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Abstract. We analyze pruned enumeration algorithms for finding shortest and closest lattice vec-
tors of low density lattices. The algorithm New Enum performs the stages of exhaustive enumera-
tion of short / close lattice vectors in order of decreasing success rate. The lattice problems SVP
and CVP can only have maximal complexity if the relative density rd(L) of the lattice L is close
to maximum 1. SVP and CVP are much easier if rd(L) is moderately small. Integers N can be
factored by solving (ln N)O(1) CVP’s for a prime number lattice L of relative density o(n−1/4),
n = dimL. Under the questionable volume heuristics these CVP’s are solvable in polynomial time.

Keywords. Shortest vector problem (SVP), closest vector problem (CVP), LLL-reduction, NTRU
cryptosystem, Ajtai-Dwork cryptosystem, factoring integers, computing discrete logarithms.

1 Introduction and surview

Previous SVP and CVP algorithms of Kannan [Ka87] and Fincke, Pohst [FP85] perform the
stages of exhaustive enumeration of short/close lattice vectors in a straight forward order disregard-
ing the success rate of stages. The algorithm Enum of [SE94, SH95] locally performs stages in order
of decreasing success rate and often finds short vectors much faster. The New Enum algorithm for
SVP / CVP, presented in section 3 / 5, performs all stages in order of decreasing success rate,
stages with high success rate are done first. This greatly reduces the number of stages that precede
the finding of a shortest / closest lattice vector.

Section 4 analyzes New Enum for SVP and a given basis B = [b1, ...,bn] for which all quotients
ri,i/ri+1,i+1 of the lengths ri,i = ‖b∗i ‖ of the orthogonalized vectors b∗i coincide. This geometric
series assumption GSA of [S03] approximately holds in practice for well reduced bases. Prop. 1
shows for bases satisfying GSA that New Enum finds a shortest lattice vector b under the volume
heuristics in polynomial time (without proving that b is shortest) if the relative density rd(L) of L
satisfies rd(L) ≤ n−1/4(λ1

√
eπ/‖b1‖)1/2 where λ1 is the minimal length of nonzero lattice vectors

and rd(L) is defined by λ1 = rd(L) γ
1/2
n (detL)1/n and the Hermite constant γn. Theorem 1 analyses

New Enum without the volume heuristics.
Section 5 extends New Enum and its analysis to CVP. Cor. 1, translates Theorem 1 from SVP

to CVP and shows that the CVP for L and a the target vector t ∈ span(L) is solved in time 2O(n)

and linear space if rd(L) = O(n−1/2), ‖L− t‖ = O(λ1) and b1 is a nearly shortest vector of L. Cor.
3 shows under the volume heuristics that, given a random target vector t, a closest lattice vector can
be found, without proving optimal closeness, in polynomial time if rd(L) ≤ n−1/4(λ1

√
eπ/‖b1‖)1/2,

‖L − t‖ = O(λ1) and if the found closest vector behaves randomly (CA).
Section 6 studies the relative density rd(L) of various cryptographic lattices. The NTRU-lattices

of [HHHW09] satisfy rd(L) < (2n)−1/4. Moreover rd(L) ≤ n−1 ln−O(1) n holds for the lattices of
Ajtai, Dwork [AD97]. Ajtai’s [Aj96] worst case / average case equivalence of arbitrary nc-unique
SVP’s and SVP only covers unique SVP instances that may be easy in view of Prop. 1.

Section 7 studies factoring integers N by generating relations modulo N between smooth integers
from CVP solutions for the prime number lattice. These CVP’s are solvable in polynomial time
assuming GSA, the volume heuristics and standard assumptions on the distribution of smooth
integers. Here we use a prime number lattice of relative density L such that rd(L) = o(n−1/4).

Section 8 shows how to compute the discrete logarithm for the group of units in ZN in heuristic
polynomial time by solving CVP’s for a prime number lattice.



2 Lattices

Let B = [b1, ...,bn] ∈ Rm×n be a basis matrix consisting of n linearly independent column vectors
b1, ...,bn ∈ Rm. They generate the lattice L(B) = {Bx |x ∈ Zn} consisting of all integer linear
combinations of b1, ...,bn, the dimension of L is n. The determinant of L is detL = (detBtB)1/2

for any basis matrix B and the transpose Bt of B. The length of b ∈ Rm is ‖b‖ = (btb)1/2.
Let λ1, . . . , λn denote the successive minima of L, λi is the minimal real number such that there

are i linearly independent lattice vectors of length at most λi, and λ1 = λ1(L) is the length of the
shortest nonzero vector of L. The Hermite constant γn is the maximum of λ2

1/ det(L)2/n over all
lattices of dimension n.

Let B = QR ∈ Rm×n, R = [ri,j ]1≤i,j≤n ∈ Rn×n be the unique QR-factorization: Q ∈ Rm×n is
isometric (with pairwise orthogonal column vectors of length 1) and R ∈ Rn×n is upper-triangular
with positive diagonal entries ri,i. The QR-factorization also provides the Gram-Schmidt coefficients
µj,i = ri,j/ri,i which are rational for integer matrices B. The orthogonal projection b∗i of bi in
span(b1, ...,bi−1)

⊥ has length ri,i = ‖b∗i ‖.

LLL-bases. A basis B = QR is LLL-reduced or an LLL-basis for δ ∈ ( 1
4
, 1] if

1. |ri,j |/ri,i ≤ 1
2

for all j > i, 2. δr2
i,i ≤ r2

i,i+1 + r2
i+1,i+1 for i = 1, ..., n− 1.

Obviously, LLL-bases satisfy r2
i,i ≤ α r2

i+1,i+1 for α := 1/(δ− 1
4
). [LLL82] introduced LLL-bases

focusing on δ = 3/4 and α = 2. A famous result of [LLL82] shows that LLL-bases for δ < 1 can be
computed in polynomial time and that they nicely approximate the successive minima :

3. α−i+1 ≤ ‖bi‖2λ−2
i ≤ αn−1 for i = 1, ..., n, 4. ‖b1‖2 ≤ α

n−1
2 (detL)2/n.

A basis B = QR ∈ Rm×n is an HKZ-basis (Hermite, Korkine, Zolotareff) if |ri,j |/ri,i ≤ 1
2

for all j > i, and if each diagonal entry ri,i of R = [ri,j ] ∈ Rn×n is minimal under all transforms
of B to BT, T ∈ GLn(Z) that preserve b1, ...,bi−1.

A basis B = QR ∈ Rm×n. B = [ri,j ] is BKZ-basis for block length k [SE94] if the matrices
[ri,j ]h≤i,j<h+k ∈ Rk×k form HKZ-bases for h = 1, ..., n− k + 1.

A famous problem is the shortest vector problem (SVP): Given a basis of L find a shortest
nonzero vector of L, i.e., a vector of length λ1.

Closest vector problem (CVP): Given a basis of L and a target t ∈ span(L) find a closest vector
b′ ∈ L such that ‖t− b′‖ = ‖t− L‖ =def min{ ‖t− b‖ | b ∈ L}.

Previous SVP-algorithms solve SVP by a full exhaustive search, disregard the success rate of
stages, and prove to have found a shortest nonzero lattice vector. Our novel SVP-algorithm New
Enum finds a shortest lattice vector b rather fast, without proving ‖b‖ = λ1, by performing the
stages in order of decreasing success rate. Its efficiency depends on the lattice invariant rd(L) :=

λ1γ
−1/2
n (detL)−1/n which we call the relative density of L. Note that rd(L) = λ1(L)/ max λ1(L′)

holds for the maximum of λ1(L′) over all lattices L′ of dimL = dimL′ and detL = detL′.
Clearly 0 < rd(L) ≤ 1 holds for all L, and rd(L) = 1 if and only if L has maximal density.

Lattices of maximal density and γn are known for n = 1, ..., 8 and n = 24.

3 A novel enumeration of short lattice vectors

We first outline the novel SVP-algorithm based on the success rate of stages. New Enum improves
the algorithm Enum of [SE94, SH95]. We recall Enum and present New Enum as a modification
that essentially performs all stages of Enum in decreasing order of success rates.

Let B = [b1, ...,bn] = QR ∈ Zm×n, R = [ri,j ]1≤i,j≤n ∈ Rn×n be the given basis of L = L(B).
Let πt : span(b1, ...,bn) → span(b1, ...,bt−1)

⊥ = span(b∗t , ...,b
∗
n) for t = 1, ..., n denote the orthog-

onal projections and let Lt = L(b1, ...,bt−1).

The success rate of stages. The vector b =
Pn

i=t uibi ∈ L and A ≥ λ2
1 are given at stage (ut, ..., un)

of ENUM [SH95]. That stage calls the substages (ut−1, ..., un) such that ‖πt−1(
Pn

i=t−1 uibi)‖2 ≤ A.

Note that ‖
Pn

i=1 uibi‖2 = ‖ζt +
Pt−1

i=1 uibi‖2 + ‖πt(b)‖2. where ζt := b − πt(b) ∈

2



spanLt is b’s orthogonal projection in spanLt. Stage (ut, ..., un) and its substages exhaustively
enumerate the intersection Bt−1(ζt, ρt) ∩ Lt for the sphere Bt−1(ζt, ρt) ⊂ spanLt with radius ρt :=
(A− ‖πt(b)‖2)1/2 and center ζt.

The Gaussian volume heuristics estimates |Bt−1(ζt, ρt) ∩ Lt| for t > 1 to

βt =def volBt−1(ζt, ρt) / detLt.

Here volBt−1(ζt, ρt) = Vt−1ρ
t−1
t , Vt−1 = π

t−1
2 /( t−1

2
)! ≈ ( 2eπ

t−1
)

t−1
2 /

p
π(t− 1) is the volume of the

unit sphere of dimension t−1, and detLt = r1,1 · · · rt−1,t−1. If ζt mod Lt is uniformly distributed
the expected size of this intersection satisfies Eζt [ #

`
|Bt−1(ζt, ρt) ∩ Lt

´
] = βt. This holds because

1/ detLt is the number of lattice points of Lt per volume in spanLt.
The success rate βt has been used in [SH95] to speed up Enum by cutting stages of very small

success rate. New Enum proceeds differently, it first performs all stages with βt ≥ 2−st and collects
during this process the stages with βt < 2−st in the list L. Thereafter New Enum performs the
stages of L with βt ≥ 2−s−1t. The test βt ≥ 2−st gives priority to stages of small t, stages of large t
require a higher success rate. The analysis in section 4 is independent of the factor t in βt < 2−st.

We will use that A := n
4

(detBtB)2/n > λ2
1 holds for n ≥ 10 since γn < n

4
for n ≥ 10.

Optimal value of A. If λ1 is known it is best to set the input A to A = λ2
1.

Outline of New Enum

INPUT BKZ-basis B = QR ∈ Zm×n, R = [ri,j ] ∈ Rn×n for block length 20,
OUTPUT a sequence of b ∈ L(B) of decreasing length terminating with ‖b‖ = λ1.
1. s := 220, L := ∅, A := n

4
(detBtB)1/n (we call s the level)

2. Perform algorithm Enum of [SE94, SH95], delaying stages with βt < 2−st:
Upon entry of stage (ut, ..., un) compute βt. If βt < 2−st store information
about (ut, ..., un) in the list L of delayed stages. Otherwise perform stage
(ut, ..., un) on level s, and as soon as some b ∈ L− 0 of length ‖b‖2 ≤ A has
been found, give out b and set A := ‖b‖2 − 1.

3. s := s + 1, perform the stages (ut, ..., un) of L with βt ≥ 2−st. Delay the
occuring substages (ut′ , ..., ut, ..., un) with βt′ < 2−st′ and store them in L.

4. IF L 6= ∅ THEN GO TO 3 ELSE terminate .

Running in linear space. If instead of storing the list L we restart New Enum in step 3 on the level
s + 1 then New Enum runs in linear space and its running time increases at most by a factor n.

Practical optimization. New Enum computes R, βt, Vt, ρt, ct in floating point and b, ‖b‖2 in exact
arithmetic. The final output b has length ‖b‖ = λ1, but this is only known when the more expensive
final search does not find a vector shorter than b.

Reason of efficiency. For short vectors b =
Pn

i=1 uibi ∈ L the stages (ut, ..., un) have large success
rate βt. If b is short then so are the projections πt(b), on average ‖πt(b)‖2 ≈ n−t+1

n
‖b‖2. Then

ρ2
t = A− ‖πt(b)‖2 and βt are large. New Enum tends to output very short lattice vectors b first.

Consider the case A = λ2
1. Prior to finding the shortest lattice vector b′ =

Pn
i=1 u′ibi New

Enum essentially performs only stages (ut, ..., un) of success rate βt = Vt−1ρ
t−1
t / detLt where on

average ρ2
t = λ2

1 − ‖πt(b
′
t)‖2 ≈ t−1

n
λ2

1 since on average ‖πt(b
′)‖2 ≈ n−t+1

n
λ2

1. While Enum calls

nearly all stages (ut, ..., un) of βt > 0 New Enum only calls about a (n−t+1
n

)
n−t+1

2 fraction of them
prior to finding b′ and delays the rest to be performed later than (u′t, ..., u

′
n).

New Enum is particularly fast for small λ1. The size of its search space is proportional to λn
1 ,

and is by Prop. 1 heuristically polynomial if rd(L) = o(n−1/4). Having found b′ New Enum proves
‖b′‖ = λ1 in exponential time by a complete exhaustive enumeration.

Notation. We use the following function ct : Zn−t+1 → R :

ct(ut, ..., un) = ‖πt(
Pn

i=t uibi)‖2 =
Pn

i=t(
Pn

j=i ujri,j)
2.

Clearly ct(ut, ..., un) = (
Pn

j=t ujrt,j)
2 + ct+1(ut+1, ..., un).

Given ut+1, ..., un Enum tries the ut ∈ Z close to −yt := −
Pn

i=t+1 uirt,i/rt,t in order of increas-
ing distance |ut + yt|, recursively as ut := d−ytc, ut := next(ut,−yt) :

d−ytc, d−ytc − σt, d−ytc+ σt, d−ytc − 2σt, d−ytc+ 2σt, · · ·
for σt := sign(d−ytc+yt) ∈ {±1}, sign(0) := 1, where drc =def dr−0.5e denotes the nearest integer
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to r ∈ R. The iteration ut := next(ut,−yt) increases or preserves |ut+yt| and ct(ut, ..., un), decreases
or preserves ρt and βt so that Enum performs the stages (ut, ..., un) for fixed ut+1, ..., un in order of
increasing ct(ut, ..., un) and decreasing success rate βt. Note that next(ut,−yt) = nextσt,νt(ut,−yt)
is a simple function of the number νt of iterations of next and the initial sign σt.

The center ζt = b − πt(b) =
Pn

i=t ui(bi − πt(bi)) ∈ span(Lt) changes continously within New
Enum. The volume heuristics holds on average if ζt mod Lt distributes nearly uniformly.

Algorithm Enum [SH95]

INPUT BKZ-basis B = QR ∈ Zm×n, R = [ri,j ] ∈ Rn×n for block length 20,
OUTPUT b ∈ L(B) such that b 6= 0 has minimal length.

1. FOR i = 1, ..., n DO ci := ui := yi := 0

u1 := 1, t := tmax := 1, c̄1 := c1 := ‖b1‖2. (ct = ct(ut, ..., un)
always holds for the current t, c̄1 is the current minimum of c1)

2. WHILE t ≤ n #perform stage (ut, ..., un):
ct := ct+1 + (ut + yt)

2r2
t,t

IF ct < c̄1

THEN IF t = 1 THEN c̄1 := c1, b :=
Pn

i=1 uibi

ELSE t := t− 1, yt :=
Ptmax

i=t+1 uirt,i/rt,t, ut := d−ytc
ELSE [ t := t + 1, tmax := max(t, tmax)

IF t = tmax THEN ut := ut + 1 ELSE ut := next(ut,−yt) ].
3. output b

New Enum for SVP
INPUT BKZ-basis B = QR ∈ Zm×n, R = [ri,j ] ∈ Rn×n for block length 20,
OUTPUT a sequence of b ∈ L(B) such that ‖b‖ decreases to λ1.

1. L := ∅, t := tmax := s := 220, FOR i = 1, ..., n DO ci := ui := yi := 0, u1 := 1,
c1 := r2

1,1, A := n
4

(detBtB)1/n (ct = ct(ut, ..., un) always holds for the current t)

2. WHILE t ≤ n #perform stage (ut, ..., un):
ct := ct+1 + (ut + yt)

2r2
t,t,

IF ct > A THEN GO TO 2.1,
ρt := (A− ct)

1/2, βt := Vt−1ρ
t−1
t /(r1,1 · · · rt−1,t−1),

IF t = 1 THEN [ b :=
Pn

i=1 uibi,
IF ‖b‖2 < A THEN output b, A := ‖b‖2 − 1, GO TO 2 ],

IF βt ≥ 2−st THEN [ t := t− 1, yt :=
Ptmax

i=t+1 uirt,i/rt,t, ut := d−ytc,
σt := sign(ut + yt), νt := 1, GO TO 2 ]

ELSE store (ut, ...un, yt, ct, σt, νt) in L.
2.1. t := t + 1, tmax := max(t, tmax),

IF t = tmax THEN ut := ut + 1, νt := 1, yt := 0
ELSE ut := nextσt,νt(ut,−yt), νt := νt + 1.

3. s := s + 1, perform all delayed stages (ut, ..., un, yt, ct, σt, νt) of L on level
s and delete them. Delay new stages with βt′ < 2−st′, t′ ≤ t and store
(ut′ , ..., νt′) in L.

4. IF L 6= ∅ THEN GO TO 3 ELSE terminate.

Performing in step 3 a delayed stage (ut, ..., un, yt, ct, σt, νt) means to restart the algorithm in
step 2 with that information. The recursion initiated by this restart does not perform any stages
(ut”, ..., un) with t” > t. These stages have already been performed. Therefore, within step 2.1 the
running t-value t′ must be restricted not to surpass by the t-value at the restart.

4 Analysis of pruned Enum for SVP and lattices of low density

We first study in Proposition 1 the time to find an SVP-solution b′ without proving λ1 = ‖b′‖.
Finding an unproved shortest vector b′ is easier than proving ‖b′‖ = λ1. New Enum finds an
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unproved shortest lattice vector b′ in polynomial time under the following four assumptions:

• the given lattice basis B = [b1, ...,bn] and the relative density rd(L) of L(B) satisfy

rd(L) ≤ n−
1
4 (λ1

√
eπ/‖b1‖)

1
2 , i.e., either b1 or rd(L) is very small.

SA: New Enum finds a shortest lattice vector b′ of L such that ‖πt(b
′)‖2 . n−t+1

n
λ2

1 for all t.

• the volume heuristic estimation Mρ
t := |Bn−t+1(0, ρt)∩πt(L)| ≈ Vn−t+1ρn−t+1

t
det πt(L)

for ρ2
t = n−t+1

n
λ2

1.

GSA: The basis B = QR = Q[ri,j ] satisfies r2
i,i/r2

i−1,i−1 = q for i = 2, ..., n for some q > 0

These are some sensitive points in these assumptions. No polynomial time algorithm is known
that finds a nonzero vector b1 ∈ L such that ‖b1‖/λ1 = nO(1). Prop. 1 does not solve SVP in
polynomial time unless rd(L) is so small that already the LLL-algorithm solves SVP in polynomial
time. This problem changes favorably for the translation of Prop. 1 from SVP to CVP in section 5.
Many lattices L, like the prime number lattice, can easily be extended by a vector of length λ1(L).
This helps to solve CVP’s efficiently. Moreover, the volume heuristics underestimates the size of
Bn−t+1(0, ρt) ∩ πt(L) as the ball Bn−t+1(0, ρt) is centered at the origin 0. The volume heuristics
provably holds on the average for the CVP of minimizing ‖b−t‖ for b ∈ L(B) and a given random
t ∈ span(L). But random t have large distance to the lattice which slows down the CVP-algorithm.

Remarks. 1. If q ≥ 1 holds in GSA the basis B satisfies ‖bi‖ ≤ 1
2

√
i + 3 λi for all i and ‖b1‖ = λ1.

Therefore, q < 1 unless ‖b1‖ = λ1. GSA means that the reduction of the basis is ”locally uniform”.
GSA should approximately hold in practice for lattices without particular structure as all quotients
ri,i/ri+1,i+1 of well reduced bases nearly coincide on the average. It is easier to work with the
idealized property that all ri,i/ri−1,i−1 are equal. [BL05] studies ”nearly equality”. GSA has been
used in [S03, NS06, GN08, S07, N10] and in the security analysis of NTRU in [H07, HHHW09].

2. The assumption SA is supported by a fact proven in the full paper of [GNR10]:

Pr[ ‖πt(b
′)‖2 ≤ n−t+1

n
λ2

1 for t = 1, ..., n ] = 1
n

holds for random b′ ∈ Bn(0, λ1).

The probability 1/n increases by iterating the search for a shortest lattice vector by statistical in-
dependent trials via permuted bases.

3. Failings of the volume heuristics. For the lattice Zn we have for any a = Θ(1) and n ≥ n0(a):

#{x ∈ Zn | ||x‖2 ≤ an} ≥
`
2e

p
n/a

´√an
= nΘ(

√
n),

whereas the volume heuristics estimates this cardinality to O(1) for a ≤ 1
2eπ

, also see Figure 1
of [MO90]. [GN08] reports that extensive experiments on high density random lattices show only
negligible errors of the volume heuristics. The situation for low density lattices as L = Zn and small
radius ρt �

√
n λ1 is less clear.

4. A trade-off between ‖b1‖/λ1 and rd(L) under GSA. B. Lange observed that

‖b1‖/λ1 = ‖b1‖/(rd(L)γ
1/2
n det(L)

1
n ) = q

1−n
4 /(rd(L)γ

1/2
n ).

Therefore rd(L) γ
1/2
n ‖b1‖/λ1 ≤ 1 implies under GSA that q ≥ 1 and thus ‖b1‖ = λ1. Hence the

trade-off implies rd(L)γ
1/2
n ‖b1‖/λ1 > 1 unless ‖b1‖ = λ1. Moreover, solving SVP with approxima-

tion factor 1/(rd(L) γ
1/2
n ) and a basis satisfying GSA already solves SVP exactly.

Also this trade-off implies n
1
2+brd(L) > ‖b1‖/(det L)

1
n = q

1−n
4 > 1 for q < 1 and n ≥ n0 due

to γn < n
eπ

[KL78]. This shows that the time bound of Theorem 1 is at best exponential 2O(n).

All our time bounds must be multiplied by the work load per stage, a modest polynomial factor
covering the steps performed at stage (u1, ..., un) before going to a subsequent stage.

Proposition 1. Let a lattice basis B ∈ Zm×n be given that satisfies rd(L) ≤ n−
1
4 (λ1

√
eπ/‖b1‖)

1
2

and GSA. If New Enum finds a shortest lattice vector b′ satisfying SA it finds b′, without proving
‖b′‖ = λ1, under the volume heuristics in polynomial time.

Proof. Let b′ =
Pn

j=1 u′ibi be the shortest vector found by New Enum and let Mρ
t be the num-

ber of stages (ut, ..., un) that precede (u′t, ..., u
′
n) in New Enum’s enumeration. We use the following
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Simplifying assumption.(see the proof of Theorem 1) We assume that New Enum performs stage
(u′t, ..., u

′
n) prior to all stages of success rate βt < β′t, i.e., ρt < ρ′t := (A − ‖πt(b

′)‖2)1/2. Without
this assumption the time bound increases, under reasonable heuristics, at most by a constant factor.

The simplifying assumption, the volume heuristics and SA show for ‖πt(b
′)‖2 ≤ ρ2

t = n−t+1
n

λ2
1:

Mρ
t = #Bn−t+1(0, ρt) ∩ πt(L) ≤ (

q
n−t+1

n
λ1)

n−t+1Vn−t+1/(rt,t · · · rn,n)

<
`√

2eπλ1√
n

´n−t+1
/(rt,t · · · rn,n).

We used Stirling’s approximation for Vn−t+1. (attention: the volume heuristics underestimates
#Bn−t+1(0, ρt) ∩ πt(L) for the center 0 and small radius ρt.)

Moreover GSA and ‖b∗i ‖ = ‖b1‖q
i−1
2 yield

(rt,t · · · rn,n) = det πt(L) = ‖b1‖n−t+1q
Pn−1

i=t−1 i/2.

We get from q
n−1

2 = (detL)
2
n

‖b1‖2
=

λ2
1

γnrd(L)2
1

‖b1‖2
and γn ≤ n

eπ
for n ≥ n0 [KL78] that

Mρ
t ≤

`
λ1
‖b1‖

q
2eπ
n

´n−t+1`p
n
eπ

rd(L) ‖b1‖
λ1

´n− (t−1)(t−2)
n−1

= rd(L)n− (t−1)(t−2)
n−1 2

n−t+1
2

`p
n
eπ

‖b1‖
λ1

´ t−1
n−1 (n−t+1)

( The factor 2
2−t+1

2 disappears if γn is close to the Minkowski lower bound γn ≥ n+ln n
2eπ

.) Evaluating

this upper bound at rd(L) = n−
1
4 (λ1

√
eπ/‖b1‖)

1
2 yields

Mρ
t ≤

`p
eπ
n
‖b1‖
λ1

´ n
2−

1
2

(t−1)(t−2)
n−1 2

n−t+1
2

`p
n
eπ

‖b1‖
λ1

´ t−1
n−1 (n−t+1)

= n−
n
4 + 1

4
(t−1)(t−2)

n−1 + 1
2

t−1
n−1 (n−t+1)2

n−t+1
2

`
λ1
√

eπ
‖b1‖

´ n
2−

1
2

(t−1)(t−2)
n−1 − t−1

n−1 (n−t+1)

= n−
n
4 + t−1

4
2n−1
n−1 2

n−t+1
2

`
λ1
√

eπ
‖b1‖

´ n
2−

t−1
2

2n−t
n−1 =

`
λ1
√

eπ√
n ‖b1‖

´ n
2−

t−1
2

2n−t
n−1 .

The upper bound on Mρ
t takes its maximum 21/2 at t = n. This proves the theorem. �

Note that errors of the volume heuristics are negligible if t is close to n because then the

dimension of the lattice πt(L) is small. On the other hand, if t is small then ρt =
q

n−t+1
n

λ1 is large

which also reduces the errors of the volume heuristics. Note that Mt is already polynomial in n for

t = n
2

if rd(L) ≤ n
−1
6−ε (λ1

√
eπ/‖b1‖)

1
2 for some ε > 0 which allows larger rd(L) then Prop. 1.

Theorem 1. Given a lattice basis B ∈ Zm×nsatisfying GSA and ‖b1‖ ≤
√

eπ nb λ1 for some b ≥ 0,

Enum and New Enum solve SVP and prove to have found a solution in time 2O(n)(n
1
2+brd(L))

n+1
4 .

The running time of Theorem 1 is maximal, under and without SA, for t = 1 while under the
volume heuristics it is by the proof of Prop. 1 maximal for t = n. The time bound of Theorem 1

is at best 2O(n), namely if rd(L) = O(γ
− 1

2
n λ1/‖b1‖) which is close to the point where ‖b1‖ = λ1

holds under GSA. However, the translation of Theorem 1 from SVP to CVP in Cor. 1 of section
5 gives an CVP-algorithm that solves many important CVP-problems in time 2O(n).

Proof. New Enum essentially performs stages in decreasing order of the success rate βt. We denote
b′ =

Pn
i=1 u′ibi ∈ L New Enum’s SVP-solution. Let β′t denote the success rate of stage (u′t, ..., u

′
n).

New Enum performs stage (u′t, ..., u
′
n) prior to all stages (ut, ..., un) of success rate βt ≤ 1

2
β′t.

Simplifying assumption. We assume that New Enum performs stage (u′t, ..., u
′
n) prior to all stages

of success rate βt < β′t, i.e., ρt < ρ′t := (A−‖πt(b
′)‖2)1/2. Without this assumption the time bound

of Theorem 1 increases, under reasonable heuristics, at most by a constant factor. For this we
guess A > λ2

1 such that A ≈ λ2
1. Then Mt defined below is under the volume heuristics maximal for

t ≈ n
2
. If stage (ut, ..., un) with t ≈ n

2
has success rate βt ≈ 1

2
β′t then most likely ‖πt(

Pn
i=t uibi)‖2 ≈

24/n||πt(b
′)||2 ≈ 24/n 1

2
λ2

1, hence volBn−t+1(0, ‖πt(b
′)‖)/volBn−1+1(0, ‖πt(b)‖) = Θ(1).

Consider the number Mt of stages (ut, ..., un) with ‖πt(
Pn

i=t uibi)‖ ≤ λ1

6



Mt := #
`
Bn−t+1(0, λ1) ∩ πt(L)

´
.

In fact New Enum enumerates 1
2
Mt stages (ut, ..., un) since uN > 0 holds for the last nonzero uN .

Under the simplifying assumption Mt covers the stages that precede (u′t, ..., u
′
n); it also covers the

stages of the final exhaustive enumeration that proves ‖b′‖ = λ1. Lemma 1 gives a proven version

of the volume heuristics, it replaces in inequality (2) of [HS07] the factor (4e(1 +
√

π))n by e
n−t+1

2

and corrects misprints in the proof.

Lemma 1. Mt ≤ e
n−t+1

2
Qn

i=t(1 +
√

8π λ1√
n−t+1 ri,i

).

Proof. We use the method of Lemma 1 of [MO90] and polish the proof of (2) in section 4.1 of
[HS07]. We abbreviate nt = n− t + 1. Consider the ellipsoid

Et = {(xt, ..., xn)t ∈ Rnt | ‖πt(
Pn

i=t xibi)‖2 ≤ λ2
1 },

obviously ‖πt(
Pn

i=t xibi)‖2 =
Pn

i=t(
Pn

j=i ri,jxj)
2 =

Pn
i=t(

Pn
j=i µj,ixj)

2‖b∗i ‖2.

By definition Mt ≤ #(Et ∩ Znt). We set

σi(x) :=
P

j>i

ri,j

ri,i
xj and x′i := xi + dσi(x)c,

{σi(x)} := σi(x)− dσi(x)c,
Ft := {(x′t, ..., x′n)t ∈ Rnt |

Pn
i=t(x

′
i + {σi(x}) )2r2

i,i ≤ λ2
1 }.

Claim #(Et ∩ Znt) ≤ #(Ft ∩ Znt).

Proof of the claim. The transformation (xt, ..., xn) 7→ (x′t, ..., x
′
n) is injective. In fact, if i ≥ t is the

least index such that (yi, ..., yn) and (zi, ..., zn) differ then y′i 6= z′i. Moreover (x′i + {σi(x)})ri,i =Pn
j=i ri,jxj . This proves the claim.

We cover Ft by the simpler ellipsoid E ′t = {x′ ∈ Rnt |
Pn

i=t x′i
2
r2

i,i ≤ 4λ2
1}. As | {σi(x)} | ≤ 1

2

we have (x′i + {σi(x)})2 ≥ (x′i)
2, hence Ft ∩ Znt ⊂ E ′t ∩ Znt . This proves Mt ≤ #(E ′t ∩ Znt).

We bound #(E ′t ∩ Znt) using the method of Mazo, Odlyzko [MO90, Lemma 1]. Denoting
Nr := #{(kt, ..., kn)t ∈ Znt |

Pn
i=t r2

i,ik
2
i = r} there are countably many r ∈ R with Nr 6= 0 and

thus for all s > 0 (These upper bounds by infinite sums are far from being tight.) :

#(E ′t ∩ Znt) ≤
P

0≤r≤4λ2
1

Nr es(4λ2
1−r)nt < es4λ2

1nt
P
r≥0

Nr e−srnt

= es4λ2
1nt

nQ
i=t

P
ki∈Z

e−sr2
i,ik2

i nt < es4λ2
1nt

nQ
i=t

(1 +
√

π√
snt ri,i

),

since
P

k∈Z e−Tk2
= 1 + 2

P∞
k=1 e−Tk2

≤ 1 + 2
R ∞
0

e−Tx2
dx = 1 +

p
π/T holds for T = sr2

i,int.

We get for s := 1/(8λ2
1): #(E ′t ∩ Znt) ≤ ent/2

nQ
i=t

(1 +
√

8π λ1√
nt ri,i

). �

We can improve the worst case upper bound of Lemma 1 on the average: replace in the
above proof the lower bound |xi + ε|2 ≥ x2

i /4 by the expected value Eε[ |xi + ε|2 ] = x2
i + 1

12

for ε ∈R [− 1
2
, + 1

2
]. Here we assume that {σi(x)} ∈ [− 1

2
, + 1

2
] is uniformly distributed. This replaces

in Lemma 1
√

8π by
√

2π and shows that Mt ≤ e
n−t+1

2
Qn

i=t(1 +
√

2π λ1√
n−t+1 ri,i

)

holds on the average for random ri,i+1/ri,,i ∈R [− 1
2
, + 1

2
].

Proof of Theorem 1 continued. The equations r2
i,i = ‖b1‖2qi−1, λ2

1/(γnrd(L)2) = (det L)
2
n =

‖b1‖2q
n−1

2 from GSA and the Minkowski lower bound γn ≥ n
2 eπ

directly imply for i = t, ..., n
√

n− t + 1 ri,i =
√

n− t + 1 ‖b1‖q
i−1
2 ≤

√
2 eπ rd(L)−1λ1q

2i−n−1
4 .

Hence Lemma 1 yields Mt ≤
Qn

i=t

√
e
√

2eπ rd(L)−1 λ1 q
2i−n−1

4 +
√

8π λ1√
n−t+1 ri,i

. (4.0)

For the remainder of the proof let t := n
2

+ 1− c and m(q, c) := [if c > 0 then q
1−c2

4 else 1]. Then

Mt ≤ m(q, c)
` (2+

√
e)
√

2eπ λ1√
n−t+1 rd(L)

´n−t+1
/ det πt(L), (4.1)

where m(q, c) = q
1−c2

4 = q−
1
4

Pc
i=0(2i−n−1) covers in (4.0) the factors q

2i−n−1
4 > 1 for t ≤ i < n

2
+1.
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We see from (4.1) and det πt(L) = ‖b1‖n−t+1q
Pn

i=t
i−1
2 that

Mt ≤ m(q, c)
` (2+

√
e)
√

2eπ√
n−t+1

λ1
‖b1‖ rd(L)

´n−t+1
/q

Pn−1
i=t−1 i/2 (4.2)

The [KL78] bound γn ≤ 1.744 (n+o(n))
2eπ

≤ n
eπ

for n ≥ n0

and 1
n−1

Pn−1
i=t−1 i = n

2
− (t−1)(t−2)

2(n−1)
and q

n−1
2 = λ2

1/(‖b1‖2γn rd(L)2) yield

Mt ≤ m(q, c)
` (2+

√
e)
√

2eπ λ1√
n−t+1 rd(L) ‖b1‖

´n−t+1` √
n√
eπ

rd(L) ‖b1‖
λ1

´n− (t−1)(t−2)
n−1 . (4.3)

The difference of the exponents de(t) = n − (t−1)(t−2)
n−1

− (n − t + 1) = (t − 1)(1 − t−2
n−1

) satisfies

de(n
2

+ 1− c) = n2/4−c2

n−1
for t = n

2
+ 1− c. Hence for ‖b1‖ ≤

√
eπ nb λ1 and all t ≤ n :

Mt ≤ m(q, c)
“
(2 +

√
e)
√

2
q

n
n−t+1

”n−t+1 `
n

1
2+brd(L)

´ n2/4−c2

n−1 .

This upper bound on Mt is maximal at t = 1, c = n
2
, As m(q, c) = q

1−c2
4 =

` ‖b1‖
√

γn rd(L)

λ1

´ c2−1
n−1 ≤

(n
1
2+brd(L))

c2−1
n−1 holds for c > 0 this proves

maxt Mt ≤ (
√

8 +
√

2e)n
`
n

1
2+brd(L)

´ n2/4−1
n−1 < 5.16001n

`
n

1
2+brd(L)

´ n+1
4 ,

where n2/4−1
n−1

< n+1
4

. �

5 Pruned New Enum for CVP

Given a target vector t =
Pn

i=1 τibi ∈ span(L) ⊂ Rm we minimize ‖t − b‖ for b ∈ L(B). [Ba86]
solves ‖t− b‖2 ≤ 1

4

Pn
i=1 r2

i,i in polynomial time by LLL-reduction of B = QR, R = [ri,j ].

Adaption of New Enum to CVP. We adapt New Enum to solve ‖t − b‖2 < Ä. Initially we set
Ä := 0.01 + 1

4

Pn
i=1 r2

i,i so that ‖t − L‖2 < Ä. Having found some b ∈ L such that ‖t − b‖2 < Ä

New Enum gives out b and decreases Ä to ‖t− b‖2.

New Enum for CVP
INPUT LLL-basis B = QR ∈ Zm×n, R = [ri,j ] ∈ Rn×n, t =

Pn
i=1 τibi ∈ span(L)

OUTPUT A sequence of b ∈ L(B) such that ‖t− b‖ decreases to ‖t− L‖.
1. Ä := 0.01 + 1

4

Pn
i=1 r2

i,i, t := n, s := 1, L := ∅, (We call s the level)
yn := τn, un := d−ync, c̈n+1 := 0,
(c̈t = c̈t(τt − ut, ..., τn − un) always holds for the current t, ut, ..., un)

2. WHILE t ≤ n #perform stage (ut, ..., un):
c̈t := c̈t+1 + (ut − yt)

2r2
t,t,

IF c̈t ≥ Ä THEN GO TO 2.1,
ρ̈t := (Ä− c̈t)

1/2, β̈t := Vt−1ρ̈
t−1
t /(r1,1 · · · rt−1,t−1),

IF t = 1 THEN [ output b :=
Pn

i=1 uibi, Ä := ‖t− b‖2, GO TO 2 ]

IF β̈t ≥ 2−st THEN [ t := t− 1, yt := τt +
Pn

i=t+1(τi − ui)rt,i/rt,t,
ut := dytc, σt := sign(ut + yt), νt := 1, GO TO 2 ]

ELSE store (ut, ..., un, yt, c̈t, σt, νt) in L,
2.1. t := t + 1, ut := nextσt,νt(ut, yt), νt := νt + 1.
3. s := s + 1, perform all delayed stages (ut, ..., un, yt, c̈t, σt, νt) of L on level s

and delete them. Delay all new stages with β̈t′ < 2−st′, t′ ≤ t and store
(ut′ , ..., νt′) in L.

4. IF L 6= ∅ THEN GO TO 3 ELSE terminate.

At stage (ut, ..., un) New Enum searches to extend the current b =
Pn

i=t uibi ∈ L to some

b′ =
Pn

i=1 uibi ∈ L such that ‖t− b′‖2 < Ä. The expected number of such b′ is for random t:

β̈t = Vt−1ρ̈
t−1
t / detL(b1, ...,bt−1) for ρ̈t := (Ä− ‖πt(t− b)‖2)1/2.

Previously, stage (ut+1, ..., un) determines ut to yield the next integer minimum of
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ct(τt − ut, ..., τn − un) := ‖πt(t− b)‖2

= (
Pn

i=t(τi − ui)rt,i)
2 + ct+1(τt+1 − ut+1, ..., τn − un).

Given ut+1, ..., un, ‖πt(t− b)‖2 is minimal for ut = d−τt −
Pn

i=t+1(τi − ui)rt,i/rt,tc.
New Enum solves CVP for L, t by first solving CVP for πt(L) and πt(t) t = n, ..., 1.

Optimal value of Ä. If the distance ‖t−L‖ or a close upper bound of it is known then we initially
choose Ä to be that close upper bound. This prunes away many irrelevant stages.

[HS07] prove the time bound nn/2+o(n) for solving CVP by Kannan’s CVP-algorithm [Ka87].
Minimizing ‖b‖ for b ∈ L− {0} and minimizing ‖t− b‖ for b ∈ L require nearly the same work if
‖t− L‖ ≈ λ1. In fact, replacing in (4.3) λ1 by ‖L − t‖ the proof of Theorem 1 yields:

Corollary 1. Given a basis B = [b1, ...,bn] satisfying GSA, ‖b1‖ ≤
√

eπ nbλ1 with b ≥ 0 and

t ∈ span(L) with ‖L − t‖ ≤ λ1, New Enum solves this CVP in time 2O(n)(n
1
2+brd(L))

n
4 .

Corollary 1 yields for moderately small rd(L) a CVP time bound 2O(n) which merely requires
linear space (by iterating New Enum for s = 1, ..., O(n) without storing delayed stages). Note how-
ever that a subexponential time bound is excluded since n1/2rd(L) ≥ 1/

√
eπ holds by the trade-off

between ‖b1‖/λ1 and rd(L) under GSA, see remark 4 of section 4.

Next we translate the assumption SA from SVP to CVP:

CA: ‖πt(t− b̈)‖2 . n−t+1
n

‖t− L‖2 holds for all t and New Enum’s CVP-solution b̈.

CA holds with probability 1/n for random b̈ [GNR10]. This probability increases by iterating the
search for a closest lattice vector by statistically independent trials via permuted bases.

Let RL = maxu∈span(L) ‖u− L‖ be the covering radius of L, where spanL(B) = {Bx |x ∈ Rn}.

Corollary 2. Let a basis B = [b1, ...,bn] ∈ Zm×n of L be given that satisfies GSA, ‖b1‖ = O(λ1)

and rd(L) ≤ n−
1
4 (λ1

√
eπ/‖b1‖)

1
2 . Let the target vector t and its closest lattice vector b̈ found by

New Enum satisfy CA then New Enum finds b̈ for random t in average time nO(1)(RL/λ1)
n.

Proof. We follow the proof of Proposition 1. New Enum’s time bound nO(1) for SVP under GSA
and SA extends to CVP under GSA and CA. For random t ∈R span(L) we have

Et |Bn−t+1(πt(t), ρt) ∩ πt(L)| =
Vn−t+1
det πt(L)

ρn−t+1
t

and thus the volume heuristics estimation provably holds on the average. New Enum for CVP
enumerates lattice vectors of a ball of the covering radius RL while New enum for SVP does
this for a ball of radius λ1, hence the additional time factor (RL/λ1)

n. Note that the time factor
(RL/λ1)

n overestimates the running time if ‖t− L‖ � RL. �

Cor. 1 and Cor. 2 do not use the questionable volume heuristics. Cor. 2 eliminates the volume
heuristics by randomizing the target vector t. This randomization increases ‖t − L‖ nearly to RL
and cannot be used for Cor. 3 which proves a polynomial time bound under the volume heuristics
if in addition ‖t− L‖ . λ1 holds. It remains to analyze the error of the polynomial time bound of
Cor. 3 that results from the volume heuristics. Prop. 1 translates into

Corollary 3. Let a basis B = [b1, ...,bn] ∈ Zm×nof L be given satisfying GSA, ‖b1‖ = O(λ1)

and rd(L) ≤ n−
1
4 (λ1

√
eπ/‖b1‖)

1
2 . If the target vector t and its closest lattice vector b̈ found by

New Enum satisfies CA and ‖t−L‖ . λ1 then New Enum finds b̈ under the volume heuristics in
polynomial time.

6 The relative density of some cryptographic lattices.

5.1 NTRU. The NTRUEncrypt lattices proposed in [H07], [HHHW09] strictly satisfy rd(L) >
n1/2. Let R = Z[x]/(xN − 1, q) denote the ring of polynomials modulo xN − 1 with coefficients in
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Zq = Z/qZ and the convolution product g = f ∗ h defined by g` =
P

i+j∈{`,`+N} fihj . We identify

f =
PN−1

i=0 fix
i in R with its coefficient vector (f0, ..., fN−1) ∈ ZN

q . N is prime, p = 3, gcd(p, q) = 1;
p, q, N are public.

The private key (f, g) ∈ R×R and the public key h ∈ R satisfy g = f ∗h. The polynomials f, g are
of the form f = 1+pF , g = 1+G where F, G ∈ R are random having df , dg coefficients 1 and df , dg

coefficients −1, all other coefficients are 0. Then f(1) =
PN−1

i=0 fi = 1 = g(1) =
PN−1

i=0 gi = h(1).

Consider the parameters proposed in [HWWW09] that require a work load 2112 for the com-
bined lattice and meet-in the-middle attack. Here N = 401, q = 2048, p = 3, df = 113, dg = bN/3c.
This NTRU-lattice has dimension n = 2 · 401 = 802. The public column basis is B =

h
IN 0
H q IN

i
,

H ∈ ZN×N is the circulant matrix associated with h ∈ R and IN is the N ×N identity matrix.

Moreover (detL)1/n = (2048401)1/802 = 25.5 and λ2
1 = 2p2df + 2dg + 2 = 2302. By the

Minkowski lower bound γn ≥ n+ln n
2eπ

≈ 47.3. The polynomial SVP-time bound under GSA the

volume heuristics and n
1
2+brd(L) ≤ 1 does not break NTRU since

rd(L) ≤ 2−5.5(2302/47.3)1/2 ≈ 0.154 � 0.035 ≈ n−1/2.
However rd(L) ≈ 0.154 < 0.158 ≈ (2n)−1/4. Therefore SVP for L is
heuristically easy by Prop. 1 if we are given a sufficiently short lattice vector. Such a short vector
can possibly be constructed by either lattice extension or lattice reduction.

5.2 nc-unique-SVP lattices. These lattices satisfy the unique shortest vector property: every
lattice vector that is linearly independent of a shortest nonzero lattice vector has at least length
λ1n

c for some c > 1, i.e., λ2 ≥ λ1n
c.Then Minkowski’s second theorem

Qn
i=1 λi ≤ γ

n/2
n detL

implies that rd(L) ≤ n−c+c/n.

5.3 Ajtai’s worst case / average case equivalence. Ajtai [Aj96, Thm 1] solves every nc-
unique-SVP using an oracle that solves SVP for a particular random lattice. However, all nc-
unique-SVP’s are somewhat easy. This makes the worst case / average case equivalence suspicious.
The original c = O(1) of [Aj96] has been subsequently reduced to 3 + ε [Ca98, M04], and most
recently [MR07] reduce nc to n lnO(1) n.

5.4 Lattices of high density. The density 4 = Vn(λ1/2)n/ detL of lattice L is the volume
portion of span(L) that is covered by the spheres of radius λ1/2 centered at points in L.

Minkowski gave in (1905) a nonconstructive proof that lattices exist satisfying log2(4) ≥ n−1,
but no construction of such lattices is known. The infinite class field towers found by Golod,
Shfarevich, Martinet and others produce infinite sequences of lattices of particular dimensions
satisfying, in the most favorable case known, 1

n
log2(4) ≥ −2.218 for n → ∞. The prime number

lattice of section 7 satisfies for c = n/(2 ln N) that 1
n

log2(4) ≥ − 1
2

log2 ln n + 0.924 − o(1). This
density holds for arbitrary dimension n ∈ N.

The difficulty of constructing lattices of high density is a central point in the NP-hardness
proof of SVP . The core of the proof in [MG02] is a sphere packing construction. The reduction is
probabilistic, no deterministic polynomial time reduction is known, see [MG02, chapt. 4-6].

7 Factoring via CVP solutions for the Prime Number Lattice

Let N be a positive integer that is not a prime power. We show under various heuristics how to
factor N in polynomial time by solving (ln N)2+ε easy CVP’s for the prime number lattice. We use
the volume heuristics and GSA for the prime number lattice and CA for the CVP’s to be solved.

Let p1 < · · · < pn enumerate all primes less than (ln N)α, α > 2. Then n = (ln N)α/(α ln ln N)(1+
o(1)). Let the prime factors p of N satisfy p > pn. We use the asymptotic o(1) for N →∞.

A classical method factors N via n + o(n) modular equations
Qn

i=1 pei
i = ±

Qn
i=1 p

e′i
i mod N .

Theorem 2 constructs such modular equations from CVP-solutions of small distance for the prime
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number lattice L(Bα,c). Theorems 4, 5 presents α, c that guarantee the distance required by Theo-
rem 2. Theorem 6 shows these CVP’s to be solvable in polynomial time due to rd(L) = o(n−1/4).

Consider the lattice basis Bα,c = [b1, . . . ,bn] ∈ R(n+1)×n and the target vectors N ∈ Rn+1 :

Bα,c =

2664
√

ln p1 0 0

0
. . . 0

0 0
√

ln pn

Nc ln p1 · · · Nc ln pn

3775, N =

264
0
...
0

Nc ln N

375, c = (ln N)β ≥ 1, (7.0)

detL(Bα,c)
2 =

Qn
i=1(ln pi) (1 + N2c Pn

i=1 ln pi),

detL(Bα,c)
2/n = (α− o(1)) ln ln N ·N2c/n.

We identify the vector b =
Pn

i=1 eibi ∈ L(Bα,c) with the pair (u, v) of integers

u =
Q

ej>0 p
ej

j , v =
Q

ej<0 p
−ej

j ∈ N. (7.1)

Note that u, v are free of primes larger than pn and gcd(u, v) = 1.

Lemma 2. If |u− vN | = o(Nc) and v = Θ(Nc−1) and e1, ..., en ∈ {0,±1} then

‖b−N‖2 = (2c− 1) ln N + Θ(|u− vN |2).

Proof. We see from e1, ..., en ∈ {0± 1} that ‖b−N‖2 = ln u + ln v + N2c| ln u
vN
|2.

Clearly, v = Θ(Nc−1), |u− vN | = o(Nc) implies

ln u + ln v = (2c− 1) ln N + O(±1).

Moreover | ln u
vN
| = | ln

`
1 + u−vN

vN

´
| = |u−vN|

vN
(1 + o(1)) = Θ( |u−vN|

Nc−1N
).

Combining these equations proves the claim. �

Theorem 2. If ‖b−N‖2 ≤ (2c− 1) ln N + 2δ ln pn and c = (ln N)β then

|u− vN | ≤ p
1+αβ
2α

+δ+o(1)
n .

Proof. The bound on ‖b−N‖2 for b =
Pn

i=1 eibi impliesPn
i=1 |ei ln pi| ≤

Pn
i=1 e2

i (
√

ln pi)
2 ≤ ‖b−N‖2 ≤ (2c− 1) ln N + 2δ ln pn.

Using the bound on ‖b−N‖ for the last coordinate z of of b−N we get

|z|N−c = |
Pn

i=1 ei ln pi − ln N | = | ln u
vN
|

≤ N−c((2c− 1) ln N + 2δ ln pn)1/2 ≤ N−cp
1+β
2α

+o(1)
n

since (ln N)α ≈ pn. This shows for γ = 1+β
2α

the two inequalities required in Theorem 3. The claim
follows from Theorem 3. �

Theorem 3. [S93, Theorem 1] The u, v of (7.1) satisfy |u− vN | ≤ p
γ+δ+o(1)
n for γ, δ ≥ 0 if

1. |
Pn

i=1 ei ln pi − ln N | ≤ N−cp
γ+o(1)
n 2.

Pn
i=1 |ei ln pi| ≤ (2c− 1) ln N + 2δ ln pn.

Proof. We see from inequality 1. that˛̨
ln

`
1 + u−vN

vN

´˛̨
=

˛̨
ln u

vN

˛̨
= |

Pn
i=1 ei ln pi − ln N | ≤ N−cp

γ+o(1)
n

Using that ln(1 + x) = x + O(x2) holds for |x| ≤ 1/2 this yields

|u− vN | ≤ vN1−cp
γ+o(1)
n

It remains to prove that vN1−c ≤ p
δ+o(1)
n . We see from 1. that

ln v ≤ ln u− ln N + N−cp
γ+o(1)
n

≤ − ln v + (2c− 1− 1) ln N + 2δ ln pn + N−cp
γ+o(1)
n due to 2.

Hence 2 ln v ≤ 2(c− 1) ln N + 2δ ln pn + N−cp
γ+o(1)
n and thus vN1−c ≤ pδ

n(1 + o(1)). �
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Outline of the factoring method. We compute vectors b =
Pn

i=1 eibi ∈ L(Bα,c) close to N such

that |u−vN | ≤ pn holds for N and thus the prime factorizations of u > N and |u−vN | =
Qn

i=1 p
e′i
i

yield a non-trivial relationQ
ei>0 pei

i = ±
Qn

i=1 p
e′i
i mod N . (7.2)

Given n + 1 independent relations (7.2) we write these relations with p0 = −1 and ei,j , e
′
i,j ∈ N asQn

i=0 p
ei,j−e′i,j

i = 1 mod N for j = 1, ..., n + 1.

Any solution z1, ..., zn+1 ∈ {0, 1} of the equationsPn+1
j=1 zj(ei,j − e′i,j) = 0 mod 2 for i = 0, ..., n (7.3)

solves X2 = 1 mod N by X =
Qn

i=0 p
1
2

Pn+1
j=1 zj(ei,j−e′i,j)

i mod N .

In case that X 6= ±1 mod N this yields two factors gcd(X ± 1, N) /∈ {1, N} of N .
The linear system of equations (7.3) can be solved within O(n3) bit operations. This takes much

less time than LLL-reduction of Bα,c that is done by arithmetic steps using large integers. We
neglect this minor part of the work load of factoring N .

By Theorem 2 lattice vectors very close to N provide a relation (7.2). Theorems 4 and 5 show
that such close vectors exist. Theorem 6 shows a heuristic time bound of the corresponding CVP’s.
We get independent relations (7.2) by constructing them for independent integer multiples N of N .

The existence of lattice vectors b =
Pn

i=1 eibi ∈ L(Bα,c) such that |u− vN |= 1.
An integer z is called y-smooth, if all prime factors p of z satisfy p ≤ y. We denote for c ≥ 1

Mα,c =
n

(u, v) ∈ N2 |u− vN | = 1, Nc−1/2 ≤ v ≤ Nc−1

u, v are squarefree and (ln N)α-smooth

o
.

Theorem 4 extends Theorem 5 of [S93] to the additional requirement that u, v are squarefree. The
latter is equivalent to the condition e1, ..., en ∈ {0,±1} of Lemma 2. Theorems 4 and 5 show that
there are Nε+o(ε) lattice vectors close to N that provide Nε+o(ε) relations (7.2).

Theorem 4. Assuming that the equation |u−du/NcN | = 1 is for random u = Θ(Nc) nearly statis-
tically independent from the event that u, du/Nc are squarefree and (ln N)α-smooth then #Mα,c,N ≥
Nε+o(ε) holds if α > 2β + 2 > 2 and α+αε−1−β

α−2β−2
< c = (ln N)β for some ε > 0.

Proof. Let Ψ(x, y) denote the number of integers in [1, x] that are y-smooth. Then

Ψ(x, x1/z) ≥ x z−z+o(z) for x ≥ 1 and z ≥ 3

is shown in [CEP83, Thm 3.1]. Let Ψ∗(z, y) denote the number of squarefree, y–smooth integers in
[1, z]. Pomerance, as cited in [Ad95], observed that (we abbreviate lnα x = (ln x)α)

Ψ∗(x, lnα x) ≥ x z−z+o(z) for z = ln x/(α ln ln x), i.e., (ln x)α = x1/z.

Here is a short proof. We obviously have for z′ := bzc that

Ψ∗(x, lnα x) ≥
`

π(lnα x)
z′

´
≈ π(lnα x)z′/z′!

≈ x
`

e
z′ α ln ln x

´z′
/
√

2πz′ = x z′
−z′+o(z′)

= xzz+o(z),

where we count the number of distinct selections of z′ out of π(lnα x). We use that π(n) = n/ ln n+
O(n(ln n)−2) holds by the prime number theorem for the number π(n) of primes in [2, n] and

z′! ≈ (z′/e)z′
√

2πz′ by Stirling’s approximation.
Let r = ln N/α ln ln N , and thus (ln N)α = N1/r. The assumption of the theorem and the lower

bound on Ψ∗(Nc, lnα N) yields :

#Mα,c ≥ Nc−1(rc− r)−rc+r(rc)−rc+o(r),

ln#Mα,c ≥ (c− 1) ln N − ln N(1+o(1))
α ln ln N

`
(c− 1) ln(rc− r) + c ln rc

´
.

Here Nc−1 counts twice the number of v, 1
2
Nc−1 ≤ v ≤ Nc−1. For every such v there are two

u = vN ± 1 , and (rc− r)−rc+r+o(r), (rc)−rc+o(r) lower bound the portions of those v and u that
are (ln N)α-smooth and squarefree. Hence we get for α+αε−1−β

α−2β−2
< c = (ln N)β and α > 2β + 2 that

12



ln#Mα,c > c ln N − ln N − (2c−1) ln N ln(rc)
α ln ln N

(1 + o(1))

> c ln N − ln N − (2c−1) ln N(1+β) ln ln N
α ln ln N

(1 + o(1)) (as ln r < ln ln N and ln c = β ln ln N)

= ln N(−1 + α c−(2c−1)(1+β)(1+o(1))
α

) = ln N(−1 + c(α−2β−2)+1+β
α(1+o(1))

) ≥ (ε− o(ε) ln N

since −1 + c(α−2β−2)+1+β
α

> ε holds under our assumptions. Hence #Mα,c ≥ Nε+o(ε). �

Finding relations (7.2) by CVP-solutions. By Lemma 2 the (u, v) ∈ Mα,c are associated with some
b =

Pn
i=1 eibi ∈ L(Bα,c) such that ‖b−N‖2 ≤ (2c− 1) ln N + O(|u− vN |2) holds provided that

e1, ..., en ∈ {0,±1}.

Theorem 5. The vector b =
Pn

i=1 eibi ∈ L(Bα,c) that is closest to N provides a non-trivial
relation (7.2) provided that Mα,c 6= ∅ and 1 + β < 2α.

Proof. Let b′ =
Pn

i=1 e′ibi ∈ L(Bα,c) be the vector corresponding to some (u′, v′) ∈ Mα,c,

u′ =
Q

e′i>0 p
e′i
i , v′ =

Q
e′i<0 p

−e′i
i such that |u′ − v′N | = 1.

We have Nc−1/2 < v′ < Nc−1 and thus v′ = ηNc−1 with 1
2

< η < 1. The proof of Lemma 2
shows ‖b′ −N‖2 ≤ (2c− 1) ln N + η−2 + O(1).

Then the lattice vector b ∈ L(Bα,c) that is closest to N also satisfies

‖b−N‖2 ≤ (2c− 1) ln N + η−2 + O(1).

Consider the (u, v) ∈ N2 corresponding to b. Theorem 2 shows |u − vN | ≤ p
1+β
2α

+o(1)
n . Hence

b =
Pn

i=1 eibi ∈ L(Bα,c) provides a relation (7.2). �

Factoring N reduces by Theorem 5 to finding about n vectors
Pn

i=1 eibi ∈ L(Bα,c) that are so
close to N that the corresponding (u, v) of (7.1) are in Mα,c.

Theorem 6. Let a reduced version of the basis Bα,c of L be given that satisfies GSA, ‖b1‖2 =
2c ln N + O(1), Mα,c 6= ∅ and α > 2β + 2. Then ‖b1‖2 = λ2

1 + O(1), ‖L −N‖ < λ1 and rd(L) =
o(n−1/4). If New Enum finds a vector b̈ ∈ L closest to N that satisfies CA it finds b̈ for random
N ∈R spanL in average time nO(1)(RL/λ1)

n. Under the volume heuristics New Enum finds b̈ in
polynomial time.

Proof. We first prove that λ2
1 = 2c ln N + O(1). Mα,c 6= ∅ holds by Theorem 4, moreover we see

from that proof argument that there exist u =
Q

i≤n pei
i and v =

Q
i≤n p

e′i
i with ei, e

′
i ∈ {0, 1} such

that u = Θ(Nc), |u− v| ≤ 2, gcd(u, v) = 1. In particular, let

fMα,c =
n

(u, v) ∈ N2 |u− v| = 1, Nc/2 ≤ v ≤ Nc

u, v are squarefree and (ln N)α-smooth

o
.

Then #fMα,c ≥ Nc(rc)−2rc+o(r) holds for r = ln N/(α ln ln N), and thus

ln #fMα,c ≥ ln N(α−2−2β−o(1)
α

c) = Θ(c ln N).

Similar to the proof of Lemma 2 we have

‖
P

i≤n(ei − e′i)bi‖2 = 2c ln N + O(1) + N2c ln(u/v)2 = 2c ln N + O(|u− v|)2,

where ln(u/v) = ln(1 + u−v
v

) = Θ(|u − v|N−c). Hence λ2
1 ≤ 2c ln N + O(1). On the other hand

Lemma 5.3 of [MG02] proves that λ2
1 > 2c ln N if the prime p1 = 2 is neglected. Hence the claim.

Lemma 2 shows that Mα,c 6= ∅ implies ‖L−N‖2 ≤ (2c−1) ln N +O(1), and thus ‖L−N‖2/λ2
1 ≈

1 − 1/2c. Forl c ≈ 1 we minimizte ‖b − N‖ for b ∈ L by solving SVP for the lattice with basis
[N,Bα,c]. In particular, ‖L(Bα,1)−N‖2 ≈ 1

2
λ2

1 and thus rd(L(N,Bα,1))
2 ≈ 1

2
rd(L(Bα,1))

2.
Next we bound rd(L) for L = L(Bα,c)). For n = (ln N)α/(α ln ln N)(1 + o(1)) we have

γn(detL)
2
n ≥ (ln N)α

2eπ
(α−o(1)) ln ln N

α ln ln N
·N2c/n = (ln N)α

2eπ
N2c/n(1 + o(1)).

Hence rd(L) = λ1/(
√

γn(detL)
1
n ) =

`
2eπ 2c ln N

(ln N)α

´ 1
2 /Nc/n(1 + o(1)).

We have for β < α/2− 1 that c = (ln N)β < (ln N)α/2−1 and c ln N
(ln N)α ≤ 1

(ln N)α/2 = o(n−1/2).
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We see from c/n ≤ (ln N)β−αα ln ln N (1 + o(1)) and β − α + 1 < −α/2 that

Nc/n = N
1

ln N
(ln N)β−α+1α ln ln N (1+o(1))

≤ e(ln N)−α/2 α ln ln N (1+o(1)) = eo(1) = 1 + o(1).

Hence rd(L) = O
`
( c ln N
(ln N)α )1/2

´
= o(n−1/4) since 2 + 2β < α.

By Corollary 2 New Enum minimizes ‖b − N‖ for b ∈ L under GSA and CA in average time
nO(1)(RL/λ1)

n for random N ∈R spanL. This proves the first time bound of Theorem 6. Recall
that the factor (RL/λ1)

n overestimates New Enum’s running time because ‖L − N‖ < λ1 New
Enum enumerates lattice points in a ball of radius ‖L −N‖ < λ1 � RL = maxu∈span(L) ‖u− L‖.

A polynomial time bound: Following the proof of Prop. 1 and Cor. 3 New Enum finds for the
α, c = (ln N)β of Theorem 4 some b ∈ L(Bα,c) that minimizes ‖b−N‖ under the volume heuristics
in polynomial time, without proving correctness of the minimization. Any b ∈ L sufficiently close
to N provides a relation (7.2) by Theorems 4 and 5. While only a large c = (ln N)β guarantees
rd(L) = o(n−1/4) and factors integers in polynomial time our experiments are much faster for c ≈ 1.
Also the volume heuristics can underestimate by far the number of b ∈ L such that ‖b−N‖ ≤ λ1

since N is very close to the lattice. �

Constructing a nearly shortest vector of L(B̄α,c) for an extended basis B̄α,c. In order to factor
N heuristically in polynomial time via Theorem 6 we must find a very short vector of the prime
number lattice. For this we extend the basis Bα,c = [b1, ...,bn] ∈ R(n+1)×n by a suitable prime
p̄n+1 and the corresponding vector b̄n+1 = [0, ....0,

p
ln(p̄n+1), N

c ln(p̄n+1)]
t ∈ Rn+2 to B̄α,c =

[b̄1, ..., b̄n, b̄n+1] ∈ R(n+2)×(n+1) and construct such a short vector of the extended lattice. We
construct the prime p̄n+1 such that p̄n+1 = Θ(Nc) and |u − p̄n+1| = O(1) holds for a squarefree
(ln N)α-smooth integer u =

Qn
i=1 pei

i . From the initial part of the proof of Theorem 6 and that of
Lemma 2 we see that ‖b̄‖2 = 2c ln N +O(1) = λ2

1(L(B̄α,c)+O(1) holds for b̄ :=
Pn

i=1 eib̄i− b̄n+1.
This construction is efficient, we generate u =

Q
i pi = Θ(Nc) at random and test the p̄ near

to u for primality. If the density of primes near the u is not exceptionally small we find a prime
p̄n+1 = u + O(1) within O(c ln N) primality tests on such p̄. Therefore B̄α,c and a nearly shortest
vector b̄ of L(B̄α,c) can be found in probabilistic polynomial time. A single (B̄α,c, b̄) can be used
to solve all CVP’s for the factorization of all integers of the order of N .

Corollary 4. Integers N can be factored under the vol. heuristics, GSA and CA in polynomial time
by solving (ln N)α CVP’s for the prime number lattice of dimension n < (ln N)α and c = (ln N)β

such that 0 < α−β−1
α−2β−2

< c and ‖b1‖2 = O(2c ln N). This lattice satisfies rd(L) = o(n−1/4).

Proof. We apply Theorems 4, 5 and 6 to c = (ln N)β . Then the condition 0 < α−1−β
α−2β−2

< c required
for Theorem 4 holds for arbitrary 0 < β < α/2− 1 and sufficiently large N . The proof of Theorem
6 shows that rd(L) = o(n−1/4) is clearly smaller than required for Prop. 1 and Cor. 3. Therefore
the errors of the volume heuristics should not be extreme. �

Parameters for poly-time factoring N . Theorem 4 and Cor. 4 require that α−β−1
α−2β−2

< c = (ln N)β .

For N ≥ 250 and α = 3.25, β = 0.35 we have that α−β−1
α−2β−2

≈ 2.923 < 3.58 ≈ (ln 250)0.35.

For N ≥ 2200 and α = 3 and β = 0.3 we have that α−β−1
α−2β−2

= 4.25 < 4.33 ≈ (ln 2200)0.3.

For N ≥ 2500 and α = 2.9 and β = 0.3 we have that α−β−1
α−2β−2

≈ 5.33 < 5.78 ≈ (ln 2500)0.3.

These prime number lattices for factoring N vhave fairly large dimension n ≈ (ln N)α/(α ln ln N),
namely n ≈ 1.3 ·106 for N ≈ 2500 and n ≈ 8765 for N ≈ 250. However, experimental data show that
the inequality 0 < α−β−1

α−2β−2
< c = (ln N)β is excessively demanding. For N ≈ 214, α ≈ 1.865, c = 1,

β = 0, n = 100 we easily found 27 relations (7.2) using only the first 100 primes. This may indicate
that we can find relations (7.2) for factoring N ≈ 2750 using only the first 10000 = 104 primes.

Experiments by B. Lange, see the appendix. Let Bα,c be a prime base of the n = 125 smallest
primes, p125 = 691, and N ≈ 1014 ≈ 246.5 thus α ≈ 1.94. The target vector N has been added in
front of Bα,c. We multiply the real entries of Bα,c and N by 104 and round the products to the
nearest integer. Instead of solving CVP for Bα,c,N we solve SVP for L(N,Bα,c) and c ≈ 1 then

‖N−Bα,1‖2 ≈ 1
2
λ2

1(L(Bα,1) and rd(L(N,Bα,1)) ≈ rd(L(Bα,1))/
√

2
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Prime number lattices of maximal density. Consider a prime number lattice, where the prime 2 is ex-
cluded. Then Lemma 5.3 of [MG02] proves λ2

1 ≥ 2c ln N . Using that n = (ln N)α/(α ln ln N)(1+o(1))
and γn ≤ 1.744 n

2eπ
we see that

rd(L) = λ1√
γn(detL)1/n ≥

`
2eπ 2c ln N

1.744 n α ln ln N

´1/2
N−c/n.

A detailed calculation shows that the right hand side is maximal at c = n
2 ln N

. Using ln ln N ≈
ln(n1/α) = 1

α
ln n we get for this c

rd(L) ≥ (1.898 + o(1))/
√

ln n.

The density 4 of L satisfies 4 = rd(L)n2−nVnγ
n/2
n & rd(L)n2−n/

√
π n, since γn & n

2eπ
. Hence

1
n

log24 ≥ − 1
2

log2 ln n + log2(1.898/2) + o(1).

If the Minkowski lower bound γn ≥ n+ln n
2eπ

is close for large n (which is quite realistic) we even get

that rd(L) ≥ (1.506
√

1.744 + o(1))/
√

ln n and thus 1
n

log24 ≥ − 1
2

log2 ln n + log2(2.506/2) + o(1).
The prime number lattice achieves this fairly high density 4 for all dimensions n. Explicit construc-
tions of lattice sphere packings of higher density are only known for particular dimensions n.

History of the prime number lattice L(Bα,c).[S93] uses a lattice L(B′
α,c) with diagonal elements

ln pi.Adleman [Ad95] proposed the diagonal elements
√

ln pi of Bα,c translating the method of
[S93] from the ‖ ‖1-norm used in [S93] to the square norm.

.

8 Computing discrete logarithms for Z?
N via CVP solutions

We reduce the problem of computing discrete logarithms for Z?
N with N prime to solving n ≈

(ln N)α/(α ln ln N) heuristically easy CVP’s for the extended prime number lattice L(B̄α,c) with
α > 2β + 2 and c = (ln n)β . We follow the discrete logarithm algorithm of [S93, section 5].

Let the cyclic group Z?
N = 〈g〉 have generator g. As |Z?

N | = N − 1 the logarithm logg y of
y ∈ Z?

N to base g is the integer x ∈ [1, N − 1] such that y = gx. We use the extended basis
B̄α,c = [b1, ...,bn+1] ∈ R(n+2)×(n+1) of section 7, where bn+1, related to a large prime p̄n+1 ≈ Nc,
yields a nearly shortest vector

Pn
i=1 eibi − bn+1 ∈ L(B̄). We compute logg y from CVP-solutions

for the target vectors N̄ = (0, · · · , 0, Nc ln(N̄))t ∈ Rn+2, where N̄ = N/gy and gy = gjyk mod N ∈
[1, N − 1] for various j, k ∈ N.

Again we identify vectors b =
Pn+1

i=1 eibi ∈ L(B̄α,c) with u =
Q

ei>0 pei
i and v =

Q
ei<0 p−ei

i ∈ Z.

Adapting Theorems 2, 3 from B,N to B̄α,c, N̄ shows the following

Lemma 3. For a CVP-solution ‖b − N̄‖ = ‖L − N̄‖ we have that |u gy − vN | ≤ p
1/α+δ+o(1)
n if

there exists b′ =
Pn+1

i=1 e′ibi ∈ L(B̄α,c) with e′i ∈ {0,±1} such that the corresponding u′, v′ satisfy
|u′ gy − v′N | = 1 and ‖b′ − N̄‖2 = (2c− 1) ln N + 2δ ln pn.

Following the proof of Theorem 4 the vector b′ required in Lemma 3 exists for c = (ln N)β if
α > 2β +2 > 2 under the assumption that the equation |u′gy −du′gy/NcN | = 1 is for random u′ =
O(Nc) nearly statistically independent from the event that u′, du′gy/Nc are squarefree and (ln N)α–
smooth. We assume that a well reduced basis of L(B̄α,c) starts with the known nearly shortest lattice
vector, satisfies GSA and that N̄ satisfies CA for this basis. Then the CVP to minimize ‖b− N̄‖
for b ∈ L(B̄α,c) is polynomial time under the volume heuristics because rd(L(B̄)) = o(n−1/4), see
Theorem 6.
Computing the discrete logarithm from CVP-solutions. By Lemma 3 with 1/α + δ < 1 the CVP-
solution b =

Pn+1
i=1 eibi of ‖b − N̄‖ = ‖L(B̄α,c) − N̄‖ solves |u gy − vN | ≤ pn. Taking logg-values

on gy

Qn+1
i=1 pei

i − vN = u gy − vN =
Qn+1

i=0 p
e′i
i , with p0 = −1 and logg(−1) = (N − 1)/2, yields

logg gy +
Pn+1

i=1 (ei − e′i) logg pi = e′0
N−1

2
mod (N − 1) (8.1)

These linear equation in n + 2 unknowns logg pi, logg y where logg gy = j + k logg y. Under the ho-
momorphism logg : Z?

N → ZN−1 the multiples vN of N disappear. So we can determine logg y from
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n + 2 linearly independent equations (8.1) where gy = gjyk mod N ranges over various j, k ∈ N.

Conclusion. The discrete logarithm logg y of y ∈ Z?
N , N prime, can be computed in heuristic

polynomial time by solving about n + 2 < (ln N)α easy CVP’s for L(B̄α,c) and target vectors N̄,
α > 2β +2. These CVP’s are polynomial time under the volume heuristics and standard heuristics
if 0 < α

α−2β−2
< c = (ln N)β , a well-reduced version of B̄α,c satisfies GSA and CVP-solution for

the target vectors N̄ = (0, · · · , 0, Nc ln(N̄))t ∈ Rn+2 with N̄ = N/gjyk satisfy CA.

Acknowledgment. I am indebted to Phong Nguyen for pointing out inconsistencies and mistakes
in several prior version of this work. I like to thank G. Hanrot and D. Stehlé for adjusting and
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9 Appendix. Example Relations

Let N = 100000980001501 ≈ 1014. We give example relations (7.2) of the form |u−vN | ≤ p2
125 such

that u, v, |u − vN | are p125-smooth for p125 = 691. The examples show that there are much more
relations (7.2) than one would expect from the bounds of Theorems 4 and 5. New Enum generates
each of these relations (7.2) in just a few seconds on a current PC.

New Enum for SVP is applied to variants of BKZ-bases of L(N,Bα,c) with blocksize 20 / 32.
New Enum restricted to success probability βt ≥ 2−18 and pruned if βt < 2−18 performs in general
about106 stages, taking a couple of seconds per found relation (7.2). In order to find many relations
(7.2) we iterate New Enum over the Nc = N2` for ` = −4, ..., 10, and we let New Enum search
distinct parts of the enumeration tree. In these experiments c ≈ 1, β = ln c/ ln ln N ≈ 0 and α ≈ 1.94
are clearly smaller than required for Theorems 4, 6. Moreover rd(L(N,Bα,1)) ≈ 0.56 > n−1/4 ≈ 0.3
is larger than required for Cor. 3 and Theorem 6.
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u v |u− vN |

1. 3 · 52 · 7 · 17 · 29 · 101 · 103 · 109 · 127 · 151 · 181 61 · 167 22 · 503

2. 2 · 19 · 23 · 29 · 41 · 83 · 103 · 107 · 137 · 181 · 193 7 · 67 · 97 5 · 13 · 101

3. 22 · 3 · 23 · 41 · 79 · 97 · 131 · 151 · 211 · 239 5 · 173 17 · 31

4. 31 · 41 · 61 · 67 · 89 · 109 · 181 · 223 · 601 2 · 3 · 17 · 127 72 · 641

5. 32 · 5 · 29 · 31 · 37 · 61 · 73 · 79 · 97 · 181 · 191 · 461 7 · 41 · 113 · 251 2 · 167

6. 5 · 11 · 19 · 47 · 50 · 73 · 127 · 149 · 151 · 331 · 467 2 · 29 · 89 · 181 113 · 691

7. 2 · 3 · 5 · 31 · 37 · 59 · 97 · 103 · 173 · 199 · 233 · 239 11 · 23 · 29 · 53 107 · 307

8. 7 · 17 · 19 · 37 · 59 · 61 · 67 · 71 · 89 · 223 · 467 2 · 3 · 5 · 41 · 107 601

9. 2 · 3 · 7 · 11 · 71 · 103 · 127 · 137 · 293 · 389 67 13 · 167

10. 2 · 7 · 17 · 19 · 23 · 29 · 71 · 89 · 149 · 239 · 503 32 5 · 61

11. 112 · 13 · 23 · 29 · 37 · 41 · 67 · 89 · 113 · 131 · 191 53 · 61 · 89 2 · 19 · 653

12. 3 · 13 · 31 · 53 · 67 · 127 · 137 · 661 23 · 17 72 · 53

13. 22 · 5 · 19 · 23 · 29 · 37 · 67 · 149 · 173 · 251 · 263 11 · 71 · 389 32 · 367

14. 5 · 7 · 11 · 43 · 79 · 139 · 181 · 199 · 269 · 277 · 593 3 · 37 · 113 · 233 23 · 613

15. 22 · 11 · 37 · 59 · 61 · 83 · 89 · 137 · 181 · 223 · 229 · 359 7 · 19 · 53 · 103 · 271 113 · 401

16. 19 · 29 · 59 · 79 · 83 · 181 · 211 · 229 · 431 · 479 2 · 7 · 17 · 103 · 157 5 · 269

17. 112 · 13 · 43 · 53 · 59 · 73 · 79 · 157 · 163 · 197 72 · 17 · 103 · 173 · 313 2 · 97

18. 5 · 7 · 29 · 53 · 67 · 107 · 139 · 151 · 167 · 191 · 233 · 251 11 · 13 · 17 · 179 · 347 2 · 32 · 131

19. 2 · 3 · 31 · 59 · 73 · 157 · 197 · 199 · 227 · 233 · 263 · 281 11 · 37 · 97 · 167 · 293 · 349 52 · 379

20. 2 · 11 · 23 · 73 · 83 · 281 · 313 · 347 · 353 · 383 13 · 37 · 263 683

21. 3 · 5 · 23 · 37 · 67 · 79 · 103 · 107 · 127 · 191 · 229 7 · 19 · 311 2 · 233 · 383

22. 32 · 7 · 11 · 13 · 47 · 101 · 107 · 151 · 157 · 283 307 2 · 53 · 89

23. 3 · 41 · 61 · 103 · 107 · 163 · 197 · 239 · 367 17 · 137 23 · 5 · 13 · 59

24. 13 · 29 · 47 · 53 · 61 · 83 · 103 · 163 · 233 33 · 37 · 97 2 · 673

25. 5 · 7 · 31 · 41 · 67 · 167 · 191 · 211 · 229 · 421 83 · 233 2 · 32 · 13 · 181

26. 7 · 23 · 37 · 59 · 97 · 107 · 127 · 149 · 263 · 347 5 · 43 · 293 22 · 3 · 53 · 101

27. 5 · 232 · 29 · 83 · 101 · 163 · 197 · 199 · 337 61 · 227 22 · 3 · 13 · 67

28. 7 · 23 · 41 · 43 · 89 · 103 · 179 · 193 · 241 · 389 11 · 17 · 163 24 · 59 · 263

29. 7 · 17 · 23 · 73 · 107 · 167 · 179 · 197 · 271 · 503 13 · 43 · 307 2 · 163 · 577

30. 7 · 11 · 17 · 53 · 73 · 103 · 107 · 139 · 181 · 223 · 367 31 · 131 · 283 24 · 59 · 461

31. 112 · 13 · 23 · 29 · 37 · 41 · 67 · 89 · 113 · 131 · 191 53 · 61 · 83 2 · 19 · 653

32. 5 · 11 · 13 · 23 · 29 · 61 · 67 · 89 · 97 · 107 · 139 · 149 · 349 7 · 17 · 79 · 109 · 127 24 · 3 · 47 · 113

33. 5 · 13 · 19 · 23 · 29 · 37 · 47 · 109 · 127 · 179 · 307 · 571 11 · 31 · 71 · 257 22 · 3 · 17 · 283

34. 2 · 3 · 5 · 13 · 29 · 43 · 73 · 139 · 157 · 167 · 233 · 241 7 · 97 · 107 172 · 47
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u v |u− vN |

35. 5 · 11 · 31 · 41 · 43 · 53 · 257 · 271 · 313 · 373 2 · 3 · 17 · 127 19 · 449

36. 11 · 13 · 17 · 67 · 79 · 157 · 173 · 197 · 223 · 233 83 · 431 23 · 19 · 29 · 31

37. 2 · 3 · 72 · 53 · 61 · 97 · 109 · 139 · 227 · 277 · 313 · 577 43 · 71 · 223 · 233 13 · 73 · 251

38. 2 · 3 · 59 · 79 · 103 · 191 · 193 · 197 · 251 · 263 73 · 173 7 · 17 · 269

39. 3 · 23 · 41 · 43 · 107 · 113 · 179 · 211 · 269 · 277 11 · 53 · 71 210 · 251

40. 97 · 163 · 191 · 211 · 229 · 257 · 277 · 317 13 · 17 · 149 2 · 7 · 103 · 179

41. 3 · 11 · 37 · 43 · 53 · 113 · 131 · 139 · 167 · 233 · 251 23 · 41 · 593 22 · 7 · 647

42. 3 · 7 · 19 · 53 · 61 · 67 · 139 · 149 · 293 · 337 · 389 23 · 167 · 179 22 · 109 · 113

43. 7 · 11 · 23 · 47 · 59 · 113 · 163 · 199 · 269 · 349 3 · 43 · 131 22 · 19 · 439

44. 17 · 23 · 41 · 71 · 79 · 149 · 239 · 251 · 263 · 311 37 · 109 · 163 23 · 47 · 463

45. 32 · 23 · 29 · 37 · 97 · 131 · 229 · 263 · 523 7 · 127 23 · 59

Comments We spedify the lattice reduction and the lattice bases that provide these relations.
1. - 18. These relations result from BKZ-reduction with blocksize 20 /32 of the basis (N,Bα,c) of
dimension n = 126, followed by New Enum pruned to stages of success rate βt ≥ 2−18 and letting
Nc range over N/25 ≤ Nc ≤ N210. Relations 6. 7. 8. all result from BKZ-20 reduction of the same
input Nc = N ·10 and continued New Enum iteration. Relations 1. 10. 11 resp. 12. 17. 19. result
directly from BKZ-20, resp. BKZ-32 without invoking New Enum. New Enum’s time increases
with Nc, e.g., 48 seconds for Nc = N210, N211 for relations 14. 15., 76 seconds for Nc = N211,
relation 16 and 155 seconds for Nc = N216, relation 18..

In order to work with small numbers even for large c we iteratively increase N to 2N : multiply
the n + 1-coordinates of all basis vectors of the reduced basis by 2 and then resume the reduction.

19. Here Nc = N 218 yields large u, v.
20. We have increased the diagonal entries

√
ln pi of Bα,c to

√
2 ln pi for the first 50 primes 2, ..., 229.

The resulting relation (7.2) has 6 prime factors of u, v that are larger than 229.
21. - 24. The prime 2 has been eliminated from the prime base of Bα,c.
25. - 33. The primes 2 and 3 have both been eliminated from the prime base.
34. - 37. The primes 2, 3 have been eliminated but the non prime 6 has been added to the base.
38. The diagonal entries

√
ln pi of the basis matrix have been steadily increased for i < n.

39 - 45. The primes 2 and 5 have been eliminated from the prime basis.
40 - 42. The diagonal entries

√
ln pi of the basis matrix have been steadily increased for i < n.

Comparison with [S93]. [S93] reports on experiments for N = 2131438662079 ≈ 2.1 · 1012,
Nc = 1025 , c ≈ 2.00278 and the prime lattice basis with diagonal entries ln pi for i = 1, ..., n. The
larger diagonal entries ln pi require a larger c and this increases the time for the construction of
relations (7.2). The latter took 10 hours per found relation on a PC of 1993 per found relation.

Conclusions. Many more relations (7.2) should be obtained by eliminating from a previous input
basis that resulted in a relation (7.2) of the form |u− vN | ≤ p2

125 some prime factor of uv.
Interestingly 32 of the 45 relations above are relations for the first 100 primes 2,...,541. This

may indicate that we can factor integers of order 1014 by using merely the first 100 primes. Then
α = 1.865 would be sufficient for N ≈ 1914.

The v value of the constructed relations is clearly larger than the Nc−1 value of the given lattice
basis. For instance v of relation 19. satisfies v ≈ 2.57 · 106 · 218 = 2.57 · 106 ·Nc−1.

In fact this increases Nc by a factor 2.57 · 106. Therefore the c value of Theorems 4 and 6 must
be clearly larger than the c value of the given prime basis. This partly explains why the inequality
0 < α−β−1

α−2β−2
< c = (ln N)β required for Theorems 4 and 6 is to demanding.

Extrapolation for factoring larger integers N . If α = 1.865 is sufficient for factoring N ≈ 2750

then we can factor integers N ≈ 2750 by using the 10000 = 104 smallest primes. For n = 104 our
construction of relations (7.2) should still be feasable
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