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Abstract. The main subject of this survey are Belyi functions
and dessins d’enfants on Riemann surfaces. Dessins are certain
bipartite graphs on 2-manifolds defining there a conformal and
even an algebraic structure. In principle, all deeper properties
of the resulting Riemann surfaces or algebraic curves should
be encoded in these dessins, but the decoding turns out to be
difficult and leads to many open problems.

We emphasize arithmetical aspects like Galois actions, the re-
lation to the ABC theorem in function fields and arithmetic
questions in uniformization theory of algebraic curves defined
over number fields.

Dessins d’enfants have their origin in Grothendieck’s Fsquisse d’un
programme [G] from 1984. In the meantime they turned out to be a
fascinating source of links to many fields of mathematics like Inverse
Galois Theory, Teichmuller Spaces, Maps and Hypermaps, Mathematical
Physics or even Dense Circle Packings on 2-Manifolds. This survey makes
a special choice, but it contains basic material and references for further
studies in all directions. It should be accessible and useful (I hope) for all
mathematicians interested in function theory and/or arithmetics e.g. as a
base for a seminar or a graduate course. Aspects of algebraic geometry are
presented in a rather oldfashioned way — at the price that some proofs are
omitted or only sketched.

The paper grew out of lectures given in Southampton, Vilnius and on the
ELAZ conference, of an old preprint [Wo0] partly published in [CoWo]
and [CIW], and of an unpublished manuscript written in german for
graduate students. Besides of some examples, some new aspects and
proofs (e.g. of Thm. 5) most of the content of this paper is known.
For important hints and improvements of earlier versions I am grateful

to F. Berg, B. Kock, D. Singerman, J. Steuding, M. Streit and R. Remmert.
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1. ABC for polynomials — a motivation from number theory

One of the most important contemporary Diophantine problems is the
abe congecture formulated first by Oesterlé and Masser in 1985. In its
simplest form it can be stated as follows.

CONJECTURE. All coprime integers a,b,c satisfying
a+b+c =0

are bounded by a small power of the kernel K := Hmabcp, i.e. the product
of all prime divisors of abc not counting multiplicities, more precisely: For
any € > 0 there is a constant C. such that

max{|al, |b],]c|} < C. K'*®.

In the meantime many generalizations and more sophisticated versions
arose from this conjecture. For these, for the history of the problem, for
many consequences and examples see Nitaj’s homepage [Ni]. One of the
reasons to believe in some form of this conjecture is the fact that an ana-
logous statement was proven for function fields already some years before
by W.W. Stothers [Sto] and then in much more general form by R. Ma-
son [Mas]. It can be formulated for arbitrary genera and arbitrary fields of
constants, see Chapter 7 of [Ro], but we present here the simplest version
only.

THEOREM 1. Let A, B,C be coprime polynomials in Clz], not all con-
stant, and satisfying A+ B+C =0. Lel ng:=[{d € C|ABC(6) =0} be
the number of zeros of ABC', i.e. the degree of the kernel K :=[[(z —4§),
the product running over all prime factors of ABC' not counting multipli-
cities. Then we have

max{deg A,deg B,deg C'} < ng .

We give a very elementary argument due to Serge Lang [La]: Let

A= G{H(.L —a)", B:= ﬂH(JJ —06;)™, Ci=x H(.L — 7k)lk
be the decompositions into linear factors with disjoint sets of zeros
{a:}, {6;}, {7} . Without loss of generality, we may suppose that deg A =
>~ n; is the maximal degree of A, B,C'. Put f:=—-A/C, g:= B/C. Then
we have

—f+g+1=0, hence f'=4g,

and
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We multiply above and below with the kernel K = Hi7j7k($ —a;)(z—pj)(z—
v&) of degree ng and observe that in each term of the sums involved precisely
one linear factor cancels. We obtain therefore

A n(x)
B d()’
with polynomials n and d both of degree < ng. Unique factorization in
C[z] shows therefore deg A < ny .

The argument shows in particular the advantage of treating function
fields instead of number fields: differentiation provides a powerful addi-
tional tool. The consequences of the ABC theorem are parallel to those in
the number field case, e.g. Fermat’s Theorem for functions, here for poly-
nomials. And as in the number field case, we are interested in the limits of
Theorem 1, 1.e. in the question if it gives a sharp estimate. In the termin-
ology of the proof above, this estimate would be sharp if deg A =ny—1.
This is true if and only if degn =ng—1,1.e. if two conditions are satisfied:

1. ij 75 Zlk, le. degB 7é degC’

2. n and d are coprime.

Now observe that for all 7, 5, k
n(a;) =0, n(B;)#0, n(w)#0

dla;) #0, d(B;) =0, d(w)#0,
since e.g. n(8;) = m; [L;(8; — i) [1;;(8; — By) [1,(8; — ) # 0 the

a;, B,y all being pairwise distinct. Common factors of n and d therefore
cannot have zeros which are zeros or poles of f and ¢g. If n and d are not
coprime, their common factor has zeros of f’ = ¢’ outside the zeros of
the kernel K. Taking into account that the f-preimages of 0, 1, co are
precisely the «;, the 8; and the ~;, we have the following result (Zannier
7a]).

PROPOSITION 1. Let A, B,C, be coprime polynomials in Clz], not all
constant and satisfying A+B+C =0. Let ng:=[{d € C|ABC(§)=0}].
Then,

max{deg A,deg B,deg C'} = ny—1

implies that the meromorphic function [ = —% is ramified at most above
0,1,00.

We remark in passing that our assumption that A is of maximal de-
gree among A, B, is not needed for this statement because the func-
tions —C/A, —B/C have the same ramification property. Note also an-
other reason for the first condition deg B # deg(C' in the critical cases:
at least one of both polynomials has the same degree as A, and an easy
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argument of Vaserstein [V] shows that the other has degree < ng—2. Pro-
position 1 holds for much more general situations ([Za], [Ro]), giving a first
justification for the following

DEFINITION 1. A non-constant meromorphic function 3 : X — C =
P'(C) on a compact Riemann surface X is called a Belyi function if it
ramifies at most above three points. (If not stated otherwise, we will assume
these three critical values to be normalized as 0,1, 00.)

In this terminology we have the following converse to Proposition 1.

PROPOSITION 2. Let 3 : C — C be a Belyi function, written as 3 =
—A with coprime polynomials A,C . Suppose B € C[z] to be defined by

c
A+B+C =0,
and suppose oo lo be a ramification point of 3. Then
max{deg A,deg B,degC} = ng—1 = |{§ € C|ABC(§)=0}|—1.

We can follow the arguments for the proof of Proposition 1. The
condition deg B # degC is equivalent to 3(cc) = 1 or oo and implies
the claim of Prop. 2 with ng —1 = deg A. In the case 3(c0) =0 replace
( by the Belyi function 1—3 and use again the arguments for Proposition 1.

2. Dessins d’enfants on Riemann surfaces

2.1. Belyi’s theorem. For a direct application of Belyi functions to
number theory see Elkies’ work [El] about the impact of the abc conjecture
on the Mordell-Faltings theorem. Here we will consider another reason why
Belyi functions are important for arithmetics.

Recall that nonsingular algebraic curves in a projective space P"(C)
are compact Riemann surfaces. This is known already by Riemann’s
fundamental [R] work on abelian functions, and in principle he knew also
that the converse is true, i.e. that every compact Riemann surface is
isomorphic to a smooth projective algebraic curve over C. Still it was a
long way up to a conclusive proof: nowadays we may consider it as an
equivalence between categories, a special case of Serre’s GAGA-principle.
We will make free use of this equivalence, e.g. considering holomorphic
mappings between compact Riemann surfaces as rational mappings between
projective algebraic curves. However, in this equivalence are hidden some
solved and unsolved problems, the subjects of the present paper.

A fundamental problem can be described as follows. Can function the-
ory give conditions under which a compact Riemann surface X — as an
algebraic curve — is defined over a number field? In other words, when can
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X be defined by algebraic equations with coefficients in Q by choosing ap-
propriate coordinates in P" 7 Or in other words again, when is it possible to
write the function field of X as C(X) = C®p F(X) for some function field
F(X) with constant field F C Q? We begin by stating the fundamental
and simple answer of Belyi ([B1], 1979).

THEOREM 2. Let X be a smooth algebraic curve in P*(C). The follow-
ing statements are equivalent.
A) X is defined over a number field.
B) There exist Belyi functions 3 on X .

Of course, we want to have the field of definition F' of X (and ) as
small as possible, but we postpone this more sophisticated question as well
as the proof of Theorem 2, see Sections 2.4 and 4.4.

2.2. Examples. Since P' is defined over Q we should expect the
existence of Belyi functions according to Theorem 2. There are in fact
many series of Belyi functions. We will discuss only two of them.

ExampLE 1. B :P' — P, B(z) := 2" for a positive integer n. We
may visualize the topological behavior of 3 by the S-preimage of the real
interval [0,1] as given in Figure 1 for n = 6.

FIGURE 1. [0, 1]-preimage of 3(z) = 2°

EXAMPLE 2. Let 3:P' = P! be the function

B(z) = T,)(2)
where T, is the n—th Tchebychev polynomial defined by the property

L J
D
L J
D
L J
D
L J
D
L J
D
[ J

Ficure 2. Topological [0, 1]-preimage of §(z) = TZ(z)

To(cos@) = cosnf. Up to an homeomorphism (710,1] looks like the

picture given in Figure 2 where the black vertices indicate the preimages
coskm/n of 1 and the white vertices the preimages cos W of 0. We
will see in Proposition 3 that only the topological structure of this graph

5
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and its embedding into the surface are important.

ExamMpPLE 3. There are not only polynomial Belyi functions, of course.
The rational function
4 (1 —z+ 2%)3
By o= o L EEE)
27 22 (1 —=z)
is well known in modular function theory, describing the relation between
the elliptic modular invariant 7 and Legendre’s A—function. Figure 3 shows
again (37'[0,1]. Ramification points of 3 are the double poles in 0, 1, oo,
the triple zeros in (1 £+/=3) and the double zeros of g —1 in —1, 1, 2.

’ 90

F1GURE 3. [0, 1]-preimage of 3, Example 3

These simple examples already show some principles valid for all Belyi
functions.

1. B7'0,1] is a connected graph on the surface X .

2. The p—preimages of 0 and 1 become the respective white and black
vertices of the graph. With this convention we obtain a bipartite
graph, i.e. every white vertex has only black neighbour vertices and
conversely. The edges are the connected components of 3710, 1].

3. The valencies of the graph in the vertices are the ramification orders
of 3 in these points, i.e. above 0 and 1 respectively.

4. The graph cuts X into simply connected open cells. Each cell contains
as “center” precisely one pole of 3, and the order m of this pole (the
ramification order above oo ) corresponds to the valency 2m of its
cell. In other words, the cell is bounded by 2m edges, m white and
m black vertices. Caution: if — as in Examples 1 and 2 — edges or
vertices belong at both sides to the same cell, they have to be counted
twice.
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As an illustration, we continue with two examples for Belyi functions
on elliptic curves.

EXAMPLE 4. (F. Berg) Let X = X(cos ) be given by the affine
equation
y? = (x—=1)(z+1)(z — Coslﬂ).
Then B(z,y) = TZ(x) is a Belyi function on X where T5 is the Tchebychev
polynomial we met already in Example 2. The ramification behaviour of 3
can be visualized according to the composition of maps

(z,y) = z — TSQ(JC)

The first mapping is ramified of order 2 above the points z = 0o, 1, —1 and
cos =, and for the second consult Example 2. The bipartite graph then has

10 °

the topological shape described in Figure 4 on the torus X . If we cut the

FIGURE 4. [0, 1]-preimage of §(z,y) = TZ(z) on X(cos ;)

torus along the edges we may use it in the euclidean or Gaussian plane as
fundamental domain of the universal covering group, i.e. in our case of a

FIGURE 5. [0, 1]-preimage of 3(z,y) = TZ(z) on X(cos &)
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lattice of translations. In this picture the bipartite graph looks like Figure
5 where the opposite sides have to be identified to obtain again the graph
on the torus. Besides a zero of order 4 in the point
s
('Iv y) = (COS Ev 0)
we have as ramification points only double zeros of 3 and 3 — 1 and one
pole of order 20.

ExAaMPLE 5. On the elliptic curve with the affine equation
1

\3/5)

(real third root) B(z,y) = 42°(1—2") is a Belyi function. The ramification

of # can be understood by decomposing [ into the maps

y* = z(x—1)(z —

(z,y) = z = 2° — 42°(1 — 7).

If we determine the preimage of the [0,1]-interval following these maps
backwards step by step, we obtain a bipartite graph homeomorphic to that
one given in Figure 6 (again, opposite sides have to be identified). For
example the zero of order 6 and the 1-point of order 4 are the points

1

(z,y) = (0,0) and (3—\/§

,0), respectively.

P

FiGURE 6. 37'0,1] on the Torus of Example 5

2.3. Children’s drawings — dessins d’enfants. The structure of
these bipartite graphs is simple, and Grothendieck [G] pointed out that
they encode important information about the curve X . So we follow his
proposal introducing the following terminology.

DEFINITION 2. Let M be a compact oriented 2-manifold and D a bi-
partite graph on M such that M — D is a disjoint union of simply connected
open sets. Then D is called a dessin d’enfant on M .
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Grothendieck introduced this terminology for an even simpler class of

Belyi functions and graphs: if 8 has ramification order 2 in all preimages
of 1, i.e. if D has valency 2 in all black vertices, we may omit these black
vertices and consider D as the usual connected graph on M cutting M
into simply connected open cells. In this case we call § a clean Belyi
function and also the resulting dessin a clean one. We can always get
this simplification replacing # by 48(1 — ). On the other hand, this
simplification has some disadvantages like doubling the degree, so we will
not use it in the sequel.
The notion of dessins presented here has also some disadvantages. Tt does
not reflect the equal right among the three types of ramification points
above 0, 1, co: as already mentioned in Section 1, we may replace (3
by 1 — 3 or by 87! interchanging the colours of the vertices of D or
interchanging white vertices and centers of the faces of D, respectively.
These equal rights are better reflected in the language of hypermaps, see
[JS2], [JS3], but then the drawings become more complicated. For several
reasons there is still no standard terminology for dessins, so we will use the
definitions given here.

Why does the definition speak about 2-manifolds only and not about
Riemann surfaces? The answer is given by the following striking fact, first
pointed out by Grothendieck [G] but proven essentially before by Jones and
Singerman [JS1] and independently by Malgoire and Voisin [MV].

PropoOsITION 3. Let M be a compact oriented 2—mantfold with dessin
d’enfant D . Then there is a unique conformal structure on M and a Belyi

function 3 on M such that D = 37'[0,1] is the dessin belonging to 3.

According to Theorem 2 M is then not only a Riemann surface but
moreover a smooth projective algebraic curve defined over Q. We will give
an idea of the proof in Sections 3.5 and 3.6. For the moment, we continue
with some complements to the definition.

DEFINITION 3. The dessin D on the 2-manifold M is called uniform if
all white vertices, all black vertices, all cells have the same valency p, ¢, 2r
respectively. Tt is called regular if the automorphism group of D acts trans-
itively on the set of edges. By an automorphism we understand a graph
automorphism of D preserving the colours of the vertices and resulting from
the restriction of an orientation preserving homeomorphism of M onto itself.

Examples 1 and 3 above are in fact regular dessins. Some comments
concerning Definition 3 are in order. Every automorphism of the dessin is a
graph automorphism of D but the converse is not true in general. Regular
dessins are uniform but again the converse is not true in general: in genus
2 there are 11 non—isomorphic regular dessins (for a list see e.g. [Wo2]),
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but more than 500 non-isomorphic uniform dessins, see [SSy2]. We may
complete Proposition 3 by saying that every automorphism of D can be
considered as restriction of an automorphism of the conformal structure
of M and that regular dessins belong precisely to Belyi functions defining
normal (ramified, of course) coverings 3: M — P' | see Theorem 4 in Sec.
4.6. One may even show that on any smooth algebraic curve X defined over
Q and of genus ¢ > 1 there is a dessin having Aut X as automorphism

group.
2.4. Proof of A) = B).

LEMMA 1. Let X be a Riemann surface, f : X — C a non—constant
meromorphic function, W the set of ils critical values, i.e. the images of
the ramification points of f, and let g : C — C be a nonconslant rational
function with critical values in the set V. Then the critical values of go f
are contained in VU g(W).

The PROOF of this lemma is evident. We use it as follows. On a curve
X defined over a number field F' take a rational function f defined over F
and observe that the critical values of f consist of finitely many algebraic
numbers and perhaps oo . There is a minimal polynomial g of these algebraic
numbers, defined over Q and of degree m > 1, say. Then the critical values
of go f are 0,00 and at most m — 1 algebraic numbers of degree < m —1.
As g-images of the zeros of ¢ € Q[z] this set of critical values is even
invariant under algebraic conjugations, its minimal polynomial over QQ has
therefore some degree < m — 1. Therefore we can iterate the procedure to
decrease the degree of the critical values and obtain finally

LEMMA 2. Suppose that the smooth projective algebraic curve X 1is
defined over a number field. There is a rational function on X whose critical
values are contained in Q U {oc}.

For the next step Belyi [B1] uses induction again which leads in concrete
examples often to very complicated Belyi functions. For this part of the
proof there are now several alternatives like e.g. [B2]. Here we follow an
idea by Leonardo Zapponi [72] relying on a simple identity between rational

functions.
LEMMA 3. Let r,...,r, € Q be pairwise different and put
-1
yi = ([ (i =r))™".
i#i

Then we have

10
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Proor. Counsider the polynomials p(z) = [[;(x — r;) and

g(z) = p(2) Y L =Ny [[(e—r) € Q.

— T =Ty . oy
z 7 JF£e

Then degg <n—1 and ¢(r;) =...=q(r,) =1, therefore g(z)=1.

For the PROOF of part A) = B) of Theorem 2 we use Lemma 2 to
construct a meromorphic function on X with critical values at most oo and

some 71q,...,1, € Q. Let N be the least common denominator for the
numbers y; in Lemma 3. That means a; := Ny; € Z, and the rational
function

gle) = [« =r)" € Qo)

7

g(z) a; Ny, N
B zz_:x—m _Zx—n T

g9(z) ; iz —ri)

according to Lemma 3. Therefore ¢ is ramified at most in co and in the r;.
By Lemma 1, g o f has at most 0, 1, oo as critical values.

satisfies

3. Uniformization

3.1. Covering groups and arithmetic. As usual we consider
Riemann’s generalized mapping theorem as main theorem of uniformiza-
tion theory, saying that every simply connected Riemann surface is biholo-
morphically equivalent to C, C or the unit disc U which we may replace
by the upper half plane H. By construction, the universal covering U of a
Riemann surface X has the structure of a simply connected Riemann sur-
face. Therefore we can write X as quotient space I'\U where I denotes the
covering group of X , acting discontinuously and without torsion on U . In
the case I = C we have trivial I', for X compact of genus 1, i.e. for elliptic
curves, we have U = C and T is the translation group of the period lattice,
and for compact Riemann surfaces of higher genus we have U = H and
I' C PSR a cocompact torsion free Fuchsian group, sometimes called a
surface group. In the following, we will often admit torsion, in other words
we will admit ramified coverings by the upper half plane.

The aim of uniformization of Riemann surfaces is to replace their function
theory by function theory in a simply connected region. Unfortunately, uni-
formization is not very explicit: in general it is very hard to determine the
covering group of some curve of genus g > 1 by giving e.g. their generators
in explicit matrix form, see e.g. [Se]. And conversely, given a Fuchsian group
I' by matrices, it is in general difficult to write down the defining equations

11
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of the curve X = I'\H. In special cases like Klein’s quartic which played an
important role for the history of uniformization theory both problems are
solvable. Why are we here in a better position? This became understand-
able by Belyi’s theorem. To this aim, we will present it in another version
but first we recall an arithmetic question related to the uniformization of
smooth projective algebraic curves X of genus g > 1. In which cases is
X defined over Q and at the same time the covering group I' — at least
after a suitable conjugation in PSLyR — is contained in PSLy(R N Q) ?
The Chudnovsky brothers ([Chu], Section 7) have a very general conjecture
saying in this special case: These should be those curves whose covering
group I' is arithmetic (see [Bol, [Ka] or [MR]) or a subgroup of some tri-
angle group. Triangle groups share even more interesting properties with
arithmetic groups, compare [CoWo|, and have a special meaning for dessins
whence we will define and discuss them in a moment.
As an illustration for this kind of questions let’s have a short look on the
case of elliptic curves. There, the two conditions that

e X is defined over Q and

e its covering group, i.e. its period lattice I' C C, can be chosen in Q

are satisfied simultanuously if and only if X has complex multiplication

(Th. Schneider [Schn]).

3.2. Triangle groups. If p,q,r are positive integers such that

1 1 1

-+ -+ - <1,

p q r
take a hyperbolic triangle in H with vertices P,Q, R and angles
7/p, w/q, m/r. The triangle is uniquely determined by these angles up
to orientation and hyperbolic transformation. (If the sum of the angles is
=m or > we get euclidean or spherical triangles and define in the same
way as below euclidean or spherical triangle groups acting on C or C.)

R

P P
Q

FIGURE 7. Fundamental domain of a triangle group in the
unit disc with center R, signature < 12,6,6 >

12



DESSINS D’ENFANTS

Let 70, 71, 7o be hyperbolic counterclockwise rotations around P, @), R
with angles 27 /p, 27/q, 2m/r . Then they generate a triangle group A with
presentation

<YV Yoo | W0 = = Voo = YoM Voo = 1>,

acting discontinuously on the upper half plane H. A fundamental domain
of A can be given as the union of the triangle PQR with a triangle
constructed by hyperbolic reflection in one side as e.g. P'QR in Figure 7
(the drawing is given in the unit disc U instead of H, and without loss of
generality we take R as center of U).

Up to conjugation in PSLyR ., the triangle group A is uniquely determined
by p,q,r whence we replace the letter A often by its signature < p,q,r >.
One can admit as well triangle groups for which e.g. P or other vertices lie
on the border of the upper half plane, then as a cusp with angle 0. Then
we define p := oo and omit the relation 75 = 1 from the presentation —
7o becomes a parabolic element with fixed point P — and proceed as in
the case p € N. Here the quotient space A\H is no longer compact and
sometimes has to be compactified. Therefore we will concentrate in the
following on the cocompact triangle groups, i.e. those without cusps.

There is a classical isomorphism
A\H = C

defined by the j—function for the group A. This function can be defined by
Riemann’s mapping theorem as a biholomorphic mapping of the open tri-
angle PQ R onto the upper half plane H, normalized by sending P, @, R to
0,1, 00 respectively. By Schwarz’ reflection principle we can continue j ana-
lytically to the reflected triangles and by successive reflection in the border
sides of all A-images of the fundamental domain finally as a meromorphic
function on H. Clearly j is a A—automorphic function, i.e. satisfies

Jj(yz) = j(z) forall zeH,yeA,

and is locally biholomorphic everywhere outside the A-images of P,Q, R,
where it has zeros, 1-points and poles of orders p,q,r respectively. The
boundary sides of the triangle and all their A-images form the j—preimages
of R.

Another possibility to define j is to use the hypergeometric differential equa-
tion with monodromy group A: the quotient of two linearly independent
solutions is the Schwarz triangle function, mapping — suitably normalized
— the upper half plane onto the open triangle PQR. Its inverse function
is 7. This is the main ingredient for the following useful variant of Belyi’s

theorem, first published in [Wo0], [CoWo], [CTW].

13
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3.3. Belyi functions and uniformization.

THEOREM 3. Let X be a smooth algebraic curve in P*(C). The follow-
ing statements are equivalent.
B) There exist Belyi functions 3 on X .
C) There is a subgroup I' of some triangle group A such that X = TI'\H.

PRrROOF of C) = B). A Belyi function on X is given by
MNH - A\H - C: Tz~ j(z2).

For A =< p,q,r > the ramification orders above 0,1,00 divide p,q,r,
respectively.

PROOF of B) = C). Suppose we have a Belyi function 5 on X whose
ramification orders above 0,1,00 divide p,¢q,r, respectively (w.l.o.g. with
sum of the inverses < 1). Consider the triangle group A =< p,q,r > and
its j—function. Outside of its ramification points, 3 is locally biholomorphic,
therefore in any simply connected domain inside C — {0,1,00} there is a
holomorphic branch of 3~'. We cannot continue this branch analytically
to C across the singularities 0,1,00 but we can continue the composition
B~Y o j along any path in H since the multiplicities of the values of j are
multiples of the respective ramification orders of 3. Using the monodromy
theorem we can even define 37' o j globally as a covering map H — X
whose covering group I' is contained in A by construction. This proves

Theorem 3.

The covering map constructed here is unramified only if p,q,r are the
respective precise ramification orders in every ramification point of 3 above
0,1,00. If we choose in this case A =< p,q,r > we obtain just the
universal covering group of X . As a consequence concerning our initial
problem in uniformization theory we obtain

PROPOSITION 4. The universal covering group I' of a smooth algebraic
curve X C P"(C) of genus g > 1 is conlained in a triangle group if and
only if X has a uniform dessin.

This proposition remains true for genera 1 and 0: observe that for g = 1
the valency triples of uniform dessins lead to the signatures of euclidean
triangle groups

<3,3,3>, <2,3,6>, <2,4,4>

(for the resulting curves, see [SSyl]), and that for ¢ = 0 uniform dessins
correspond to the well known spherical triangle groups already classified
by H.A. Schwarz as monodromy groups of the algebraic hypergeometric
functions.

14
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3.4. An example. We mentioned already that regular dessins are uni-
form. In Theorem 3, regular dessins correspond to torsion free normal
subgroups I' of A since the quotient G := A/T" acts then as a group of
biholomorphic automorphisms on the quotient space X = I'\H , preserving
the tesselation which is induced on X by the fundamental domains of A.
Normal subgroups of A are of course kernels of homomorphisms

h: A — G,

and the condition “torsion free” is satisfied if and only if the generators of
A go under this map to elements of the same order: Fuchsian group theory
says that every torsion element in A (hence also in I') is conjugate in A to
some power of Y9,71,9a0 . If A maps these generators to elements of the
same order, only trivial powers of torsion elements lie in the kernel whence T’
is torsion free, and the converse is true as well. As an application we consider

EXAMPLE 6. Let h be the homomorphism < 2,8,8 >— G = Z/87Z
given by

h(v) =4, hin) = 3, hye) = 1
(read the right hand sides mod8). Then the kernel I' of & gives a Riemann

surface X = I'\H. The Riemann-Hurwitz formula or a volume considera-
tion for the fundamental domains of A and I'" show that its genus is 2.

FIGURE 8. Fundamental domain of I" in Example 6, drawing
in the unit disc
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Figure 8 shows a fundamental domain of T' (in the unit disc, the cen-
ter is chosen as the center R of the fundamental domain) consisting of
8 = ord G fundamental domains of A. These are the hyperbolic quad-
rangles P, P11 R, where we read i mod 4. The letters indicate how
to identify sides and vertices to obtain the quotient X . Euler’s formula
provides another possibility to see that g = 2.

Following the ideas explained above, the border of the polygon will become
a dessin d’enfant on X', here with 4 white and one black vertex, 8 edges
and one cell. Observe that we have to count the edges twice since on X
they have the same cell on both sides. Figure 8 also visualizes the action
of G on X : the automorphisms are rotations around the center with ro-
tation angle 27k/8, k € Z. Fixed points are R and the black vertex @ of
the dessin, and fixed points of order 2 (rotation of angle 7 ) are in addi-
tion all white vertices P;. According to Proposition 3, a dessin determines
uniquely the conformal and the algebraic structure on X, so we should be
able to determine equations for X and the Belyi function corresponding to
the dessin. This is possible but difficult in general, see [Bi], [Sn2], [LZ] and
the completely different approaches in [St1] and [BS], all with instructive
examples. In simple cases like the present example we can try a good guess:
(3 has degree 8, has four double zeros and is ramified above 1 and oo of
order 8. The quotient Z;\X of X by the unique order 2 subgroup in G is
still the Riemann sphere, again with a regular dessin with valencies 1,4,4
and cyclic automorphism group of order 4. Tts Belyi function is easily seen
to be z*+1. Now observe that X is a double cover of P! ramified over the

points where z* 4+ 1 =0, 1, oo. The result is
K:y =z(@"+1) , B : (z,y) = 2" +1,
and G is generated by
(z,y) — (iz, em/‘ly) .
The full automorphism group of X is in fact larger because I' is even a
normal subgroup of the triangle group < 2,3,8 > D < 2,8,8 > (index 6
inclusion). One may tesselate the fundamental domain of I' by 48 funda-

mental domains of < 2,3,8 > giving X an automorphism group isomorphic

to GLyF; of order 48, see [Wo2| and the literature quoted there.

3.5. Determining the conformal structure. We will describe two
ideas how to prove Proposition 3, i.e. how to use a dessin to determine the
conformal structure. We explain these ideas in

EXAMPLE 7. Let D be a dessin on a torus with one cell, five edges,
two white and two black vertices of respective valencies 1 and 4. Up to
isomorphism (i.e. orientation preserving homeomorphisms of the torus onto
itself preserving the colours of the vertices) there are three such dessins. We
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fix one of these possibilities given in Figure 9 in the plane instead on the
torus — identify opposite sides to get the picture on the torus as indicated
also by the numbering of vertices and edges.

¥ Q1

FIGURE 9. Dessin on a torus, Example 7

If there is a conformal structure on the torus with a Belyi function
leading to D, then according to the proof of Theorem 3 the manifold should
be a quotient space T'\H (having a unique conformal structure, of course)
for some index 5 subgroup I'of A =< p,q,r >=<4,4,5 > (exercise: show
that we could replace 4 and 5 by multiples without changing the conformal
structure!). The Belyi function has to be

MNH - A\H - C: Tz~ j(z),

and on T\H the dessin must be part of the triangle grid coming from
the border of the fundamental domain of A and all its A—images in the
hyperbolic plane, under the projection

H—- IMNH: 2z +— I'z.

How do we find the subgroup T" of A7 By variation of an idea of Shabat
and Voevodsky [SV1] we cut the manifold along the edges of D until we
have a simply connected domain. This cut has to meet all vertices whose
valencies are proper divisors of p and ¢, i.e. in our example we have to cut
along the edges 2 and 5 meeting the vertices P, and (2. Every cut edge —
in our example all five edges — occurs twice as border edge of the resulting
domain. Now we deform the domain homeomorphically such that it fits
into the triangle grid defined by the A—tesselation on H. In particular, all
edges have to become hyperbolic lines between A-fixed points of orders p
and ¢g. Figure 10 may illustrate that we can perform that program.

Now recall Poincaré’s theorem that — under suitable hypotheses concern-
ing the angles — a Fuchsian group can be generated by elements of PSL,R
mapping the sides of the polygon pairwise onto each other. The cut proced-
ure and the numeration determine the side pairing. Here I" will be of genus
1 with two inequivalent fixed points P, ()2 of order 4, the other vertices
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PR3

FiGURE 10. Fundamental domain for I', Example 7

belong to two orbits of accidental vertices. The resulting Riemann surface
['\H of genus 1 has precisely the dessin we started with.

3.6. The cartographic group. It is difficult to make precise the cut
and paste technique described above if we consider more complicated dess-
ins. More comfortable is a group theoretic procedure based on a description
of dessins by means of permutation groups acting on the set of edges ([JS1],
[JS2], [Balt]), also better adapted to computations than graphical methods.
Let 1,...,n be the numbers of the edges and define the (hyper)cartographic
group (G C S, as generated by two permutations w,b permuting for all
white (respective black) vertices the incident edges in cyclic counterclock-
wise order. To every white (resp. black) vertex corresponds therefore a
cycle in the cycle representation of w resp. b, e.g. in Example 7

w = (1354), b= (1234)

(recall the border identifications in Figures 9 and 10 and the fact that
vertices of valency 1 give respective cycles (2) and (5) which do not appear
in the usual description of permutations). The element ¢ = (wb)™' € G
describes for every cell a cyclic couterclockwise permutation of all edges
which have the cell on its left going from the black to the white border
vertex. In Example 7

c = (13452)

generates a normal subgroup of order 5 in G. The cartographic group is
here a semidirect product of this normal subgroup Zs with a cyclic group
Z4 generated by w and acting on ¢ by wew™' = ¢?.

A SIDE REMARK about terminology. The term cartographic group is used in

the literature mainly for clean dessins (see Section 2.3) or in more general
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cases for the clean dessin we can get from D replacing 3 by 48(1 — ().
Since we do not use this procedure we will speak of cartographic groups
also in the general case.

Since the graph of the dessin is connected, GG acts transitively. This is
already one direction of the following

PROPOSITION 5. There is a bijection between

1. isomorphism classes of dessins on oriented 2—manifolds and
2. conjugacy classes of “algebraic hypermaps”, i.e. triples (G,w,b) of
transitive permutation groups G C S, with two generators w,b.

Proor. Conjugacy class means of course conjugation in S, , i.e.
renumbering the edges. It is almost evident how to construct a dessin for
the algebraic hypermap (G, w,b): every number 1,...,n represents an
edge, and the cycles of w and b define the white and the black vertices.
The cycles define also the local orientation of the edges around their border
vertices. The cells are uniquely determined up to isomorphisms by the
cycle decomposition of ¢ = (wb)™* € G. These cells and how they fit
together around the vertices define an atlas for the orientable compact

2-manifold M .

Let H C G be the stabilizer subgroup of a fixed edge of the dessin D.
Then we may identify the edges of D with the residue classes gH, g € G,
and we may read the operation of G on these edges as left multiplication
on residue classes. In Example 7 and for edge no. 5 the group H is
generated by b= (1234). Note that the stabilizer group of any other edge
is conjugate to H in G.

Now we return to a second PROOF of Proposition 3: how to construct
from a dessin, i.e. an algebraic hypermap (G, w,b), a conformal structure
on M, i.e. a triangle group A and a subgroup I' to find a reasonable iden-
tification of M with the Riemann surface T\H? If we know already that
D corresponds to the Belyi function 8 : T\H — A\H = P' then G plays
the role of the monodromy group of # because the edges of D represent
the different branches of 37! and the elements of G describe the change
of branches under analytic continuation following paths in P' — {0,1,00} .
These paths have to be composed from simple closed counterclockwise loops
around 0 and 1 giving the generators w,b of G. How is G related to A and
r?

Let ® be the kernel of ' C A, i.e. the maximal normal subgroup of A
contained in I'. Let k be the hyperbolic line between P and (), the fixed
points of the generators vy,71 € A, see Section 3.2, and let I'k be its image
on I'\H. Therefore the edges of D are the I'dk, § € A, corresponding
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bijectively to the right residue classes I'é € I'\A, and A acts by multiplic-
ation from the right permuting these residue classes. Such a permutation is
trivial precisely if it belongs to the normal subgroup ® , hence

o (G:=A/d is the monodromy group of 3 acting by right multiplica-

tion on their residue classes I'¢,

o (i is generated by w = v® = &y and b=~,® = O~ ,

o H :=T/® is the stabilizer subgroup of k& in the corresponding dessin.
This leads to the following proof for Proposition 3. Let D be a dessin on a
topological oriented 2-manifold M and let (G, w,b) be the corresponding
algebraic hypermap. Let p,q,r be the orders of w,b,¢ = (wb)™' and H
the stabilizer subgroup of some fixed edge. As triangle group take
A :=< p,q,r > and consider the epimorphism 7 : A — G defined by

Yo — w, v — b

(strictly speaking we take an antiepimorphism because A acts by right
multiplication and G from the left). Then the preimage T' := 7#~'(H) is
the good candidate to identify M with the Riemann surface I'\H. Here H

has to be replaced by C or C if A is euclidean or finite, respectively.

In our Example 7 the complex and even the algebraic structure is expli-
citely known by Birch [Bi]: an affine model is

35
y2:x3+zx2+25x+25,

and he gives even the corresponding Belyi function which is not defined
over Q. The shape of the dessin already suggests that complex conjugation
leaves the curve invariant but changes the colours of the vertices hence
interchanges 3 and 1 — 3. Considerations of this kind will play a major role
in Section 4.

3.7. Automorphisms. The automorphism group of a dessin shows
also the power of the notion cartographic group, see [Sil], [Balt].

PROPOSITION 6. Let D be a dessin with algebraic hypermap group
(G,w,b), G C S,, let H C G be the stabilizer subgroup of an edge in
D and let N(H) be its normalizer in G'. Then the automorphism group of
D is isomorphic lo

1. the centralizer of G in S, ,
2. the quotient N(H)/H .

D is a reqular dessin if and only if H = {id}, and this is the case if and
only if G = AutD.

The PROOF relies on two possible descriptions of the automorphisms.
First they are of course permutations p of the set of edges preserving
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incidence and local orientation. That means they have to preserve the
generators w,b of G'. Since permutation of the entries in the cycle

=1, such a p has to

representation of g € G coincides with conjugation pgp
centralize the generators, hence G'.

For the second claim identify the edges with the residue classes I'0k, § € A |
see the proof of Proposition 3 given above. Any automorphism of D pre-
serves the conformal structure of X = TI'\H, therefore lifts to an
automorphism « of H. Because it preserves the colours of vertices, this lift
has to be an element of A. On the other hand it defines an action on I'\H
by left multiplication, i.e. maps I'-orbits into I'-orbits hence normalizes I".
This action is trivial on T\H if and only if a € ', so the automorphism
group in question is N(I')/I', N(T') denoting the normalizer of I in A.
Taking quotients by ® the isomorphism theorem of group theory proves the
claim with H = I'/®. We have regularity of D if and only if T' is normal
in A, henceI'=9.

CAUTION: regularity does not mean G = Aut D since both groups act in
a different way on the edges of D, see Section 3.6.

4. Galois actions

4.1. Examples. Let X C P"(C) be a smooth algebraic curve defined
over a number field ' with Belyi function  also defined over F' and with
corresponding dessin .  What happens if some algebraic conjugation
o € GalQ/Q acts on the constants in 3 and the defining equations for
X7 Regularity conditions are controlled by the nonvanishing of certain
equations and “nonvanishing” is o—invariant, therefore we obtain again a
smooth curve X7 C P*(C). As a point set we get this curve also by extend-
ing o to a field automorphism of C and applying ¢ to the coordinates of the
points. The same idea gives a Belyi function 37 on X7 since 0,1, 00 remain
invariant and ramification orders are again defined by vanishing or nonvan-
ishing of polynomials. Consequently we obtain a dessin d’enfant D7 on X7 .

EXAMPLE 4’. There is an automorphism o of the cyclotomic field
Q(e™/1%) sending the elliptic curve X = X(cos 15) of Example 4 to the
curve X7 = X(cos 3T) defined by

9 3

y: = (z+1)(z—1)(z — cosﬁ).

Having rational coefficients, the Belyi function §(z,y) = T:(z) remains
formally unchanged. But the dessin D? has to look different from D in
Figures 4 and 5 as we know by Proposition 3 : both elliptic curves are
non—isomorphic as we can verify using their j—invariant. The first mapping
(z,y) — z in the composition of 3 is now ramified above another point
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° ° ° ° ° ° °
FIGURE 11. [0, 1]-preimage of 3(z,y) = TZ(x) on X(cos ?_7(;)

than before. This D7 looks like Figure 11 (as always up to homeomorphism,
and opposite edges have again to be identified to obtain the dessin on a
torus).

EXAMPLE 5’. Conjugate the elliptic curve in Example 5 by

e27'r2/3

1
}_>
V2 V2

o€ GalQ/Q with o :

getting X7 with the equation

2mi /3

v

and the Belyi function B(z,y) = 42°(1 — 2%). The resulting dessin D° —

see Figure 12 — is again different from D in Figure 5 (as before, up to
homeomorphism and with identification of opposite sides).

€

Yt = z(zx—1)(z —

e L 4 = L 4 O

G L 4 S L D

FIGURE 12. 37'[0,1] on the torus of Example 5’

What happens if we use instead the conjugate third root of unity? We
will obtain an elliptic curve, complex conjugate to the present one, and it is

not surprising that we get its dessin by reflection in one of the middle axes
of Figure 12.
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4.2. Invariants. Examples 4’ and 5" show that D and D’ are certainly
not isomorphic but share many common properties like e.g. the (unordered)
list of valencies or the numbers of white resp. black vertices or the number
of cells. The proof of this invariance is straightforward if we consider how
the Belyi function behaves under algebraic conjugation of the constants. It
does not matter that X or 3 are defined over Q, only their existence (part B
in Theorem 2 and 3) are important. We can state this invariance as follows.

PROPOSITION 7. Let X be a smooth algebraic curve in P"(C) with Belyi
function B and corresponding dessin D . For the passage to D7 under field
automorphisms o of C we have the following invariants:

e the valencies of white vertices (resp. black vertices, resp. cells),

e the number of while vertices with given valency (resp. black vertices,
resp. cells),

o the genus of X,

o the isomorphism class of the automorphism group of X ,

o reqularity and uniformity.

[JSt] contains a detailed proof and a much more general statement about
the invariance of the cartographic group. Some more Galois invariants are
known, see [Z1] and [StWo], but we seem to be far from having a complete
list.— The next proposition shows how interesting these Galois actions are.

PROPOSITION 8. Let D be the set of dessins with one cell for a fized
genus g > 0. Then Gal Q/Q acts faithfully on D.

A second look to Examples 4, 4°, 5, 5’ should make clear that this
claim is true for genus 1. It relies on the fact that elliptic curves can be
defined over the field Q(j) generated by the value of its j invariant, and
that we can construct a Belyi function defined as well over Q(j) and having
only one pole. Leonardo Zapponi extended this fact to higher genera
by a covering argument (unpublished). Surprisingly, the proposition is
even true for genus 0, i.e. for trees in C. The proof, written up by Leila
Schneps [Sn] following an idea of H.-W. Lenstra jr., is tricky but not difficult.

So dessins d’enfants become a wonderful playground for the absolute
Galois group. In Grothendieck’s ideas [G] they are — classifiying coverings
of P! minus three points — only the first step for what we call now the
Grothendieck—Teichmiiller Lego what should give a better understanding of
Gal Q/Q, compare [Sn], [LoSn1], [LoSn2], [Lu], [Oe] and [HS]. In the sequel
we will however concentrate on the meaning of dessins and Galois actions
for the curve X itself.
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4.3. Moduli field and field of definition.

DEFINITION 4. Let D be a dessin on the smooth algebraic curve X C
P*(C). The moduli field M(D) of D is the fixed field of the subgroup
U(X,(,id) of all field automorphisms o of C with the property that D is
isomorphic to D7, i.e. for which there is an isomorphism f, : X — X7
such that

B =870/

where 3: X — P' denotes the Belyi function for D and 37 its o—conjugate.
In the same way we define subgroups U(X,m,id) C Aut C for other covering

maps 7 : X — P' instead of 3. Similarly, the moduli field M(X) of the
curve X is the fixed field of the group

UX) = {ocAutC| X7 =2 X }.
A field of definition of X 1s every field F' containing the coefficients of

the defining equations of a curve isomorphic to X (see Section 2.1), and a
field of definition of D is every field over which we can define X and the
corresponding Belyi function 3.

For the following it will be useful to introduce even a further moduli field
M(X, ) for the Belyi pair (X, 3) as the fixed field of the subgroup U(X, 3)
of all o € U(X) for which there are isomorphisms f, and g, with the
property

fO':X_>XO7 QUZPI%Pla Baofa:gaoﬂ-

Then we call the Belyi pairs (X, 3), (X7, 37) weakly isomorphic. Note that
in the definition of U(X,3,id), i.e. of M(D), we admit only the identity
in the place of g, .

ProrosITION 9. Let X C P*"(C) be a smooth algebraic curve with
dessin d’enfant D and corresponding Belyi function 3. Then

1. M(X) depends only on the isomorphism class of X ,

2. M(D) depends only on the isomorphism class of D ,

3. M(X) C M(X.5) C M(D),
M(D), M(X,3) and M(X) are number fields,
5. every field of definition of X (resp. of D ) contains the moduli field.

=

PROOF. 1. Let ¢: X — Y be an isomorphism and ¢ € U(X), in other
words suppose that there is an isomorphism f, : X — X7, then %0 f,0:7!
is an isomorphism Y — Y7 ie. U(Y) C U(X). The converse inclusion is
proved in the same way, whence M(X) = M(Y). The proof of the second
claim 1s similar.

3. follows from

U(X) 2 U(X,8) 2 U(X,B,id) .
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4. There are only finitely many possibilities to draw dessins d’enfants with a
given list of valencies on an oriented 2-manifold of given genus. By Proposi-
tion 7, the orbit of D under the action of Aut C is therefore finite. Another
possibility is the use of Theorem 3: by a standard result of combinatorial
group theory a given triangle group contains only finitely many subgroups
of given index ( = degree of the Belyi function, hence also invariant under
Aut C). Consequently the subgroup U(D) sending D to isomorphic dessins
is of finite index in Aut C. It is easy to see that its fixed field M(D) is a
number field.

5. According to 1. we can replace X by a model defined over a field of defin-
ition L, then U(X) contains all o fixing L elementwise. A similar argument
applies to D .

4.4. Remarks about B) = A). This direction of the PROOF of The-
orem 2 would be a consequence of the last proposition if we knew that the
curve X can be defined over M(X). Unfortunately this is not true in gen-
eral. Interesting counterexamples were given by Earle [Ea] and Shimura
[Sh], see also [DE]. They all have in common that X can be isomorphic to
its complex conjugate curve without having a model defined over the reals.
However, sufficient for Theorem 2 is a much weaker property:

ProOpPOSITION 10. The curve X can be defined over a finite extension
of its moduli field M(X).

Even that simpler statement is surprisingly difficult to prove. The reader
is referred in the literature often to Weil’s Theorem 4 in [W] but nowhere
an explanation is given how to apply Weil’s results. His ideas (see next
section) stand certainly behind any reasonable proof, but for a modern
and convincing treatment one should refer to [HH], [De] or to Bernhard
Kock’s paper [K] which gives even upper bounds for the degree of the field
of definition, and also some history of the problem and translation hints
how to pass from the language of schemes to polynomial equations. His
presentation is optimal, so I omit a PROOF of this proposition.

4.5. Conditions for “moduli field = field of definition”. We will
however care about some more specialized versions of Proposition 10 by
the following reason. Proposition 3 suggests that all properties of curves
X defined over Q should be somehow encoded in its dessin — which is not
uniquely defined, of course, see Section 2. One may imagine that it has
impact on automorphism groups, and that Weierstrass points could have
to do something with vertices of dessins, see [SW], but properties of deeper
nature lead to fascinating problems. In the following, we will concentrate
on the determination of a (minimal, if possible) field of definition for X .
The easiest way to see that X can be defined over the rationals, say, would

be to have a dessin D on X uniquely determined by its Galois invariants,
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see Proposition 7, implying M(D) = Q = M(X) (we will see that such
examples exist). Then we were done if we could prove that X can be
defined over its field of moduli. A good criterion to do so is Theorem 1 of
Weil [W]; we state it in a special form only.

PROPOSITION 11. Suppose X C P*(C) to be a smooth algebraic curve
defined over a finite extension L of its moduli field M := M(X). This
field M is a field of definition for X if for every o € Gal M /M there is an

tsomorphism
fo: X = X°
defined over L such that for all o,7 € Gal M /M the compatibility condition

chr = f;ofT

holds. An analogous statement is true for moduli fields and fields of defini-
tion of dessins (here the f, have to salisfy in addition =370 f, ).

Together with the fact that such a curve can always be defined over a
finite extension of its moduli field, Weil’s criterion has the following nice and
well-known consequence in all cases where f, is uniquely determined by o .
Since two such isomorphisms f,, f. arise from each other by composition
with an automorphism, we conclude

PROPOSITION 12. A smooth algebraic curve X C P"(C) with trivial
automorphism group Aut X = {id} can be defined over its field of moduli.

This proposition shows in particular that “generic” curves of genus g >
2 are defined over their moduli fields. This is true also for the other extreme.

PROPOSITION 13. Smooth algebraic curve X C P"(C) of genus 0 and
1 can be defined over their field of moduli.

The case g = 0 is trivial since X 2 P' can be defined over Q, and for
g = 1 recall that the isomorphism class of an elliptic curve X is charac-
terized by its j—invariant which can be calculated from any model for X,
whence the moduli field is M = Q(j). On the other hand it is well known
how to write down an equation for X with coefficients in Q(7).
For the intermediate case g = 2 all curves are hyperelliptic, i.e. have at
least one nontrivial automorphism, on the other hand their moduli theory
is already complicated. Explicit results were given by Mestre [Me].

4.6. Quasiplatonic curves. Another extreme contrast to the curves
considered in Proposition 12 are the quasiplatonic curves or quasiplatonic
surfaces, in older literature called surfaces with many automorphisms [Wol].
They can be defined in many different ways by the following properties, see
also [StWo].
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THEOREM 4. Let N\H 2 X C P*(C) be a smooth algebraic curve of
genus g > 1 with universal covering group N C PSI,R. The following
statements are equivalent.

1. The lifts of all automorphisms of X to the upper half plane H form a
triangle group A .

2. N is a normal subgroup of a triangle group A .

3. X has a reqular dessin.

4. There is a Belyi function on X defining a normal (ramified) covering
B:X —P(C).

5. (Aut X)\X = P', and the canonical projection

X = (Aut X)\X

is ramified above al most three points.

6. All deformations X' sufficiently near to X in the moduli space of
compact Riemann surfaces of genus g are either isomorphic to X or
have a strictly smaller automorphism group than X .

SIDE REMARKS. Recall that Proposition 6 gives other properties
equivalent to statement 3.
The tesselation of the upper half plane H by the usual fundamental
domains of A induces via statement 2 a tesselation of X by (double)
geodesic triangles. The automorphism group A/N acts transitively on
these double triangles — like the action of the symmetry group of a
platonic solid on the induced grid of triangles on the Riemann sphere
C, hence the name “quasiplatonic”. Famous examples for such surfaces
are the Fermat curves of exponent n > 3 having an universal covering
group N normal in the triangle groups < 2,3,2n > , and the Hurwitz
curves whose automorphism group have the order 84(¢ — 1) — the
maximal possible order according to Hurwitz. These are characterized
by the fact that their universal covering groups NV are normal in < 2,3,7 > .

For the PROOF of Theorem 4 recall that X as compact Riemann surface
of genus > 1 has only finitely many automorphisms and that all automorph-
isms of X lift to elements of PSL;R acting on H. All these lifts form a
Fuchsian group A containing N as normal subgroup with Aut X = A/N .
The implications 1 = 2 = 3 = 4 = 2 follow from Theorem 3, its proof,
and from the considerations in the beginning of Section 3.4. For 2 = 1 ob-
serve that A/N acts as a group of automorphisms of X = N\H, so the full
automorphism group Aut X lifts to the upper half plane H as a supergroup
A D A of finite index, and it is a classical fact that A is a triangle group
as well. 1 = 5 follows from Aut X = A/N, so the canonical projection is
just

N\H — A\H,
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and 5 = 4 is obvious. The equivalence 1 < 6 results from the fact that
deformations of X preserving its automorphism group (or its order) induce
deformations of the covering group N and its extension A by the liftings
of the automorphisms. Triangle groups are the only Fuchsian groups not
admitting proper deformations ([Wol]).

COROLLARY 1. FEuvery smooth algebraic curve Y C P*(C) defined over
a number field is a quotient of some quasiplatonic curve X by a subgroup of
its automorphism group Aut X .

PROOF. According to Theorem 3, write Y as a quotient I'\H with a
subgroup I' of some Fuchsian triangle group A. There is a normal torsion
free subgroup N of A contained in I', so we may take X = N\H. We can
give these choices more precisely as follows ([Wo2]).

COROLLARY 2. Letl the Riemann surface Y have a dessin D with al-
gebraic hypermap group (G,w,b). Then, Y is the quotient H\X of a
quasiplatonic curve X by a subgroup H C Aut X where G = Aut X and
H s isomorphic to the stabilizer subgroup in G of an edge of D .

4.7. The fields of definition of quasiplatonic curves. We call the
projection 3 in statement 5 of Theorem 4 canonical because it is uniquely

determined by X up to the identification of (Aut X)\X with P'. In the
terminology of Section 4.3 — observe that in the definition of U(X,3) the
fractional linear transformation ¢, is uniquely determined by 3,37, f, —
we have therefore

LemmA 4. M(X) = M(X,3) for quasiplatonic surfaces and their

canonical Belyi functions.
Another important observation is the following ([CH], [DE], [Wol])

PROPOSITION 14. Let @ : X — P' be a normal (ramified) covering
map, let M be the fized field of U(X,m,id), see Definition 4, and suppose
that the critical values of m, i.e. the images of the ramification points, are
invartant under U(X,m,id). Then X and m can be defined over M .

In particular, a quasiplatonic curve X and ils canonical Belyi function 3

with critical values 0,1, 00 can be defined over M(D).

PROOF. Choose some non—critical zo € P'(M) whose m—preimages in

X form a G-orbit Gz under the covering group G of 7, for some fixed x in

this fibre. By definition we have for every o € U(X,w,id) an isomorphism
fo : X - X° with #n%0f, = 7.

Now zo € P'(M), and G acts transitively on the fibre 77!(z¢), so we can

choose f, such that f,(z) = o(z) € (77)7"(29) C X7, and by this choice

f» is uniquely determined. Moreover the compatibility criterion of Weil’s
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criterion (Prop.11) is easily seen to be satisfied whence the claim follows.

We will see that this Proposition clearifies the situation in other import-
ant cases with hypotheses opposite to Proposition 12.

THEOREM 5. Every quasiplatonic curve can be defined over ils field of
moduli.

REMARK. Recall the problems discussed in the beginning of Section
4.5. For every genus (> 1) there are only finitely many quasiplatonic
curves, and for low genera they are even uniquely determined by their
automorphism groups and the ramification data of their canonical Belyi
functions. Theorem 5 together with Proposition 7 implies therefore that
all these curves can be defined over Q (for lists of quasiplatonic curves
up to genus 4 see [Wo2|). Even in much more complicated higher genera
cases Theorem 5 is an important tool to determine the (minimal) field of

definition, see [St2], [StWo], [ScSml].

PROOF of Theorem 5 (I learned from Bernhard Kock that the proof given
in [Wol] is incomplete). By Proposition 14, X can be defined over M(D)

where D is the regular dessin arising from the canonical Belyi function
B: X — (Aut X)\X = P'(C)

with critical values 0,1,00. Lemma 4 and Proposition 9.3 say
M(X) = M(X,3) € M(D),

so it would be sufficient to show that the extension M(D)/M(X,[3) is

trivial. “Generically” this is true:

LEMMA 5. Under these conditions, suppose thal the ramification orders
p,q,r of B are pairwise different. Then M(D) = M(X).

It is sufficient to prove U(X,3) = U(X,3,id). In fact, suppose o €
U(X,B) (see Def. 4), in other words (X,3) and (X7,37) are weakly

isomorphic, i.e. we have isomorphisms f, and g, with the property
fr: X = X, g, : P = P, B0f, = g,00,

which implies g, = id by the following reason. Proposition 7 shows that
(37 has the same ramification orders as [ above 0,1,00. Since these are
pairwise different, f, has to map the set 371(0) of zeros onto the set of
zeros (37)7'(0), and the same argument works for S7'(1) and 37'(o0).
Therefore g, has to be a Moébius transformation fixing 0,1,00, hence
go = id for all o € U(X, ), in other words U(X,3) C U(X,3,id). The
other inclusion U(X,3) D U(X, 3,id) is trivial.
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If p,q,r are not pairwise different, these arguments are no longer valid.
It can happen that f,, o € U(X, ), maps the fiber triple of critical values

(871(0),871(1), 87 (o0)) = ((B7)7H(7(0)), (B87) (7 (1)), (87) " (75 (o0))

where 7, denotes a nontrivial permutation of the critical values, see the
examples given in [StWo|. The strategy of the proof is now to replace 3 by
a Belyi function 7 with a non—standard normalization of its critical values.
We will choose this normalization in such a way that the Galois actions on
the critical values and on their fibers are compatible.

By Definition 4 of U(X, (), the permutation 7, is the restriction of g, to
{0,1,00}, and g, is uniquely determined by 7, . Recall that f, is unique up
to composition with an automorphism o € Aut X7, and that 7ca = 7.
This implies the first two statements of

LEMMA 6. Let X be quasiplatonic with canonical Belyi function 3 and
suppose o € U(X,3).

1. On the set {0,1,00} of eritical values of 3 we have 7, = %0 f,0371 .
2. The permutation 7, depends only on o € U(X,3), not on the choice

of f».
3. If S5 denotes the permutation group of {0,1,00} , the map

UX,8) = S5 : 0 = 1,

defines an antihomomorphism with kernel U(X, 3,id).

4. M(D)/M(X) is a Galois extension.

5. 7, depends only on the restriction of o to M(D) and defines an
injective antthomomorphism

GalM(D)/M(X) — S3 : 0 — 7,.

For the PROOF of point 3. recall that 7, is a restriction of g, and that
this g, is a fractional linear transformation with rational coefficients. For

all o,w € U(X,3) we have therefore

Jow = G,00s = Gu© Yo -

By Proposition 9.4 we know that M (D) and M(X) are number fields.
Then 4. and 5. follow from Galois theory if we restrict o to Q.

Therefore the field extension M(D)/M(X) is either trivial or cyclic of
order 2 or 3 or of order 6 with Galois group S5 (I know no example for the
last possibility). We continue the proof of Theorem 5 by changing the usual
normalization of 3.

LEMMA 7. Under the same hypotheses as in Lemma 6 suppose w.l.o.gq.
(see Prop.14) that X and ( are defined over M(D). Then there exists a
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fractional linear transformation p and isomorphisms [, such that

(HoB) ofs = W ol ofs = pof

Jor all o € Gal M(D)/M(X), and such that the set p{0,1,00} of critical
values of po B is invariant under Gal M(D)/M(X).

Proor. From Lemma 4 we know M(X) = M(X, (), hence the exist-
ence of isomorphisms f, and g, = 370 f,037" forall o € Gal M(D)/M(X).
These g, are uniquely determined by 7, . It is therefore sufficient to choose
p such that the invariance condition on the critical values p(0), (1), p(o00)
is satisfied and that — restricted to 0,1, 00 —

(poB)of,oB™ =copopB’of,0f™ =copor, = p.

This can be done with a case—by—case analysis of the different possibilities
for the Galois group in question. For M (D) = M(X) we may take p = id.
For quadratic extensions and the nontrivial conjugation o suppose e.g. that
the corresponding permutation is

75(0,1,00) = (1,0,00) .
Then choose p such that

p(o0) = oo, o(p(0)) = p(1) € M(D)

to satisfy the claim. If M(D)/M(X) is cyclic of order 3, choose p such
that p(0),p(1), p(o0) form a normal basis of the field extension. We can
fix the order of the three points such that for all ¢ € Gal M(D)/M(X)
the composite map satisfies copor, = p.

The same construction principle works for S3—extensions: one has to choose
p such that cop=por " on 0,1,00. This can be performed either with
some representation theory — the Galois action of S3 on a normal basis
defines a regular representation containing a permutation representation as
rational subrepresentation — or by fixing u(0), (1), u(c0) as roots of an
irreducible cubic polynomial generating the (non-normal, conjugate) cubic

subfields of M(D)/M(X).

END OF THE PROOF of Theorem 5. Let m denote the normal covering
T =upoB: X — PY(C)

with g constructed in Lemma 7. It says that M(X) is the fixed field of
U(X,n,id) with critical values of 7 invariant under the action of this
group. Therefore, Theorem 5 follows from Proposition 14.
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5. Open questions

For important questions concerning the Grothendieck—Teichmuller
Lego, Moduli Spaces, Physics and Inverse Galois Theory the reader should
consult [LoSn2], [MM], [Lu], [Oe] or [HS]. Here I will enumerate some other

open problems, most of them hidden in the preceding sections.

1. Quasiplatonic curves have canonical Belyi functions, and also on
curves with uniform dessins we can define some sort of “canonical” Belyi
functions. But is there a notion of canonical in general? More generally:
are different dessins on the same curve somehow related? Is it possible to
obtain them by a finite class of procedures from a given canonical one? If
one restricts to the very special case of regular dessins, there is a rather

complete knowledge by [Si2], [Gi], [GiWo].

2. Find a complete collection of Galois invariants for dessins! Still we
have very few examples for actions of nonabelian Galois groups, and even
for Belyi pairs defined over abelian extensions of QQ it is an open question if
the known invariants ([JSt], [StWo], [Z1]) are sufficient, or how to complete
them.

3. As far as I know, all known curves not definable over their moduli
field can be defined over quadratic extensions of this moduli field. Is this
always true? Proof or counterexample needed!

4. The number of isomorphism classes of quasiplatonic curves (or
regular dessins) for given genus g seems to depend on ¢ in a rather irregular
way. Is there a reasonable asymptotic behaviour, maybe a growth function
of some meanvalue? This could be a problem for analytic number theory,
but also for group theory or graph theory! [dFIt], [MSS], [MSP] or [SPW]
give some hints. Caution: the problems for quasiplatonic curves and for
reqular dessins are certainly related but not the same: a quasiplatonic
curve can have several regular dessins, see [Si2], [Gi], [GiWo].

5. How to detect deeper properties of curves in the dessins, e.g. how
to see that the Jacobian is of CM type? There are very few attempts to
answer this question in [Wo2], [Wo3], [St3], but even for elliptic curves we
have no convincing answers.

6. How to generalize Belyi functions and dessins to higher dimensions?
Despite some recent progress ([Br], [We], [Go]) we are far from a good
understanding. Here is a nice elementary question with a onedimensional
flavour: suppose that the curve X has a moduli field of transcendence degree
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k. Does a meromorphic function exist on X ramified above at most k + 3
poinls?
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