Prof. Dr. R. Bieri WS 2002/2003

Frankfurt/M., den 15.11.2002

Algebra I

Serie 6¹

Abgabetermin: Montag, 25.11.2002, 8^{15} Uhr.

- 1. (a) Man finde einen surjektiven Homomorphismus $\varphi: D_{\infty} \to D_n$, bestimme den Kern und wende den 1. Isomorphiesatz an $(D_{\infty} = \text{Symmetriegruppe von } \mathbb{Z} \text{ in } \mathbb{E}^1)$.
 - (b) Verwende a und den 3. Isomorphiesatz, um in D_{mn} einen Normalteiler $A \cong \mathbb{Z}_n$ zu finden mit $D_{mn}/A \cong D_m$.
- 2. Es sei Z das Zentrum der Gruppe G. Zeige: Ist G/Z zyklisch, dann ist G Abelsch.
- 3. Es sei G die volle Symmetriegruppe des Würfels und $G_0 \leq G$ die Gruppe der orientierungserhaltenden Isometrien. Finde einen Homomorphismus $\varphi: G \twoheadrightarrow S_4$ (Diagonalen permutieren) und einen Homomorphismus $\psi: G \twoheadrightarrow S_3$ (Paare von Seitenmitten). Zeige $G_0 \cong S_4$ und $\ker \psi \cong V$ (Kleinsche 4-er Gruppe).
- 4. Es sei p eine Primzahl, $\mathbb{Z}(p^{\infty}) := \mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$ (additive Schreibweise). Zeige:
 - (a) die zyklischen Untergruppen $A_m := \operatorname{gp}(\frac{1}{p^m} + \mathbb{Z})$ dieser Gruppe $\mathbb{Z}(p^{\infty})$ haben p-Potenz-Ordnung und bilden eine aufsteigende Kette

$$0 = A_1 < A_2 < A_3 < \dots < A_m < \dots$$

und
$$\mathbb{Z}(p^{\infty}) = \bigcup_{m=0}^{\infty} A_m$$
.

(b) $\mathbb{Z}(p^{\infty})$ enthält keine weiteren Untergruppen!

¹ auch als pdf-Datei im Internet unter: http://www.math.uni-frankfurt.de/~bieri