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Introduction. In this note I will describe a constructive method to calculate the
representation of the automorphism group Aut(X) on the first homology group
H1(X) where X is a Riemann surface with many automorphisms. Therefore we
describe a combinatorial method to calculate a basis of H1(X), the matrices de-
scribing the action of Aut(X) on this basis and the intersection matrix S of this
basis. Clearly this is equivalent to the calculation of a symplectic representation of
Aut(X) of degree 2g where g ≥ 1 is the genus of X. There are various applications
for which the explicit calculation of these matrices are of interest. One application
is to get by a further splitting in two g–dimensional representation the action of
Aut(X) on the abelian differetials of the first kind. In some cases there is also the
possibility to calculate period matrices of the surface as fixed points of the action
of the symplectic representation on the Siegel upper half plane, cf. [Bol,Schi]. We
obtain the following generalization of a result in [Str]:

Theorem 1. The representation of Aut(X) for X with many automorphisms and
genus g ≥ 1 on H1(X) is a subrepresentation of the regular representation.

The proof of this result is fully constructive and the algorithm is implemented in
GAP [Gap] and can be obtained from the author. Lemma 1 and Lemma 2 also
appear in [Str] and are included for the convenience of the reader.

Part I

Let G be a finite group generated by two elements g0, g1, such that the inequality

q :=
1

k0
+

1

k1
+

1

k∞
≤ 1 (1)

is satisfied, where ki := ord(gi), i = 0, 1,∞ and g∞ := (g0g1)−1. This is the
natural situation one can find for Riemann surfaces with many automorphisms, i.e.
for any regular hypermap, see [JoSi, JSt, Wo]. We therefore want to describe the
construction of a Riemann surface X admitting G as a (sub)group of conformal
automorphisms. Let

∆k0,k1,k∞ := 〈γ0, γ1, γ∞ | γ
k0
0 = γk1

1 = γk∞∞ = γ0γ1γ∞ = id〉

be a Fuchsian or plane triangle group. For the following we fix the geometric action
of γi, i = 0, 1,∞. We want them to be anticlockwise rotations with rotation angles
2π/ki around the non accidental vertices of a canonical fundamental domain of the
triangle group ∆k0,k1,k∞ . We then define an homomorphism ϕ : ∆k0,k1,k∞ −→ G,
γi 7−→ gi, i = 0, 1,∞. The kernel of this epimorphism ker(ϕ) =: Γ defines a
compact Riemann surface X taking X := Γ\H for q < 1 or X := Γ\C for q = 1.
The genus g of X can be easily calculated by

2g − 2 := |G|(1− q). (2)

It is well known that Aut(X) ⊇ ∆k0,k1,k∞/Γ. In fact Aut(X) = ∆k0,k1,k∞/Γ is the
generic situation as Aut(X) ⊃ ∆k0,k1,k∞/Γ holds only if g = 1 or ifΓ is normally
contained in some triangle group which also contains ∆k0,k1,k∞ and this is quite
rare.

We now give a construction of the representation of ∆k0,k1,k∞/Γ on the first ho-
mology group H1(X) as a subrepresentation of the regular representation. This is
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a generalization of the construction in [Str] because no further restrictions to the
group G is necessary. Let V := 〈eg | g ε G〉 be a |G|–dimensional C–vector space.
A basis {eg | g ε G} is labeled by the group elements of G. We define two linear
representations ρ, λ on V . ρ stands for multiplication from the right and for any
group element h ε G we define ρ(h) on our basis {eg | g ε G} by:

ρ(h) : eg 7−→ egh, g ε G.

With λ we describe the analogous situation with multiplication from the left:

λ(h) : eg 7−→ ehg , g ε G.

Lemma 1 The eigenspaces Vi := Eig(ρ(gi), 1) of ρ(gi), i = 0, 1,∞ to the eigenvalue
1 have dimension |G|/ki. The space Vi is λ–invariant.

Proof. Let x =
∑
µgeg an element of Vi. This can be expressed in the condition

(Ai)

(Ai) : ρ(gi)x = x

or equivalently

(Ai) : x ε Vi ⇐⇒ µg = µggi for all g ε G.

Then it is easy to see that Vi is generated by the orbit of egi + . . . e
g
ki
i

under λ. As

an induced representation Vi has the decomposition⊕
g̃ ε G/Hi

〈eg̃gi + . . .+ e
g̃g
ki
i

〉,

where Hi := 〈gi〉, i = 0, 1,∞ is the subgroup of generated by gi. The character of
this induced representation is denoted by χi := Ind(1, Hi). �

Lemma 2 The following statements are true for i 6= j, i, j = 0, 1,∞
i) Vi ∩ Vj = 〈

∑
g ε G eg〉 ,

ii) dim(Vi + Vj) = |G|/ki + |G|/kj − 1 ,
iii) The character of the restriction res(λ, Vi + Vj) of λ to Vi + Vj is χi + χj − 1.

Proof. It is enough to prove i) as ii) and iii) are simple consequences of i). Let x =∑
µgeg ε Vi∩Vj. This implies that the conditions (Ai) and (Aj) hold simultaneously.

We therefore find for x:

µg = µggi for all g ε G

µg = µggj for all g ε G.

As G = 〈gi, gj〉 we find µg = µid for all g ε G. This proves the statements. �

Lemma 3: Let E be the |G| × |G| identity matrix. Then the following statements
are true:
i) dim((E − ρ(g1))V0) = |G|/k0− 1,
ii) (E − ρ(g1))V0 ⊥ V1 + V∞,
iii) dim((E − ρ(g1))V0 + V1 + V∞) = |G|(1/k0 + 1/k1 + 1/k∞) − 2,
iv)((E − ρ(g1))V0 + V1 + V∞)⊥ has dimension 2g. λ restricted ((E − ρ(g1))V0 +
V1 + V∞)⊥ is isomorphic to the representation of Aut(X) on C ⊗H1(X) and has
the character 2− χ0 − χ1 − χ∞.

Proof. i) The kernel of (E−ρ(g1)) is V1. From Lemma 2i) we know V0∩V1 = 〈
∑
eg〉.
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This shows the statement.
ii) V0 has a basis {

k0∑
s=1

eg̃gs0 | g̃ ε G/〈g0〉

}
.

The image of V0 under (E − ρ(g1)) is generated by{
k0∑
s=1

eg̃gs0 −
k0∑
s=1

eg̃gs0g1 | g̃ ε G/〈g0〉

}
.

We prove orthogonality to V∞ first. Let
∑k0

s=1 eg̃gs0 −
∑k0

s=1 eg̃gs0g1 ,
∑k∞
r=1 eggr∞ be

any two generating vectors of V0, resp. V∞.

〈
k0∑
s=1

eg̃gs0 −
k0∑
s=1

eg̃gs0g1 ,

k∞∑
r=1

eggr∞〉 =
k0∑
s=1

k∞∑
r=1

〈eg̃gs0 , eggr∞〉 −
k0∑
s=1

k∞∑
r=1

〈eg̃gs0g1 , eggr∞〉

=
k0∑
s=1

k∞∑
r=1

〈eg̃gs0 , eggr∞〉 −
k0∑
s=1

k∞∑
r=1

〈eg̃gs−1
0 g−1

∞
, eggr∞〉

=
k0∑
s=1

k∞∑
r=1

〈eg̃gs−1
0

, eggr∞〉 −
k0∑
s=1

k∞∑
r=1

〈eg̃gs−1
0 g−1

∞
, e
gg

(r−1)
∞
〉

The first equation is a consequence of the group relation g0g1g∞ = id. In the last
equation we have changed the summation index in the second sum from r to r− 1.
The entries in the occuring sums are always equal to 0 or 1. We find

〈eg̃gs−1
0

, eggr∞〉 = 1⇐⇒ g̃gs0 = ggr∞ ⇐⇒ g̃gs−1
0 g−1

∞ = ggr−1
∞

⇐⇒ −〈eg̃gs−1
0 g−1

∞
, eggr−1

∞
〉 = −1.

Therefore we have

〈
k0∑
s=1

eg̃gs0 −
k0∑
s=1

eg̃gs0g1 ,

k∞∑
r=1

eggr∞〉 = 0.

The orthogonality to V1 follows with the same type of argument. This shows ii).
iii) This is a simple consequence of ii) together with equality (2).
iv) There are two ways of proving the statements of iv). The first method uses a
theorem of Chevalley and Weil [ChW] which enables us to calculate how often a
given irreducible character χ occurs in Aut(X) on C⊗H1(X). It turns out to be the
same as the scalar product(χ, 2− (χ0 + χ1 + χ∞)). A detailed proof of this can be
found in [Str]. The second way is to construct a basis of ((E−ρ(g1))V0 +V1 +V∞)⊥

and give it a direct geometric interpretation as a homology basis of the Z module
H1(X) ie. as closed curves on X. We do this in part II and give also a method to
construct the intersection matrix for this basis. iv) follows from this construction.
�

Part II

To explain how to calculate a basis of the space ((E − ρ(g1))V0 + V1 + V∞)⊥ it is
more convenient to work with permutations. Let (g1, . . . , g|G|) be a fixed list of
group elements. Associated with this list we define a basis ei := egi , i = 1 . . . |G|.
The regular representations λ, ρ can then be expressed by permutations:

λ(g)←→ αg with ggi = gαg(i) and

ρ(g) ←→ πg with gig = gπg(i).
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for all g, gi ε G. For the following we only need the group generators g0, g1, g∞
which we have introduced in part I. Note that the indices 0, 1,∞ are introduced to
refer to the so called Belyi functions and have nothing to do with the ordering of
the above list where the same group elements appear again with a different label.
The triple (π0, π1, π∞) is called a regular hypermap. The triple (α0, α1, α∞) is the
automorphism group of the regular hypermap. It is known that the regular hyper-
map carries all the information one needs to construct a connected fundamental
domain of the group Γ from a fundamental domain of the triangle group ∆k0,k1,k∞

[JoSi]. This is equivalent to construct a decomposition of the surface X = Γ\H into
triangles. One can proceed as follows:

1. Take 2|G| triangles 41, . . . ,42|G| and label the vertices of each triangle4i with
0, 1,∞ in positive sense whenever i is odd and in negative sense when i is even.
In order to construct a fundamental domain we have to identify the edges of these
triangles in saying for instance the triangle i and the triangle j have a common edge
of type (0, 1). Another way to give the same information is to start a walk around
the vertex 0 of the triangle i in say positive sense and list all the triangles we are
passing by in order of appearance i, i1, i2, . . . , ik. Remark that an even triangle is
always followed by an odd triangle and an odd triangle by an even.

2. The situation we find for regular hypermaps allows us to start to construct reg-
ular 2k0–gons in putting all the triangles together with a common vertex 0. The
order of appearance is given by the permutation π0. In positive sense we meet the
triangles

[2i− 1, 2i, 2π0(i) − 1, 2π0, 2π
2
0(i) − 1, 2π2

0(i), . . . , 2πk0−1
0 (i) − 1, 2πk0−1

0 (i)].

3. We now have to deal with |G|/k0 many 2k0–gons to construct our fundamental
domain. The only remaining edges are of type (1,∞) as all vertices of type 0 are mid
points of the 2k0–gons. The permutation π1 encodes all the information we need to
identify those edges which are to be identified to obtain either a connected funda-
mental domain or even the surface itself. To construct the fundamental domain we
would start with any 2k0–gon. An anticlockwise walk around a vertex of type 1 of
say an even triangle 2i in this 2k0–gon brings us to the triangle 2π1(i) − 1. So we
get an identification with another 2k0–gon and we glue them along this (1,∞)–edge
together which leaves us with one remaining 2k0–gon less. It is quite clear that
we can repeat this procedure as long as we have remaining 2k0–gons and that we
finish with a connected fundamental domain of our group Γ. But we have not used
all the information we can get from π1 as it also reveals all the side identifications
of the so constructed fundamental domain. In the following picture we show all
the adjacent triangles of the triangle pair 42i−1,42i and it is obvious that this is
enough information to construct the surface X.
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Algorithmically the gluing together process can be described by inserting lists like

[2π−1
∞ (i) − 1, 2π−1

∞ (i), 2π0(π−1
∞ (i)) − 1, . . . ]

which represents a 2k0–gon into a starting list [2i− 1, 2i, . . . ]. The result is

[2i− 1, 2i, [2π−1
∞ (i) − 1, 2π−1

∞ (i), 2π0(π−1
∞ (i)) − 1 . . . ] . . . ]. (3)

Repeating this process until we have placed all the 2k0–lists we will end up with
a list L with entries either natural numbers or lists of natural numbers and this
characterization holds at each level. This simply means that every entry of each
list which is a list contains natural numbers and lists of natural numbers. This list
L clearly is a precise description of the fundamental domain FΓ.

4. Now we associate to each triangle 4i a directed edge ci joining 1 and ∞.

0 0

1 1∞∞

2i− 1 2i

> <
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With the help of this directed edges we get a new interpretation of the list L.
Reading the indices appearing in L from the left to the right and ignoring the
different levels of the list we obtain a walk around the fundamental domain FΓ.
Therefore we need to go −ci when i appears and when i is even and ci if i appears
and i is odd. If we realize this walk on the surface X we have a 0–homotopic
closed curve which can be thought to be the border of the fundamental domain FΓ

cancelling subsequently edges if they differ only by their orientation. According to
the list (3) a part of the border of the fundamental domain FΓ would look as follows.
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∞ (i) − 1

2π−1
∞ (i)

<

5. In order to describe a basis of H1(X) we consider all the side identification which
we obtain through π∞. We know that the (1,∞)–edge of the triangle 42j−1 has
to be identified with the (1,∞)–edge of the triangle 42π∞(j). Therefore we find
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a closed curve w on X which is represented by a curve w2j−1 cutting through FΓ

and connecting the midpoints of the (1,∞)–edges of both of the triangles. The
convention to start at a mid point of a (1,∞)–side is not necessary. One also
could start at the ∞–point of the triangle 42j−1 as shown by the picture below as
both curves are freely homotopic. But then it is obvious that this curve w2j−1 is
homotopically equivalent to a curve

∑
±ci along the border of FΓ. Which way to

go can be easily read off by the list L. We just have to go all the ci with i standing
in L in between 2j − 1 and 2π∞(j). It is also obvious that any closed curve on X
can be deformed such that it meets the border of FΓ only transversally. Therefore
{w2j−1|1 = 1, . . . , |G|} contains a basis of H1(X).
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6. If we wish to choose a basis of H1(X) in {w2j−1|1 = 1, . . . , |G|} we best consider

the intersection matrix S̃ = (w2i−1·w2j−1)i,j=1,... ,|G|. Like every intersection matrix

S̃ is skew symmetric. From our construction it is clear that w2i−1 and w2j−1 meet
at most once. Therefore the entries of S are either 0 or ±1. (This answers a
question of Rodriguez and Riera [RiRo]. They observed that in all known examples
of explicitly constructed intersection matrices the entries only consist of 0,±1. But
this automatically happens if you choose to construct a homology basis in the
described manner, i.e. as paths along the border of a fundamental domain.) Again
the list L gives all the information one needs to calculate the intersection number
as the list gives an ordering of the border of FΓ. The whole task of choosing a
basis therefore is to choose a submatrix S of S̃ with maximal rank which clearly
is 2g where g is the genus of X. Therefore we can define a basis vk := w2jk−1,
k = 1, . . . , 2g where S = (w2jk−1 · w2jl−1)k,l=1,... ,2g = (vk · vl)k,l=1,... ,2g.

7. We now return to the notations of part I to give the connection of the construction
above to the space ((E−ρ(g1))V0+V1+V∞)⊥. We map the curves ci, i = 1, . . . , 2|G|
into the space 〈eg |g ε G〉. This will be done by the definition c2i−1↔ egi . Note that
c2i−1 = c2π∞(i). By this definition we can map H1(X) into the space 〈eg |g ε G〉.
An interesting space is V1. A generating element of V1 is of type say egi + egig1 +
· · ·+ e

gig
k1−1
1

. This element is the image of a directed star c2i−1 + c2π1(i)−1 + · · ·+
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These are all directed edges which start at the point of type 1 of the triangle42i−1.
Let w be the image of w ε H1(X) under the above embedding. The scalar product
〈w, egi+egig1+· · ·+e

gig
k1−1
1
〉 simply counts how often any of the edges of the directed

star c2i−1 +c2π1(i)−1 + · · ·+c
2π
k1−1
1 (i)−1

are used counting a going in negatively and

a going out with a positive sign. Therefore 〈w, egi + egig1 + · · ·+ e
gig

k1−1
1
〉 = 0 as

w is closed. We see that w is an element of V ⊥1 . The same argument shows that
w ε V ⊥∞ . Therefore the images of the above constructed basis v1, . . . , v2g ε H1(X)
automatically fall in (V1 + V∞)⊥. The generating elements of (E − ρ(g1))V0 are
of type egi − egig1 + egig0 − egig0g1 + . . . + e

gig
k0−1
0

− e
gig

k0−1
0 g1

. This is the di-

rected border of a 2k0–gon from which we have bild up the fundamental domain
FΓ. Therefore the associated closed curve in H1(X) is 0. The basis v1, . . . , v2g

project therefore uniquely and well defined to the vector space elements v1, . . . , v2g

in ((E−ρ(g1))V0 +V1 +V∞)⊥ with a well defined intersection matrix S. This finally
shows iv) of Lemma 3 and Theorem 1.
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