Note that |ui − viN | yields a relation (5.2) if ki and |ui − viN | are pn-smooth. This way CF
improves the CVP- minimization of ||L(Bn,c)−Nc|| towards smaller values |ui−viN |. CF’s provide
relations (5.2) with extremely large vi that need not be pn-smooth. The number of such relations
with possibly pn-unsmooth vi increases rapidly with the bit length of vi.

For N ≈ 1014 and c = 1.4 his program found 14.000 relations (5.2) in 966 seconds, i.e. it took
0.067 seconds per relation. This yields a factoring time for N ≈ 1014 of 6.8 seconds. These 14.000
relations have been found for one fixed scaling. We present the first 10 of the 14.000 relations. These
example relations for N ≈ 1014 have extremely large v & N2 and thus

||b−Nc||2 ≥ ln(v2N) > 5 lnN holds for b ∼ (u, v).

The first 10 of the 14.000 relations found for N ≈ 1014

via continued fractions for just one scaling

u = 29 · 89 · 101 · 103 · 109 · 127 · 163 · 167 · 179 · 227 · 257 · 337 · 401 · 409 · 431 · 449 · 457 · 4612 · 463
v = 5081698416889144666584296878342775
|u− vN | = 26 · 13 · 157

u = 3 · 52 · 31 · 101 · 109 · 1572 · 1672 · 2292 · 257 · 263 · 347 · 349 · 383 · 389 · 409 · 439 · 449 · 457 · 461 · 463
v = 884490004923637711487480829355666391349
|u− vN | = 2 · 19 · 79 · 113

u = 3 · 5 · 11 · 23 · 372 · 43 · 47 · 73 · 101 · 157 · 163 · 211 · 257 · 263 · 277 · 293 · 313 · 347 · 409 · 4312 · 449 · 463
v = 39337475528468020686337374289751504
|u− vN | = 41 · 53 · 383

u = 3 · 43 · 472 · 732 · 101 · 131 · 157 · 1632 · 167 · 257 · 263 · 2692 · 409 · 431 · 449 · 457 · 461 · 463
v = 39337475528468020686337374289751504
|u− vN | = 13 · 199

u = 32 · 23 · 37 · 43 · 59 · 107 · 157 · 163 · 167 · 179 · 197 · 229 · 257 · 313 · 331 · 379 · 389 · 409 · 431 · 449 · 463
v = 113217349317428292671717081216913
|u− vN | = 2 · 227 · 311 · 461

u = 22 · 52 · 43 · 47 · 67 · 109 · 137 · 163 · 167 · 229 · 257 · 331 · 3892 · 409 · 439 · 449 · 457 · 463
v = 1131979263675500365247847048973
|u− vN | = 83 · 157 · 317

u = 25 · 5192 · 61 · 101 · 103 · 107 · 1572 · 163 · 257 · 281 · 313 · 3312 · 389 · 409 · 449 · 457 · 463
v = 5898454839361247518321213045467
|u− vN | = 7 · 133 · 53

u = 2 · 53 · 7 · 192 · 59 · b792 · 89 · 113 · 137 · 197 · 263 · 313 · 313 · 3892 · 431 · 439 · 449 · 457 · 463
v = 467966793632373069227028762631303
|u− vN | = 11 · 97 · 359
u = 52 · 13 · 192 · 59 · 1012 · 197 · 293 · 313 · 331 · 347 · 389 · 409 · 439 · 449 · 457 · 461 · 463
v = 4482276109673039704152771836
|u− vN | = 32 · 73 · 71 · 307

u = 17 · 192 · 43 · 47 · 73 · 103 · 109 · 113 · 257 · 263 · 281 · 313 · 317 · 3472 · 431 · 449 · 457 · 463
v = 113457285559875139699227627406
|u− vN | = 3 · 52 · 132 · 23 · 89 · 199

The CVP - algorithm has been used for c = 1.4. Large c increase the distance ||L(Bn,c)−Nc||
and also increase v of b ∼ (u, v) because ||L(Bn,c) − Nc||2 ≈ 2 ln(v2N). In fact CF extremely
decreases ẑb−Nc . Note that |u−vN | no more increases with v, the CF stopped this former increase.
Interestingly the CVP-algorithm only found 78 relations at t = 1 before the CF-initiations.

13

A. Schickedanz uses the following hardware and software.
Hardware: Prozessor AMD Phenom II X4 965 (3.41 GHz), storage: : 16 GB
Software operating system Windows 7 (64 Bit Version), Compiler: GCC 5.2.0 (Mingw-w64 Toolchain)
NTL: 9.6.2 (-02 -m64) Compiler Flags: -std=c++11 -O3 -m64

Comparison with [S93]. Our new results show an enormous progress compared to the previous
approach of [S93]. [S93] reports on experiments for N = 2131438662079 ≈ 2.1 · 1012, Nc = 1025,
c ≈ 2.0278 and the prime number basis of dimension n = 125 with diagonal entries ln pi for
i = 1, ..., n instead of

√
ln pi. The larger diagonal entries ln pi require a larger c and more time for

the construction of relations (5.2). The latter took 10 hours per found relation on a PC of 1993.

6 Exponentially many factoring relations (5.2) for large v

Now let pn = (lnN)α for a small α > 2 and a large N . Then pn and n are larger than for
the factoring experiments reported in section 5. Theorem 2 shows for the larger n that there are
exponentially many pn-smooth u, v such that |u−vN | = 1, 1

2
Nδ ≤ v ≤ Nδ. Theorem 3 shows under

the assumptions of Theorem 2 and Prop. 1 that vectors b ∈ L(Bn,c) closest to Nc can be found in
pol. time. The proof combines the results of Theorem 2, Prop. 1, Lemma 1, Lemma 2 and Cor. 3.
We denote for δ > 0

MN,n,δ =
{

(u, v) ∈ N2 |u− vN | = 1, 1
2
Nδ ≤ v ≤ Nδ

u, v are pn−smooth

}
.

Clearly every (u, v) ∈ MN,n,δ yields a relation (5.2) because |u − vN | = 1 and uv is pn-smooth.
Theorem 2 shows that #MN,n,δ ≥ Nε = 2εk, it is exponential in the bit length k of N .

Theorem 2. Let α ≥ 1.01 2δ+1
δ−ε and 0 < ε < δ < α ln lnN . Assume the events that u, resp. v

is pn-smooth are nearly statistically independent for random v, 1
2
Nδ ≤ v ≤ Nδ under the equation

|u− vN | = 1 then #MN,n,δ ≥ Nε holds for sufficiently large N .

Proof. (5.7) shows for yz = N , y = (lnN)α = pn = N1/z, z = lnN/α ln lnN that

Ψ(N, pn)/N =
(e+o(1)
z ln z

)z
= z−z−o(z) holds for z →∞.

Extending this equation from N to Nδ and N1+δ our assumption shows for large N :

#MN , n, δ ≥ Nδ(zδ)−zδ−o(1)(zδ + z)−zδ−z−o(z),

ln #MN,n,δ ≥ δ lnN − zδ ln(zδ)− (zδ + z) ln(zδ + z) (1 + o(1)).

Here Nδ counts twice the number of integers v, 1
2
Nδ ≤ v ≤ Nδ. For every such v there are two

u = vN ±1; (zδ)−zδ−o(z) and (zδ+ z)−zδ−z−o(z) lower bound the portions of these v and u that are
pn-smooth. We assume that the pn-smoothness events for u and v are nearly statistical independent
of the equation |u− vN | = 1. Hence we get for z = lnN/α ln lnN that

ln #MN,n,δ > δ lnN − (2δ+1) lnN ln(zδ)
α ln lnN

(1 + o(1))

(since ln(zδ + z) = ln(zδ)(1 + o(1)) for large z and constant δ)

> δ lnN − (2δ+1) lnN (ln lnN−ln(α ln lnN)+ln δ)
α ln lnN

(1 + o(1)) (since δ < α ln lnN)

≥ lnN
(
δ − 2δ+1

α
1.01

)
(for large N)

> ε lnN since α > 1.01 2δ+1
δ−ε . Hence #MN,n,δ ≥ Nε. �

Theorem 3. Let 1 < c < (lnN)α/2−1. Assume the events that u, resp. v is pn-smooth are nearly
statistically independent for random v, 1

2
Nc ≤ v ≤ Nc under the equation |u − v| = 1. Then

λ2
1 = 2c lnN(1 + o(1)) and rd(L) = o(n−1/4). If a reduced version of the basis Bn,c is given that

satisfies GSA and ‖b1‖2 = O(2c lnN) and if some vector b̈ ∈ L(Bn,c) closest to Nc of (5.1)
satisfies CA then New Enum finds b̈ under the volume heuristics in pol. time.

Remarks. Theorem 3 shows that rd(L) = o(n−1/4) is as small as required for Prop. 1 and Cor. 3.

14

Without the volume heuristics the time bound of Theorem 3 increases to nO(1)(RL/λ1)n where
RL = maxu∈span(L) ‖L − u‖ is the covering radius of L. The factor (RL/λ1)n overestimates New
Enum’s running time since New Enum essentially enumerates only lattice points in a ball of
radius ‖L −Nc‖ < λ1 < RL.

Proof. We first prove that λ2
1 = 2c lnN (1 + o(1)) for L := L(Bn,c) and N →∞. We denote

M̃N,n,c =def

{
(u, v) ∈ N2 |u− v| = 1, 1

2
Nc ≤ v ≤ Nc

uv pn − smooth

}
.

Following the proof of Theorem 2 for δ = c we see that #M̃N,n,c ≥ Nc(zc)−2zc−o(z) holds for

z = lnN
α ln lnN

. Recall that (u, v) ∈ M̃N , n, c defines a vector b ∼ (u, v) in L. Hence

ln #M̃N,n,c ≥ lnN
(
c− 2c

α
(1 + o(1))

)
= Θ(lnN),

since α > 2 due to 1 < (lnN)α/2−1. Let L(Bn,c) 3 b ∼ (u, v) ∈ M̃N,n,c and let uv be essentially
square-free except for a few small primes. We see from 1

2
Nc ≤ v ≤ Nc and u = v ± 1 that

‖b‖2 = lnuv (1 + o(1)) + ẑ2b ≤ 2c lnN (1 + o(1)) + ẑ2b,

where c lnN − ln 2 ≤ ln v ≤ c lnN . Moreover ẑ2b = N2c ln2(u/v) where | ln(u/v)| = | ln(1 + u−v
v

)| ≤
1
v

(1 + o(1)) ≤ 2N−c(1 + o(1)) holds for large N . Hence ẑ2b ≤ 4(1 + o(1)) and thus λ2
1 ≤ 2c lnN (1 +

o(1)). On the other hand λ2
1 ≥ 2c lnN holds by Lemma 2 and thus ‖b‖2/λ2

1 = 1 + o(1).

Next we bound rd(L) for L = L(Bn,c). Using γn ≥ n
2eπ

we get

γn(detL)
2
n ≥ n

2eπ
(ln pn ± o(1)) ·N2c/n, and thus

rd(L) = λ1/(
√
γn(detL)

1
n) =

(
2eπ 2c lnN
n ln pn

) 1
2 /Nc/n(1± o(1)).

Moreover c ≤ (lnN)α/2−1 =
√
pn/ lnN implies Nc/n = e

√
pn/n = eo(1) and Nc/n = 1 + o(1). Hence

rd(L) = (4eπc lnN
n ln pn

)1/2(1 + o(1)) = O(lnN
pn

)1/2

= O(p
α/2−1
n)1/2 = O(p

−1/4
n) = o(n−1/4).

since pn = O(n ln pn) and c < (lnN)α/2−1 and lnN = p
1/α
n and α > 2.

Following the proof of Prop. 1 and Cor. 3 New Enum for CVP finds for pn = (lnN)α some
b ∈ L(Bn,c) that minimizes ‖b − Nc‖ in polynomial time, without proving correctness of the
minimization. This proves the polynomial time bound. �

Towards factoring integers in pol. time. Theorem 3 shows that we can minimize ||b−Nc|| for
b ∈ L(Bn,c) under the vol. heuristics and other reasonable assumptions in pol. time. In order to
obtain n relations by the CVP algorithm we choose δ to maximize #N,n,δ forgiven N,n. In fact n
must be so large that maxδ #N,n,δ > n.

References

[Ad95] L.A. Adleman, Factoring and lattice reduction. Manuscript, 1995.

[AD97] M. Ajtai and C. Dwork, A public key cryptosystem with worst-case average-case equiva-
lence. STOC, 1997, An improved version is described in ECCC 2007, No 97.

[Ba86] L. Babai, On Lovász lattice reduction and the nearest lattice point problem. Combinatorica
6 (1), pp. 1–13, 1986.

[BL05] J. Buchmann and C. Ludwig, Practical lattice basis sampling reduction. eprint.iacr.org, TR
072, 2005.

[Ch13] M.Charlet, Faktorisierung ganzer Zahlen mit dem NEW ENUM-Gitteralgorithmus. Diplo-
marbeit, Frankfurt 2013.

[D30] K. Dickman, On the frequency of numbers containing prime factors of a certain relative
magnitude. Ark. Math. Astr. Fys. 22, pp. 1–14, 1930.

[D81] J.D. Dixon, Asymptotically Fast Factorization of Integers. Mathematics of Computation
36(153), pp. 255–260, 1981.

[FP85] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a
lattice, including a complexity analysis. Math. of Comput., 44, pp. 463–471, 1985.

15

[GN08] N. Gama and P.Q. Nguyen, Predicting lattice reduction, in Proc. EUROCRYPT 2008,
LNCS 4965, Springer-Verlag, pp. 31–51, 2008.

[GNR10] N. Gama, P.Q. Nguyen and O. Regev, Lattice enumeration using extreme pruning, Proc.
EUROCRYPT 2010, LNCS 6110, Springer-Verlag, pp. 257–278, 2010; final version to be
published.

[G08] A. Granville, Smooth numbers: computational number theory and beyond. in Algorithmic
Number Theory, MSRI Publications, 44, pp. 267–323, 2008.

[H84] A. Hildebrand, Integers free of large prime factors and the Riemann hypothesis. Mathematika
31, pp. 258–271, 1984.

[HHHW09] P. Hirschhorn, J. Hoffstein, N. Howgrave-Graham and W. Whyte, Choosing NTRU-
Encrypt parameters in light of combined lattice reduction and MITM approaches. In Proc.
ACNS 2009, LNCS 5536, Springer-Verlag, pp. 437–455, 2009.

[H07] N. Howgrave-Graham, A hybrid lattice–reduction and meet-in-the-middle attiack against
NTRU. In Proc. CRYPTO 2007, LNCS 4622, Springer-Verlag, pp. 150–169, 2007.

[Ka87] R. Kannan, Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12, pp. 415–440, 1987.

[La13] B. Lange, Neue Schranken für SVP-Approximation und SVP-Algorithmen. Dissertation,
Frankfurt 2013, //www.mi.informatik.uni-frankfurt.de/ Ph.D. Theses.

[LLL82] H.W. Lenstra Jr., A.K. Lenstra and L. Lovász, Factoring polynomials with rational coef-
ficients, Mathematische Annalen 261, pp. 515–534, 1982.

[L86] L. Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity, SIAM, 1986.
[MG02] D. Micciancio and S. Goldwasser, Complexity of Lattice Problems: A Cryptographic Per-

spective. Kluwer Academic Publishers, Boston, London, 2002.
[MO90] J. Mazo and A. Odlydzko, Lattice points in high-dimensional spheres. Monatsh. Math. 110,

pp. 47–61, 1990.
[MV09] D. Micciancio and P. Voulgaris Faster exponential time algorithms for the shortest vector

problem. ECCC Report No. 65, 2009
[MB75] M.A. Morrison and J. Brillhart: A Method of Factoring and the Factorization of F7, Math-

ematics of Computation 29(129), pp. 183 –205, 1975.
[N10] P.Q. Nguyen, Hermite’s Constant and Lattice Algorithms. in The LLL Algorithm, Eds. P.Q.

Nguyen, B. Vallée, Springer-Verlag, Jan. 2010.
[Reg04] O. Regev, New lattice-based cryptographic constructions, J. ACM 51(2004), no 6, pp. 899-

942.
[S87] C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms. Theoret.

Comput. Sci., 53, pp. 201–224, 1987.
[S93] C.P. Schnorr, Factoring integers and computing discrete logarithms via Diophantine ap-

proximation. In Advances in Computational Complexity, AMS, DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, 13, pp. 171–182, 1993. Prelimi-
nary version in Proc. EUROCRYPT’91, LNCS 547, Springer-Verlag, pp. 281–293, 1991.
//www.mi.informatik.uni-frankfurt.de/

[SE94] C.P. Schnorr and M. Euchner, Lattce basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming 66, pp. 181–199, 1994.
//www.mi.informatik.uni-frankfurt.de/

[SH95] C.P. Schnorr and H.H. Hörner, Attacking the Chor–Rivest cryptosystem by improved
lattice reduction. In Proc. EUROCRYPT’95, LNCS 921, Springer-Verlag, pp. 1–12, 1995.
//www.mi.informatik.uni-frankfurt.de/

[S03] C.P. Schnorr, Lattice reduction by sampling and birthday methods. Proc. STACS 2003:
20th Annual Symposium on Theoretical Aspects of Computer Science, LNCS 2007, Springer-
Verlag, pp. 146–156, 2003. //www.mi.informatik.uni-frankfurt.de/

[S07] C.P. Schnorr, Progress on LLL and lattice reduction, Proceedings LLL+25, Caen, France,
June 29–July 1, 2007, The LLL Algorithm, Eds. P.Q. Phong, B. Vallée, Springer Verlag,
Jan. 2010. //www.mi.informatik.uni-frankfurt.de/

[S10] C.P. Schnorr, Average Time Fast SVP and CVP Algorithms for Low Density Lattices and
the Factorisation of Integers, //www.mi.informatik.uni-frankfurt.de/ publications 2010

[S13] C.P. Schnorr, Factoring integers by CVP Algorithms, Proceedings Number Theory and
Cryptography, LNCS 8260, Springer-Verlag, Nov. 2013, pp. 73–93, this is an early version
of the most recent version in //www.mi.informatik.uni-frankfurt.de/ Publications 2013

[Sage] http://doc.sagemath.org/html/en/reference/functions/sage/functions/transcendental.html

16

