Lineare Algebra I

Serie 9¹

Abgabetermin: Montag, 16.01.2006, 8^{15} Uhr.

V ist ein 3-dimensionaler Vektorraum über dem Körper K. Einen 1-dimensionalen affinen Unterraum $g \subseteq V$ nennen wir "Gerade", einen 2-dimensionalen $E \subseteq V$ "Ebene". g heisst parallel zu E, wenn der Unterraum von $g, U_g \leq V$, im Unterraum von $E, U_E \leq V$, enthalten ist, $U_g \leq U_E$.

1. Zeige:

- (a) $\mid g \cap E \mid > 1 \Rightarrow g \subseteq E$
- (b) $g \cap E = \emptyset \Rightarrow g$ parallel zu E
- (c) g nicht parallel $E \Rightarrow \mid g \cap E \mid = 1$.
- 2. Zeige: Wenn g, h nicht-parallele Geraden sind, dann gibt es genau eine zu g parallele Ebene durch h.
- 3. Zwei Geraden, die weder parallel sind noch sich schneiden, heissen "windschief". Zeige: Sind g, h windschiefe Geraden, dann gibt es genau ein paralleles Ebenenpaar E_g, E_k mit $g \subseteq E_g$, $h \subseteq E_n$.
- 4. Es seien $g, h \subseteq V$ windschiefe Geraden und E_g, E_h das parallel-Ebenenpaar von Aufgabe 3.

Zeige: Durch jeden Punkt $v \in V$ führt eine Gerade $l \subseteq V$, die sowohl g als auch h schneidet.

¹ auch als pdf-Datei im Internet unter: http://www.math.uni-frankfurt.de/~bieri/