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Abstract. In previous work the authors introduced certain Shimura curves that possess
different uniform dessins d’enfants (equivalently, uniform Belyi functions). They are all
quasiplatonic and therefore they can be defined over its field of moduli. In this paper the
authors determine fields of moduli and some fields of definition of these curves and their
related uniform dessins.
This is an extended version of the paper with the same title to appear in Contemporary
Mathematics, extended by an appendix containing some more information about the field
of definition of Shimura congruence curves of prime power level.

1 Introduction

Dessins can be considered as hypermaps on compact oriented two–manifolds, that is bipar-
tite graphs cutting the underlying surface in finitely many simply connected cells. In the
special case that all white (or all black) vertices have valency 2 , we may omit these vertices
and therefore we are in the classical group theoretic and geometric–topological theory of
maps which can be traced back to the classification of platonic solids.

More recently, these objects attracted wider interest by two observations of Grothendieck
[12] who invented the term dessins d’enfants for them.

1. Dessins arise in a very natural way on all smooth complex projective algebraic curves
defined over number fields: by a result of Belyi [1], there exist non–constant mero-
morphic functions

β : C → P1(C)

1The first two authors were partially supported by a MICINN grant MTM2012-31973. The second au-
thor was partially supported by the Alexander von Humboldt Foundation. The last author was supported
by DFG project Wo 199/4-1
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on a curve C (equivalently, a compact Riemann surface) ramified at most over 0, 1,∞
precisely if C can be defined over a number field. Such functions are called Belyi
functions and, consequently, algebraic curves defined over Q are also called Belyi
curves. In this case, the β–preimage of the real interval [0, 1] defines a bipartite
graph on C which is a dessin.

2. Conversely, if we start with an arbitrary topological hypermap on an oriented com-
pact two–manifold, there is a unique conformal structure on the manifold, corre-
sponding to an algebraic curve defined over a number field, together with a Belyi
function corresponding to this dessin. A first construction of this conformal struc-
ture – at least in the map case – was given by Singerman [18] even before the term
dessin was coined.

3. A third important aspect gives a link to the uniformisation of Riemann surfaces,
see for example [23]: Belyi functions on a curve C correspond to Fuchsian group
inclusions Γ < ∆(r, s, t), where Γ is a finite index subgroup of a Fuchsian triangle
group ∆ = ∆(r, s, t) such that C can be written as the quotient Γ\H, where H
denotes the upper half plane. With a suitable identification of the target quotient
space with the Riemann sphere (the fixed points of ∆ have to be identified with
0, 1,∞ ), the Belyi function is then the canonical quotient mapping

β : Γ\H → ∆\H
Γz 7→ ∆z .

Dessins should therefore encode all relevant properties of the underlying Riemann sur-
faces, in particular their defining equations as algebraic curves and the explicit form of the
Belyi function of the dessin. Finding these data from the combinatorial structure of the
dessin is however a very hard problem, so one is already satisfied to determine the field of
moduli and the minimal field of definition for C and the Belyi pair (C, β), if such minimal
field exists; for precise definitions see the next section. The present article focuses on these
objects in the case of certain Shimura curves containing different uniform dessins. Why
are these dessins so interesting?

Although dessins define their underlying curves uniquely, on a Belyi curve one can
always construct an infinity of Belyi functions, hence an infinity of dessins. How are these
different dessins linked to each other? Can one get uniqueness of dessins by imposing
additional conditions?

One can in fact show [11] that regular dessins – those for which the group of colour–
and orientation–preserving automorphisms acts transitively on the edges – on surfaces of
genus g > 1 are almost uniquely determined: their surfaces C are called quasiplatonic, and
they can be characterized by the fact that their surface groups Γ are normal subgroups
of triangle groups ∆ . It is nontrivial but not too surprising that the existence of several
non–isomorphic regular dessins on the same curve C is always induced by the finitely many
and well–known inclusion relations between different triangle groups.
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Regular dessins are in particular uniform, that is (due to the symmetry under the
automorphism group) all white vertices have the same valency, and also all black vertices
and all faces. Uniform dessins can be characterized by the fact that the surface groups Γ
of their surfaces C are contained in triangle groups ∆, but they are no longer necessarily
normal subgroups; the signature (r, s, t) of ∆ is determined by the valencies of the dessin.
In the terminology of point (3) of the above enumeration, the uniform dessins correspond to
inclusions Γ < ∆ with torsion–free subgroup Γ . In this case, inclusions between triangle
groups always induce new uniform dessins, so one may ask the more interesting question
of when and how many different uniform dessins of the same signature may exist on one
curve. The answer is given in [10]: an unexpected large number of different uniform dessins
of the same signature exists if and only if Γ is contained in a congruence subgroup of an
arithmetic triangle group ∆ , for details see Section 3.

The present paper is in some sense a continuation of [10]. We determine fields of moduli
and some fields of definition of the curves involved and of these exotic uniform dessins – at
least in the case of Shimura curves whose surface groups are principal congruence subgroups
Γ = ∆(pn) of prime power level in an arithmetic triangle group ∆ .

2 Fields of moduli and fields of definition

Let S be a smooth algebraic curve and k ⊆ C a field. We say that k is a field of definition
of S if there exist homogeneous polynomials

Fj ∈ k[x0, x1, . . . , xn] , j = 1, . . . , J

such that for F := {F1, . . . , FJ} , S and

SF = {[x0, x1, . . . , xn] ∈ Pn(C) : Fj(x0, . . . , xn) = 0 , for j = 1, . . . , J }

are isomorphic. Throughout the paper we will deal with Belyi curves, and hence we may
always assume that k < Q .

Consider now a compact Riemann surface S, an algebraic model SF ∼= S with F =
{F1, . . . , FJ ∈ Q[x0, . . . , xn]} and a Galois element σ ∈ Gal (Q) := Gal (Q/Q). One can
construct the Galois conjugate curve SσF = SFσ , where F σ is obtained from F by applying
σ to all coefficients of all Fj, and the inertia group

IS = {σ ∈ Gal(Q) : SσF
∼= SF}

which clearly does not depend on the choice of model. The fixed field

QIS
= Fix(IS) = {α ∈ Q : σ(α) = α, for all σ ∈ IS}

is called the field of moduli of S, and we will denote it by M(S). It is a well–known fact
that the field of moduli is always contained in any field of definition, but in general M(S)
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is not a field of definition of S, see for example [7] or [17]. However, a quasiplatonic curve
can always be defined over its field of moduli ([23]).

Similarly, if G < AutS is a group of automorphisms of S, we will say that k is a
field of definition of (S,G) if there exists a model SF defined over k and an isomorphism
ϕ : SF −→ S such that the group of automorphisms ϕ−1Gϕ < AutSF is also defined over
k . The inertia group is now defined as

I(S,G) =
{
σ ∈ Gal (Q) :

there exists an isomorphism fσ : S −→ Sσ

such that ασ ◦ fσ = fσ ◦ α, ∀α ∈ G
}
,

in other words, for every σ ∈ I(S,G) there is an isomorphism fσ : S −→ Sσ such that the
diagram

S

α

��

fσ // Sσ

ασ

��
S

fσ // Sσ

is commutative for every α ∈ G. Accordingly, the field of moduli of the pair (S,G) is

M(S,G) = QI(S,G) .
Consider now a Belyi function β : S −→ P1(C) defining a dessin d’enfant D on S. The

group of automorphisms of β is defined as the subgroup of AutS given by Aut(S, β) =
{ f ∈ AutS : β = β ◦ f }. We will write AutD := Aut(S, β). For every model SF as above
β ◦ ϕ is a rational function on SF . We will say that k is a field of definition of (S, β) if
there exists a model SF of S such that both F and the covering β ◦ ϕ are defined over k.
Accordingly, we will define the field of moduli M(S, β) as the field fixed by

I(S,β) =
{
σ ∈ Gal (Q) :

there exists an isomorphism fσ : S −→ Sσ

such that βσ ◦ fσ = β

}
.

We will also call M(D) := M(S, β) the field of moduli of the dessin D and, correspondingly,
a field of definition of D will be a field of definition for the Belyi pair (S, β) . Clearly,
I(S,β) < IS and therefore M(S) < M(S, β) .

In many important cases these fields of moduli coincide. For instance, the fields of
moduli of regular Belyi functions often agree with the field of definition of the surface in
which they are defined. Recall that a Belyi function β is called regular if it defines a normal
covering S → S/G ∼= P1(C) for some group of automorphisms G < AutS. In this case the
corresponding dessins are also called regular and the surface S is called quasiplatonic.

Lemma 1. If S is quasiplatonic with surface group Γ�∆ where ∆ is a maximal triangle
group, then we have M(S) = M(S, β) for the Belyi function

β : Γ\H → ∆\H .

Proof. We may suppose that S is defined overM(S) , so βσ is another regular Belyi function
of the same degree on S for all σ ∈ IS . But, since ∆ is maximal, one has Aut(S, β) =
AutS = Aut(S, βσ) and, being β and βσ regular, one has β = βσ.
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Remark 1. It is useful to notice what may happen if the triangle group considered is not
maximal. Take for example the possibility r = s 6= t ; then there may exist a σ ∈ IS fixing
S but exchanging the zero set of its Belyi function B and the zero set of 1 − B such that
M(S,B) can be a quadratic extension of M(S) . The same problem may occur for uniform
non–regular Belyi functions, of course.

A refined argument shows how to extend Lemma 1 in some cases to non–maximal
triangle groups:

Lemma 2. Let S be a quasiplatonic surface with surface group Γ / Φ where Φ is a non–
maximal triangle group of signature (r, r, t) , r 6= t , with regular Belyi function B . Suppose
moreover that Γ is also normal in the maximal triangle group ∆ of signature (2, r, 2t) ,
containing Φ with index |∆ : Φ| = 2 . Then there is a model for (S,B) defined over M(S) .

Proof. We can assume S to be defined over M(S) , and that all zeros of B and of 1 − B
have order r . Any σ ∈ Gal(Q/M(S)) fixes S and either fixes B or maps it to Bσ = 1−B ,
see Remark 1. Both B and 1−B take the value 1

2
at the same points x ∈ S , images of the

Φ–orbit (and also ∆–orbit) of the fixed point of the canonical order 2 generator of ∆ under
the projection H→ Γ\H . We take such a point x ∈ B−1(1

2
) ; for any σ ∈ Gal(Q/M(S)) ,

also σ(x) ∈ B−1(1
2
) . Since it is not a ramification point of B nor 1−B , there is a unique

gσ in the covering group Φ/Γ of B (and of 1− B ) with the property gσ(x) = σ(x) . Now
we distinguish two cases:
First, if Bσ = B , we put fσ := gσ ∈ AutS .
Second, if Bσ = 1−B , there is an involution iσ ∈ AutS induced by an order 2 generator
of ∆ fixing x , interchanging the zero sets of B and 1−B and fixing their pole sets. In this
case, we put fσ := gσ ◦ iσ .
In both cases, the fσ ∈ AutS are uniquely determined by σ and make the following
diagrams commutative:

S

B
��4444444
fσ // S

Bσ
��








P1

By uniqueness, these fσ trivially satisfy Weil’s cocycle condition [22], whence (S,B) can
also be defined over M(S) .

We learned from Rubén Hidalgo another application of Weil’s criterion which turns out
to be very useful for proving the following theorem – for more sophisticated versions see
[5].

Theorem 1. Let S be a quasiplatonic curve of genus g > 1 with full automorphism group
AutS = G. If G contains its centre Z(G) as a direct factor, that is if G ∼= G′×Z(G) , the
pair (S,G) can be defined over its field of moduli M(S,G) .
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Proof. We can suppose that S is defined over its field of moduli M(S) . Let σ ∈ I(S,G) .
Every automorphism fσ satisfying the condition

fσ ◦ α ◦ f−1σ = ασ for all α ∈ G

must be of the form (gσ, h) ∈ G′ × Z(G) for some gσ ∈ G′. Then the set {(gσ, 1)} satisfies
Weil’s cocycle condition and we can define (S,G) over M(S,G) .

A remark in the preprint [2] suggests that the result may still be true without the hy-
pothesis about the centre. We will not use such a stronger version since the automorphism
groups considered here are of type PSL2 , PGL2 or direct products of such groups with
cyclic factors C2 , so Theorem 1 applies.

Corollary 1. Under the same hypotheses, let U be a subgroup of G and C := U\S the
quotient curve. Then, C can be defined over the field M(S,G) . Moreover, all such quotient
curves C can be simultaneously defined over M(S,G) in the sense that all their function
fields M(S,G)(C) are subfields of M(S,G)(S) .

Proof. Recall that k is a field of definition for C if the function field C(C) can be obtained
by a constant field extension of a function field k(C), that is tensoring some ring of functions
k[C] with C and taking the quotient field. Now, we know that the function field of S is
a constant field extension of M(S,G)(S) and that moreover all automorphisms of S are
defined over M(S,G). Therefore, M(S,G)(S) is a Galois extension of a rational function
field M(S,G)(β), and M(S,G)(C) is the fixed field of the subgroup U . This construction
works simultaneously for all quotient curves of S .

3 Congruence subgroups and uniform dessins

A finite group G is called a Hurwitz group if it acts as automorphism group on a compact
Riemann surface S of genus g > 1 and has order 84(g − 1) , which is Hurwitz’s universal
upper bound for all such automorphism group orders. In this case the surface is moreover
quasiplatonic: it is well known that S is uniformised in this case by a normal subgroup K
of the triangle group ∆(2, 3, 7) and, in particular, one has G ∼= ∆(2, 3, 7)/K. A classical
theorem by Macbeath [15] shows that PSL(2,Fq) is a Hurwitz group exactly in the following
cases

(i) q = 7,

(ii) q = p prime for p ≡ ±1 mod 7,

(iii) q = p3 for p prime and p ≡ ±2 or ± 3 mod 7.

The corresponding Riemann surfaces are usually known as Macbeath–Hurwitz curves and
the first examples are found in genus three (Klein’s Riemann surface, with automorphism
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group isomorphic to PSL(2,F7)), genus seven (the Fricke–Macbeath curve with automor-
phism group PSL(2,F8)) and genus fourteen (where there exist three non–isomorphic
but Galois conjugate Macbeath–Hurwitz curves with automorphism group isomorphic to
PSL(2,F13)).

It was proved in [6] by A. Džambić that all Macbeath–Hurwitz curves can be constructed
arithmetically as follows. Given a number field k, denote by Ok its ring of integers. The
triangle group ∆(2, 3, 7) is the norm 1 group of a maximal order in a quaternion algebra A
over the field k = Q(cosπ/7) (more precisely its image under the canonical homomorphism
SL(2,R) → PSL(2,R) ), and it can be seen as a subgroup of PSL(2,OL), the projective
group of determinant 1 matrices over the ring of integers OL of an at most quadratic
extension L of k. Any rational prime p defines an ideal pOk in Ok such that

(i) if p = 7 then p is ramified and pOk = p3 for a prime ideal p ⊂ Ok of norm q =
N(p) = 7;

(ii) if p ≡ ±1 mod 7 then p splits, i.e. pOk = p1p2p3 for prime ideals p1, p2, p3 ⊂ Ok of
norm q = N(pi) = p;

(iii) if p ≡ ±2 or ± 3 mod 7 then p is inert, i.e. pOk is a prime ideal in Ok of norm
q = N(p) = p3.

For every prime p in Ok we can define the subgroup of matrices of ∆(2, 3, 7) congruent to
the identity modulo p. This is a normal torsion-free subgroup of ∆(2, 3, 7) with quotient
group isomorphic to PSL(2,Fq) where q = N(p), yielding therefore a Macbeath–Hurwitz
curve.

3.1 Principal congruence subgroups

One can generalise the construction above in the following way. Consider any arithmetic
triangle group ∆ = ∆(r, s, t) which is the norm 1 group M1 of a maximal order M of a
quaternion algebra A over a field k. In the last section, we will extend our assumptions
to triangle groups containing (always with index 2 or 4 ) such a norm 1 group. Up to an
extension of the quotient groups PSL(2,Fq) to PGL(2,Fq) and/or adding one or two direct
factors C2 , most results of the present section remain valid. It is well known [20] that in
the case of arithmetic triangle groups, the invariant trace field k has always class number
1, and therefore any prime ideal in Ok is principal, hence of the form p = πOk for some
prime π ∈ Ok . Given such a prime p in Ok one can define the local quaternion algebra
Ap over the p–adic field kp.

For each prime p not dividing the discriminant of A, the p–adic completion Ap is
isomorphic to M2(kp). As in the previous case one can define the principal congruence
subgroup of level p. It is defined as the (normal) subgroup ∆(p) of ∆ whose localisation
with respect to a prime q ∈ Ok coincides with

Φ(p) =

{(
a b
c d

)
∈Mq

∼= M2(Oq) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod q

}
7



(here the congruences have to be read coefficient–wise mod πOq ) if q = p and with M1
q

otherwise, where Mp stands for the localisation of M and Oq denotes the ring of integers
of the local field kq. The existence and uniqueness of such a subgroup is granted by the
strong approximation theorem for arithmetic groups (see for example [21] or [14]). We
have ∆/∆(p) ∼= PSL(2,Fq) where q = N(p) := |Ok/p| .

The first consequence is that all these surfaces S = ∆(p)\H have a regular Belyi func-
tion β : ∆(p)\H −→ ∆\H , given by the normal inclusion ∆(p)�∆, and an automorphism
group of order |AutS| = |N(∆(p))/∆(p)| ≥ |PSL(2,Fq)| where N denotes the normaliser
in PSL(2,R) .

Analogously, for each positive integer n we can consider the principal congruence sub-
group ∆(pn) of level pn, whose localisation in p corresponds to

Φ(pn) =

{(
a b
c d

)
∈Mp

∼= M2(Op) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod pn

}
This time the quotient ∆/∆(pn) is isomorphic to PSL(2,Op/p

nOp). Once again the normal
inclusion ∆(pn) � ∆ yields a regular Belyi function on S = H/∆(pn).

¿From the point of view of quaternion algebras, principal congruence subgroups of
level pn with n ≥ 1 correspond to the intersection of certain maximal orders in the local
quaternion algebra Ap. More precisely, maximal orders in a split local quaternion algebra
Ap can be represented as vertices of a regular Bruhat–Tits–tree of valency q + 1, where
q = N(p) (see Figure 1). The principal congruence subgroup of level pn corresponds then
to the intersection of all the vertices at distance ≤ n from some point, which represents
the maximal order M whose norm 1 group is ∆.

Figure 1: Part of the tree of maximal orders of a local algebra Ap corresponding to ∆(p3)
(in the case N(p) + 1 = 8).
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3.2 Multiple uniform dessins

In [10] we studied under which conditions a surface S contains different uniform Belyi
functions of a given type (r, s, t). This is equivalent to determine when the uniformising
group K of S is contained in different triangle groups of that signature. In the case when
∆ = ∆(r, s, t) is the norm 1 group of a maximal order in a quaternion algebra as above,
this happens if and only if K is contained in a group conjugate in ∆ to the congruence
subgroup ∆0(p), where p is a prime in Ok not dividing the discriminant of A, and ∆0(p)
is defined as the subgroup of ∆ whose localisation with respect to the prime p is

Φ0(p) =

{(
a b
c d

)
∈M1

p
∼= SL(2,Op) : c ≡ 0 mod p

}
.

Remark 2. Even if ∆ is strictly larger than the norm 1 group of a maximal order (by
index 2 or 4, as already mentioned) we define the congruence subgroups ∆(p) and ∆0(p)
always as subgroups only consisting of norm 1 elements. The same convention will be used
for higher power levels pj.

In order to explain this multiple inclusion of K in different conjugate triangle groups
one has to introduce the so called Fricke (or Atkin–Lehner) extension ∆Fr(p). In the
local algebra Ap, the group Φ0(p) is the norm 1 group of an Eichler order Ep, that is the
intersection of two maximal ordersMp and γ−1Mpγ, where γ =

(
π 0
0 1

)
. The norm 1 groups

of these two (local) maximal orders correspond in the global case to two triangle groups
∆ = ∆1 and ∆2 of the same type. The (Fricke) element

(
0 π−1

−1 0

)
∈ Ap conjugates one

maximal order into the other, and therefore induces an isomorphism of Φ0(p) of order two,
called the Fricke involution. In the global case, this Fricke element corresponds to a matrix
in GL(2,R) interchanging ∆1 and ∆2 by conjugation. By the rigidity of triangle groups,
this conjugation can be realised inside PSL(2,R) by an element αp, which generates an
index two extension ∆Fr(p) = 〈∆0(p), αp〉 called the Fricke extension.

Since αp normalises ∆0(p), but not ∆, and α2
p ∈ ∆0(p), conjugation by αp induces an

involution on the curve ∆0(p)\H . We call it therefore the Fricke involution for ∆0(p) (even
if it might not satisfy α2

p = 1 in PSL(2,R) ). As a consequence every group K < ∆0(p) is
included in both ∆ and ∆2 = αp∆α

−1
p , yielding two different uniform dessins in K\H .

In the same way, for every integer j > 1 one can introduce the congruence group ∆0(p
j)

which corresponds in the local algebra Ap to

Φ0(p
j) =

{(
a b
c d

)
∈ SL(2,Op) : c ≡ 0 mod pj

}
.

Note that ∆0(p
j) < ∆0(p). The Fricke involution is in this case an element αpj correspond-

ing in the local case to the element (
0 π−j

−1 0

)
,
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and ∆0(p
j) is normal in the Fricke extension ∆Fr(p

j) = 〈∆0(p
j), αpj〉. However, none of

the groups ∆0(p
l) is normal in ∆Fr(p

j), for j < l, and neither is any of its ∆–conjugates
∆i

0(p
l). Existence and uniqueness of all these Fricke involutions is well known in the case of

the elliptic modular group ∆(2, 3,∞) = PSL(2,Z) and is probably known to the experts
in the cases we need here. However, by lack of a good reference we include a statement
and a proof:

Lemma 3. Let ∆ be an arithmetic Fuchsian triangle group, a PSL–image of a norm 1
group of a maximal order M0 in the quaternion algebra A with totally real centre field k of
class number 1 , and p a prime ideal in k not dividing the discriminant of A . We consider
A as embedded in the matrix algebra M2(R) . For all j ≥ 1 , the congruence subgroup
∆0(p

j) is the norm 1 subgroup of the intersection M0 ∩Mj of two maximal orders M0 and
Mj in A . These two maximal orders are conjugate under a (Fricke) involution αpj ; we
can suppose that – as an element of A – αpj has norm π−j. Then the class αpj∆0(p

j) is
uniquely determined.

Proof. Since we are considering only congruence subgroups of levels pj , we can see the
maximal orders as intersections of their p–adic completions with A and visualise the local
maximal orders by the vertices of the Bruhat–Tits tree already introduced above, see
Figure 1.

For the first claim about the role of ∆0(p
j) as norm 1 subgroup of the intersection

M0 ∩Mj of two maximal orders M0 and Mj one may consult [10] to see that these orders
correspond to two vertices which are at distance j from each other in the Bruhat–Tits tree.

Existence of αpj : since k has class number 1 , all maximal orders are conjugate in A
[21], so we have some γ ∈ A∗ such that Mj = γM0γ

−1 . It is easy to see that we may
even suppose γ ∈ SL(2,R) . If M0 = γMjγ

−1 , the element γ2 fixes both M0,Mj , hence
belongs to ∆0(p

j) , and γ normalises this subgroup. If not, we have γMjγ
−1 = M ′ 6= M0 ,

both having distance j from Mj . But in this case there is some δ in the norm 1 group of
Mj (hence fixing Mj) and sending M ′ to M0 , see the arguments in the proof of the next
lemma. Then, δγ exchanges M0 and Mj , so we can consider this element as αpj .

Uniqueness: suppose we have two such elements γ, δ ∈ PSL(2,R) exchanging M0 and
Mj under conjugation. They extend to automorphisms of A , so we can assume by the
Skolem–Noether Theorem that they are PSL–images of elements of A . Then δ−1γ fixes
M0 and Mj and – as an element of A – has norm 1 , hence belongs to ∆0(p

j) and induces
the identity on the quotient curve ∆0(p

j)\H .

Now, the principal congruence subgroups ∆(pn) are obviously included in ∆0(p
j) for

each j = 1, . . . , n, hence we deduce that, in particular, the corresponding surfaces ∆(pn)\H
contain several uniform dessins. In fact, one has the following

Lemma 4. Under the same hypothesis as in Lemma 3, for each j = 1, . . . , n there are
qj−1(q + 1) congruence subgroups ∆i

0(p
j) conjugate to ∆0(p

j) in ∆, for
i = 0, . . . , qj−1(q+1)−1 . Each of them is contained in ∆ and in j different triangle groups
conjugate to ∆, in which ∆(pn) is included non-normally. Every ∆i

0(p
j) is the intersection
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of ∆ with a conjugate triangle group ∆j,i, and for fixed j , the different ∆j,i form an orbit
under conjugation by ∆ .

Proof. The proof proceeds by induction on j. The group ∆0(p) is an index q+ 1 subgroup
of ∆, and for each class of elements ρi ∈ ∆ modulo ∆0(p), i = 0, . . . , q, we can construct
the group ∆i

0(p) ≡ ρi ·∆0(p) · ρ−1i for ρ0 = Id, . . . , ρq, such that

∆(pn) � ∆i
0(p) < ∆

For each of them we have the Fricke involution αi := ρiαpρ
−1
i , the Fricke extension ∆i

Fr(p) =
〈∆i

0(p), αi〉 6< ∆ and therefore a non-normal inclusion of ∆(pn) in αi∆α
−1
i , yielding the

following diagram of inclusions

∆

?????????? αi∆α
−1
i

}}}}}}}}}}
∆i

Fr(p)

∆i
0(p)

∆(pn)

Now suppose that there are qj−1(q + 1) congruence subgroups conjugate to ∆0(p
j) in

∆. Inside this subgroup lies ∆0(p
j+1) with index q . Its normaliser in ∆0(p

j) is trivial, and
therefore there are q subgroups of ∆0(p

j) conjugate to ∆0(p
j+1). Now the Fricke element

αpj+1 conjugates ∆ into a different triangle group ∆j,1 in which ∆(pn) is included.
The claim about the conjugacy of the different ∆i

0(p
j) for fixed j follows from the action

of ∆ on the fake projective line P1(Ok/pj) consisting of pairs (x, y) ∈ (Ok/pj)2 , not both
coordinates divisible by p , modulo the diagonal action of (Ok/pj)∗. The action of ∆ on this
fake projective line is transitive again because the p–adic completion of ∆ is isomorphic
to the PSL(2,Op) of the p–adic integers in kp, and the subgroups ∆i

0(p
j) are the stabiliser

subgroups of the different points on this fake projective line. They are obviously different
and conjugate under the action of ∆ by transitivity. By the same conjugations, ∆ acts on
the ∆j,i giving the final claim.

The representation in the tree of local maximal orders is the following. The q+1 groups
∆i

0(p) correspond to the q+1 paths joining the middle vertex with each of its neighbours at
distance 1, which correspond to the q + 1 groups αi∆α

−1
i . Similarly, for each j = 2, . . . , n

the groups ∆i
0(p

j) , i = 1, . . . , qj−1(q + 1) are represented by the paths joining the middle
vertex with each of its distance j neighbours, which correspond precisely to the triangle
groups mentioned in the previous lemma.

Example 1. The principal congruence subgroup ∆(p7) < ∆(2, 3, 7), for a prime p7 in
Q(cos π/7) dividing the rational prime 7, uniformises Klein’s quartic K and, accordingly,
one has one regular Belyi function and N(p7)+1 = 8 uniform dessins of type (2, 3, 7) on K.
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Example 2. Consider Bring’s curve B, given by the equations
x0 + x1 + x2 + x3 + x4 = 0
x20 + x21 + x22 + x23 + x24 = 0
x30 + x31 + x32 + x33 + x34 = 0

in P4(C). It is known that B is the only Riemann surface of genus 4 admitting the symmetric
group on 5 elements S5 as a group of automorphisms (see for example [16]), and that this
action is simply given by permutation of the projective coordinates.

Now, the triangle group ∆ := ∆(2, 5, 5) is the norm 1 group of a maximal order in a
quaternion algebra defined over Q(

√
5), and the principal congruence subgroup ∆(

√
5) �

∆(2, 5, 5) uniformises a surface of genus 4. This group is also normal in the maximal triangle
group ∆(2, 4, 5), and it can be proved that ∆(2, 4, 5)/∆(

√
5) = PGL(2,F5) ∼= S5. As a

consequence the surface B has the principal congruence subgroup ∆(
√

5) as uniformising
group.

By the results in the previous sections, it has a regular Belyi function and N(
√

5)+1 = 6
subgroups ∆i

0(
√

5). Note that in this case, these subgroups lead to 12 uniform Belyi
functions of type (2, 5, 5) on B, if we take into account the renormalizations Bi and 1−Bi

as in Remark 1 and Lemma 2.

In the following, we will always suppose that ∆ is an arithmetic Fuchsian triangle group
containing a PSL–image of a norm 1 group of a maximal order M0 in the quaternion algebra
A with totally real centre field.

We will first focus our attention on principal congruence subgroups of level p. By the
discussion above, there are q+ 1 surfaces Si ∼= H/∆i

0(p), i = 0, . . . , q, and for each of them
there are uniform Belyi functions

ri : ∆i
0(p)\H −→ ∆\H

ui : ∆i
0(p)\H −→ αi∆α

−1
i \H

such that β and all βi decompose via the intermediate coverings
τi : S ∼= ∆(p)\H −→ Si ∼= ∆i

0(p)\H as

β = ri ◦ τi, βi = ui ◦ τi .

So, for each i = 0, . . . , q one has the following diagram

S

τi

��β

���������������������

βi

��2222222222222222222

Si

ri
{{wwwwwwwwww

ui $$JJJJJJJJJ

∆\H = P1 P1 = αi∆α
−1
i \H
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Lemma 5. Let ai be the automorphism of the intermediate curve Si := ∆i
0(p)\H induced

by the Fricke involution αi . Then, ui ◦ ai = ri , hence β = ri ◦ τi = ui ◦ ai ◦ τi and
βi = ui ◦ τi = ri ◦ ai ◦ τi .

Proof. Remember that ri and ui are the Belyi functions on Si induced by the Belyi functions
β and βi on S , and that their dessins D and Di come from the tessellations of H by the
fundamental domains F, Fi for ∆ and αi∆α

−1
i . Since for Fi we can take αi(F ), the Belyi

functions are linked as indicated.

Lemma 5 generalises to higher levels as follows.

Lemma 6. Let Sj,i := ∆i
0(p

j)\H , τj,i the quotient map Spn → Sj,i and

rj,i : Sj,i → ∆\H , uj,i : Sj,i → αj,i∆α
−1
j,i \H = ∆j,i\H

the two quotient maps giving the regular and the nonregular uniform Belyi functions

β = rj,i ◦ τj,i , βj,i = uj,i ◦ τj,i : Spn → P1(C) .

Then the involution aj,i induced by αj,i on Sj,i satisfies

uj,i = rj,i ◦ aj,i and rj,i = uj,i ◦ aj,i .

4 Shimura congruence curves of prime power level

In this section we will get some information about the fields of moduli and the fields of the
definition of the curves and dessins described in Section 3.

4.1 Fields of moduli

In order to determine explicitly the field of moduli M(Sp) of our Shimura curves we could
rely on Clark and Voight’s Theorem A and Proposition 5.1 in [2], at least in the case of
prime levels. We will however prove parts of these results in another way, more similar to
the methods already used here.

First we need the following useful lemma.

Lemma 7. Let ∆ be an arithmetically defined cocompact triangle group, containing the
norm 1 group of a maximal order of a quaternion algebra A with centre field k, and let p
be a prime ideal in k not dividing the discriminant of A . Then, for each positive integer
n one has M(Spn) = M(Sp).

Proof. We restrict to the case n = 2, the higher powers behave similarly. Suppose Sp2 to
be defined over M(Sp2). First,

M(Sp2) > M(Sp)

13



because otherwise we would have a σ ∈ Gal (Q) leaving invariant Sp2 but having two
non–isomorphic quotient congruence curves

Sp and (Sp)
σ

which is impossible.
Second, we getM(Sp2) < M(Sp) by the following argument. For all σ ∈ Gal (Q/M(Sp)) ,

the Galois conjugate curve (Sp2)
σ has as many uniform dessins as Sp2 , and they are of the

same types and have the same automorphism groups as them (up to isomorphism, of
course). By the main results of [10], this can occur only if this Galois conjugate curve has
a surface group Γ contained in a principal congruence subgroup ∆(q2) with a prime ideal
q in k of the same norm q as p. Moreover, since also the index (∆ : ∆(p2)) is invariant
under Galois conjugation, we have even Γ = ∆(q2) . Now, by the same argument as in the
first part of the proof, their common quotient curve Sp shows

∆(q2) / ∆(p) . ∆(p2)

which is possible only for q = p. Therefore, σ sends Sp2 to an isomorphic curve, hence
M(Sp2) = M(Sp).

Lemma 8. Let ∆ be an arithmetically defined cocompact triangle group, containing the
norm 1 group of a maximal order of a quaternion algebra A with centre field k (abelian
over Q ), and let p be a rational prime coprime to the discriminant of A , p one of the
prime ideals of the ring of integers Ok of k in the prime decomposition

pOk = (p1 · . . . · pg)e ,

g the splitting number and e the ramification index of p in the field extension k/Q . For
every positive integer n let S = Spn be the quasiplatonic surface with surface group ∆(pn) .
Then [M(S) : Q] ≤ g .

Proof. By Lemma 7 we can restrict ourselves to the case n = 1 . For the action of
an arbitrary σ ∈ Gal(Q) on S we know that Sσ is still quasiplatonic, that regularity,
uniformity, and the type of all dessins are preserved. Therefore, if we denote by Γ = ∆(p)
the surface group of S and by Γσ the surface group of Sσ , then Γσ is again normal in ∆
and Sσ has one regular dessin and N(p)+1 uniform ones of type (r, s, t) if ∆ = ∆(r, s, t) .
By [10] we know that this is only possible if the surface group of Sσ is contained in one
of the principal congruence subgroups ∆(pj) . Because also degrees of Belyi functions are
Galois invariant, we have even Γσ = ∆(pj) for some j, since

(∆ : ∆(pj)) = (∆ : ∆(p)) = (∆ : Γσ) .

Therefore the well–known group action of Gal(Q) on the set of prime ideals pj , j =
1, . . . , g , induces an action on the principal congruence subgroups ∆(pj) and their corre-
sponding surfaces Spj whose stabiliser subgroup IS has an index at most g in Gal(Q) . So
Galois theory implies the claim about the field degree.

14



Corollary 2. Under the same assumptions, we have [M(S) : Q] ≤ [k : Q] . Moreover,
M(S) = Q in all cases with splitting number g = 1 , that is in particular for all rational
primes p inert or totally ramified in k .

This applies in particular to the examples we have already seen: for Bring’s curve we
have k = Q(

√
5) with p = 5 totally ramified, for Klein’s quartic k = Q(2 cos 2π

7
) and

p = 7 is totally ramified too. The next Hurwitz curve (with the same ∆ = ∆(2, 3, 7) ,
hence with the same k ) is the Fricke–Macbeath curve S2 in genus 7 with surface group
∆(2) , 2 inert in k , hence with M(S2) = Q as well.

Not only in these cases the estimate of Lemma 8 is sharp. Streit’s method used in [19]
extends to many other arithmetic triangle groups; the technical difficulties in his approach
are however not smaller than those in the preprint [2] by Clark and Voight.

4.2 Fields of definition

In this section we will study the fields of definition of some of the curves involved in
the construction and we will find simultaneous fields of definition for the uniform dessins
constructed in the previous sections.

We start by stating some facts about the fields of definition of the intermediate curves
Si.

Lemma 9. Let S = Sp be the quasiplatonic surface with surface group ∆(p) , with ∆ a
maximal arithmetic triangle group containing the norm 1 group of a maximal order of A
and p a prime not dividing the discriminant of A, and let Si ∼= ∆i

0(p)\H be as above. Then
Si can be defined over M(S) .

Proof. Let gij : Si → Sj = Sσi be the unique isomorphism between Si and Sj induced
by an element δij in the norm 1 group Φ contained in ∆ . This choice is unique because
there are precisely q + 1 residue classes δ∆i

0(p) ∈ Φ/∆i
0(p) which give by conjugation

the q+ 1 different ∆j
0(p) . Composition of such isomorphisms gives again an isomorphism

induced by an element of Φ , and Galois conjugation by τ ∈ Gal(Q/M(S)) preserves also
this collection of isomorphisms induced by the norm 1 group Φ because Φ/∆(p) is the
commutator subgroup of the full automorphism group G := ∆/∆(p) of S . Therefore, the
collection of these gij satisfies Weil’s cocycle condition whence all Si can be defined over
M(S) .

Theorem 2. Under the same hypotheses as in Lemma 9, M(S, βi) = M(S) for all i , in
other words: the moduli field of S is also a moduli field of all uniform non–regular dessins
on it.

Proof. We may suppose S to be defined over M(S) . For all i and all σ ∈ Gal(Q/M(S)) ,
βσi is another uniform Belyi function βj of the same type, and for them the same δij
as in Lemma 9 induce automorphisms dij := δij∆(p) ∈ G = AutS with the property
βj ◦ dij = βi .
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Unfortunately, in contrast to the isomorphisms gij in the proof of Lemma 9, the au-
tomorphisms dij are uniquely determined only modulo the subgroup ∆j

0(p)/∆(p) of G, so
Weil’s criterion does not apply immediately. The question of whether the uniform dessins
can be defined over their field of moduli M(S) does not have therefore an obvious answer.
However, some partial answers can be given.

Theorem 3. Under the same hypotheses as in Lemma 9, let Si be defined over M(S).
Suppose moreover that there exists a M(S)–rational point x ∈ Si , not critical for the
canonical covering τi : S → Si . Then (S, βi) can be defined over M(S) .

Proof. By Lemma 5 we know that βi = ri ◦ ai ◦ τi . First, let us prove that both τi and
ri can defined over M(S) . Since Si and x are Gal(Q/M(S))–invariant and τi is a normal
covering, one can apply the method of Coombes and Harbater [4]: take a preimage y of x
under τi . For all σ ∈ Gal(Q/M(S)) , we have σ(y) in the preimage of x under τσi , hence
there is a unique isomorphism

dσ : S → Sσ with dσ(y) = σ(y) and τi = τσi ◦ dσ ,

so Weil’s criterion applies to the pair (S, τi) . The function ri is also Gal(Q/M(S))–
invariant: otherwise we would have several different regular Belyi functions β = ri ◦τi and
βσ = rσi ◦ τi on S .

Now, the Fricke involution ai of Si is not necessarily fixed by all Galois elements σ ∈
Gal(Q/M(S)). If aσi = ai, then βσi = rσi ◦ aσi ◦ τσi = ri ◦ ai ◦ τi = βi .

Let us suppose that aσi 6= ai. Note that, if ai is induced by conjugation by αi ∈
N(∆i

0(p)), then aσi = ai ◦ d is induced by conjugation by αiδ for some δ ∈ N(∆i
0(p)) ∩

αi∆α
−1
i , since αiδ must interchange the maximal triangle groups ∆ and αi∆α

−1
i . But

the automorphism group Aut (Si, ui) of the Belyi function ui = ri ◦ ai is induced by the
normaliser of ∆i

0(p) in αi∆α
−1
i . As a consequence one has ui◦d = ui and βσi = rσi ◦aσi ◦τσi =

ri ◦ ai ◦ d ◦ τi = βi .

If we ask for fields over which all relevant functions are defined simultaneously, the
results become slightly weaker, of course.

Theorem 4. Under the same hypotheses as in Lemma 9, the regular and all uniform Belyi
functions on the Shimura curve S = Sp can be defined simultaneously over the field of
moduli M(S,G) .

Proof. By Corollary 1, the function fields of S, P1 and all Si can be defined over M(S,G) ,
and all quotient maps τi and ri in Lemma 5 correspond to the respective embeddings of
these function fields into each other. As a consequence all these maps can be defined over
M(S,G) simultaneously. Now, by the same argument as in the proof of Theorem 3, for all
σ ∈ Gal(Q/M(S,G)) one has uσi = ui, hence also βσi = βi.

Example 3. Let B ∼= H/∆(
√

5) be Bring’s curve already introduced in Example 2. Let us
recall that its full automorphism group AutB ∼= S5 acts on the point [x0, . . . , x4] ∈ B by
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permutation of the projective coordinates. Since both B and its automorphism group are
defined over Q, by Theorem 4 its regular dessin and all its uniform dessins can be defined
over Q (even simultaneously).

Example 4. In the affine model KF := {y7 = x(x−1)2} of Klein’s quartic K (see Example
2), the function

β0(x, y) = −(x6 − 235x5 + 1430x4 − 1695x3 + 270x2 + 229x+ 1)
3

(x2 − x+ 1)
3

1728x(x− 1) (x3 + 5x2 − 8x+ 1)7

is one of the (2, 3, 7) uniform Belyi functions (see Example 4.44 in [9]) and it is defined
over M(K) = Q. However, in this model there are automorphisms not defined over Q,
and therefore we cannot expect all uniform Belyi functions in KF to be defined over Q
simultaneously.

However, there is a model for Klein’s quartic in which all uniform Belyi functions are
simultaneously defined over the field Q(

√
−7). This follows from a result in Clark and

Voight’s preprint [2] saying that in this case M(K, G) = Q(
√
−7) . A relatively easy proof

for this claim is the following.
Another model for K defined over the rationals is the projective equation x3y + y3z +

z3x = 0 , and in this model all automorphisms are defined over the cyclotomic field Q(ζ7) ,
therefore M(K, G) has to be a subfield of this cyclotomic field. The absolute Galois group
acts as automorphism group on G ∼= PSL(2,F7) whose automorphism group is isomorphic
to PGL(2,F7) , an index 2 extension of its inner automorphism group ∼= G . For inner
automorphisms, that is for those σ acting on G as

α 7→ ασ = γ−1 α γ for some γ = fσ ∈ G

we have obviously σ ∈ I(K,G) , therefore M(K, G) can be an extension of Q of degree at
most 2 . Because Q(

√
−7) is the only quadratic subfield of Q(ζ7) , the claim follows.

In a similar way – using Lemma 6 instead of Lemma 5 – we can prove

Theorem 5. For all prime ideal powers coprime to the discriminant of A, the regular and
all uniform Belyi functions on the Shimura curve S = Spn can be defined simultaneously
over the field of moduli M(S,G) .

5 Appendix: the role of the splitting field

Theorem 6. Under the assumptions of Lemma 8, but with the possible exception of the case
∆ = ∆(3, 4, 6) , M(S) is the splitting field of p in k, that is the fixed field of all σ ∈ Gal k/Q
fixing the prime ideals pj | p . The action of the absolute Galois group on these principal
congruence subgroup Shimura curves is the same as the action on the level ideals: if the
principal congruence subgroup ∆(pn) is the surface group of S := Spn , ∆(σ(pn)) is the
surface group ∆(pn)σ of Sσ . The field of moduli M(S) coincides with the field of moduli
M(D) of the maximal regular dessin on S .
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This splitting field can also be considered as the smallest subfield of k (of degree g ) in
which p splits in g prime ideals (in this splitting field necessarily of residue class degree 1).

Proof. 1. With Lemma 7, the result clearly extends from p to all prime power levels pn, so
we will consider only the case n = 1 . Another simplification comes from Lemma 1: since
∆ is maximal, we have in fact M(D) = M(S) . So it is sufficient to care about M(S) .

2. As a preparatory step, we need to learn more about the full automorphism group
G := ∆/∆(p) of S := Sp . All triangle groups in question are either the norm 1 groups Φ
mentioned in Lemma 8 or extensions of them of degree 2 or 4 . In a few cases, Φ is not
a triangle group itself but a quadrangle group. The extensions are generated by integer
elements δ ∈ A of totally positive norm ν ∈ k , either a prime dividing the discriminant
D(A) or a non–square unit of k . The arithmetic in A implies that δ normalizes congruence
subgroups ∆(p) as well. If q denotes the norm N(p) and if ∆ is generated by Φ and δ ,
then Φ/∆(p) ∼= PSL(2,Fq) and ∆/∆(p) ∼= PSL(2,Fq) × C2 or ∼= PGL(2,Fq) depending
on the alternative whether the (reduced quaternion) norm N(δ) mod p is a square in Fq
or not. If ∆ is an index 4 extension of Φ , the quotient ∆/∆(p) is ∼= PSL(2,Fq)×C2×C2

or ∼= PGL(2,Fq)× C2 by a similar argument (we learned this idea from A. Džambić).
3. By the arguments already used in the proof of Lemma 8, we know that the quasi-

platonic surfaces Spj , j = 1, . . . , g , form a family F invariant under the action of the

absolute Galois group Gal(Q) , so the splitting number g is an upper bound for the length
of the Galois orbit of S . We can suppose that all these surfaces are equipped with the
dessins induced by the maximal triangle group ∆ . Φ . ∆(pj) of signature (r, s, t) . Let
p be one of these prime ideals. Let G be the automorphism group of S := Sp , generated
by the elements g0, g1, g∞ of respective orders r, s, t , images of the canonical generators
γ0, γ1, γ∞ of ∆ under the canonical epimorphism

h : ∆ → ∆/∆(p) ∼= G .

If g1 , say, has a fixed point P ∈ S and acts in suitable local coordinates on a neighbourhood
of P like

g1 : z 7→ ζvs · z ,

we call ζvs the multiplier of g1 in P . Clearly, v is coprime to s . The collections of all pairs

(ζur , nr,u) , (ζvs , ns,v) , (ζwt , nt,w)

are called the multiplier data of (G, g0, g1, g∞) on S where we denote by nr,u the number
of all fixpoints of g0 on S with multiplier ζur , and so on.

4. As next step we show how the action of the absolute Galois group on the family
F induces an action on the multiplier data. For all σ ∈ Gal(Q) the multiplier data of
(Gσ, gσ0 , g

σ
1 , g

σ
∞) arise from the original ones by an obvious action of σ on the multipliers,

see [19] or [13]. We can simplify the consideration of this Galois action on the multiplier
data in two ways. First, we can neglect all multipliers with (say) r = 2 because Gal(Q)
acts trivially on ζ2 = −1 . Second, we can exclude all primes p from the consideration in
our theorem which divide one of the entries of the signature of ∆ : a case–by–case analysis
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of all 19 triangle groups in question (see Table (3) of [20]) shows that this possibility occurs
only if p and the discriminant ideal D(A) of the algebra have a nontrivial common divisor
or – much more often – if the splitting number of p in k is g = 1 , so Corollary 2 applies.
Instead of a tedious list we give two typical examples.

a) ∆ = ∆(2, 5, 6) with k = Q(
√

5) . Here, 2 divides the discriminant of the algebra, 3
is inert and 5 is ramified.

b) ∆ = ∆(2, 5, 30) with k = Q(cos π
15

) , the maximal real subfield of Q(ζ15) , is a
bit more complicated. The prime 3 divides the discriminant D(A) . The Galois group of
Q(ζ15)/Q is isomorphic to (Z/15Z)∗ ∼= {±1 mod 15} × {1, 2, 4, 8 mod 15} , and k is the
fixed field of the first factor, and therefore

Gal(k/Q) ∼= (Z/15Z)∗/{±1} ∼= {1, 2, 4, 8 mod 15} .

This second factor is generated by the Frobenius automorphism for the prime 2 , so this
prime is inert in k . Finally, the prime 5 is totally ramified already in the subfield Q(ζ5)
and inert in the subfield Q(ζ3) , hence it has in Q(ζ15) the decomposition 5Z[ζ15] = P4

with one prime ideal P < Z[ζ15] of residue degree 2 . Because the splitting number of 5 is
g = 1 in Q(ζ15) , it is also 1 in its subfield k .

The primes not dividing the signature entries have the advantage that they cannot
belong to parabolic generators of SL(2,Fq) or GL(2,Fq) ; these are the only ones having
eigenvalues of multiplicity 2 . So, for the other primes p our generators gi (that is g0, g1 or
g∞) are non–parabolic, therefore gi is conjugate in G to g±1i but to no other power of gi – an
easy consequence of the structure of SL(2,Fq) and GL(2,Fq) , compare the eigenvalues of
their matrices and the respective arguments already used in [19] and [8]. By construction
of (say) gi = g∞ = h(γ∞) by means of the canonical epimorphism h , the fixpoint u ∈ H
of γ∞ gives at least one fixpoint P = ∆(p)u ∈ S = ∆(p)\H with multiplier ζt . Now
suppose that g∞ fixes another point Q ∈ S , then this is a fixed point of the same order
because ∆ is maximal and so the orders of the generators of G (the signature entries) are
pairwise different. So, Q and P are both face centers of the dessin (or vertices of the same
colour in the cases i = 0, 1 ). By the transitivity of G there is an automorphism a ∈ G
with a(P ) = Q , therefore a−1g∞a fixes P as well, hence is conjugate to a power of g∞ ,
and we know that here g±1∞ are the only possible powers. Since the multiplier of g∞ in Q
is the same as that of a−1g∞a in P , it has to be ζ±1t . The only possible contribution of
g∞ to the multiplier data are therefore the pairs

(ζt, nt,1) and (ζ−1t , nt,−1) .

In the following, we will therefore always assume (without loss of generality, see above)
that p is coprime to r, s, t . As a consequence, p is unramified in all cyclotomic fields in
question, hence also unramified in k , see the next step of the proof.

5. By the same proof as in [19] we can moreover see that nt,1 = nt,−1 : consider the
canonical representation ψ of G on the space of holomorphic differentials of S . Since g∞
is conjugate to g−1∞ , and since

trψ(g∞) = trψ(g−1∞ ) = trψ(g∞)−1 = trψ(g∞) ,
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ψ(g∞) has a real trace. On the other hand, Eichler’s trace formula

trψ(g∞) = 1 + nt,1
ζt

1− ζt
+ nt,−1

ζ−1t
1− ζ−1t

gives a real value if and only if nt,1 = nt,−1 , so the multiplier system is invariant under
complex conjugation. Obviously, the action of Gal(Q) on the multiplier data corresponds
therefore to the action on Q(cos 2π

r
, cos 2π

s
, cos 2π

t
) , and this is precisely the center field k of

the quaternion algebra A for all maximal arithmetic triangle groups except ∆(3, 4, 6) . This
can again be seen via a case–by–case analysis along the lines of Takeuchi’s Table (3) in [20].
Two consequences are important: first, k < Q(ζr, ζs, ζt) , therefore (by the assumptions
justified in step 4 of the proof) p is also unramified in k ; in other words, the exponent
e = 1 in the prime decomposition of Lemma 8. Second, on Sσ the contribution of the Galois
conjugate generator gσ∞ with σ(ζt) = ζwt to the multiplier data is (ζwt , nt,1) , (ζ−wt , nt,1) .
Together with the analogous facts for the other generators and with ζt + ζ−1t = 2 cos(2π

t
)

the action of the absolute Galois group Gal(Q) on the multiplier data gives an orbit of
length [k : Q] .

6. In general, this orbit length is however not the orbit length of the action of Gal(Q)
on the family F of the Shimura congruence curves Spj , j = 1, . . . , g : if we consider
again the canonical homomorphism h : ∆ → G = ∆/∆(p) = AutS , we get in fact at
least [k : Q] different epimorphisms σ ◦ h , but their kernels coincide if and only if they
differ by composition with an automorphism of G . (Here we use again the hypothesis
that ∆ is maximal, so we cannot pass to other homomorphisms by permutation of the
generators.) Since we need only a lower bound for the length of the Galois orbit (remember
step 3 above), it is sufficient to study these automorphisms on its commutator subgroup
[G,G] = PSL(2,Fq) or its extension PGL(2,Fq) – the generators of the possible C2 factors
are anyway irrelevant for the Galois action, see step 4. The automorphisms of these matrix
groups over Fq are composed by

• matrix conjugations leaving eigenvalues and traces invariant – so they leave invariant
the multipliers – and

• Galois conjugations by Gal(Fq/Fp) acting on the matrix coefficients and hence also
on the eigenvalues.

If σ ∈ Gal(Q) induces this second kind of automorphism of G , it sends therefore a
generator gi ∈ G, i = 0, 1,∞ , to another element conjugate to some power g±wi where w
is some p–power (here and in the following neglecting possible C2 factors, see above).

7. This is true in the same way for the gi as matrices over Fq and for the gi as
automorphisms of S . In the fist version, σ induces an action on their eigenvalues in the
finite fields Fpm , in the second version an analogous action

ζi + ζ−1i 7→ ζwi + ζ−wi , w a p–power,
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where ζi denotes the multiplier of gi . Clearly, if σ fixes k elementwise, it has this behaviour
(with w = ±1 ). Recall from number theory in cyclotomic fields that the Frobenius sub-
group of Gal(Q(ζi)/Q) consisting of all

σ : ζi 7→ ζwi , w a p–power,

is precisely the maximal subgroup fixing the prime ideals in the prime decomposition of
the (unramified!) rational prime p . Its fixed field is the splitting field of p in Q(ζi) . Using
this fact for all three cyclotomic fields Q(ζi) , the restriction to k is an exercise in Galois
theory and shows

{σ ∈ Gal(Q) | S ∼= Sσ} ≤ Up := {σ ∈ Gal(Q) | σ(p) = p}

(Up depending only on k and p , not on the choice of p among the pj because k is abelian).
The orbit of Gal(Q) on the family F has therefore at least length |Gal(Q) : Up| , and
since the splitting field Kp ≤ k of p is the fixed field of Up , this group index is the field
degree [Kp : Q] = g . Together with the upper bound for the Galois orbit given in Lemma
8 we see therefore that Kp is in fact the field of moduli – hence also the minimal field of
definition – of S .

8. As a side result, we see also that the multiplier data determine uniquely the curves
of the family F . Therefore, Proposition 3 of [13] shows that the actions of Gal(Q) on F ,
their multiplier data, and their corresponding prime ideals pj are compatible.

Remark 3. Step 5 of the proof above fails for ∆ = ∆(3, 4, 6) because the centre field k =
Q(
√

6) 6= Q(cos 2π
r
, cos 2π

s
, cos 2π

t
) = Q . Moreover, the minimal cyclotomic field containing

k is generated by the 24–th root of unity ζ24, hence has degree 4 over k . Therefore, no
group commensurable with ∆ can contain a torsion element γ of order m 6= 2, 3, 4, 6
because otherwise we would have a cyclotomic subfield k(γ) ∼= k(ζm) < A , and this can
have at most degree 2 over k because A cannot contain larger commutative subfields.

Is it possible that in this case all Sp are defined over Q ? No: by the quadratic reciprocity
law, rational primes p split in k if and only if p ≡ ±1 or ±5 mod 24 . The first example
p = 5 , p = (1±

√
6)Ok gives two Galois conjugate curves of genus 16 with field of moduli

k , see the (quite different) proof in [3].
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[16] Riera, G., Rodŕıguez, R. E., The period matrix of Bring’s curve, Pacific J. Math. 154
(1992), no. 1, 179–200.

22



[17] Shimura, G., On the field of rationality of an abelian variety, Nagoya Math. J. 45
(1972), 167–178.

[18] Singerman, D., Automorphisms of maps, permutation groups and Riemann surfaces,
Bull. London Math. Soc. 8 (1976), 65–68.

[19] Streit, M., Field of definition and Galois orbits for the Macbeath–Hurwitz curves,
Arch. Math. 74 (2000) 342–349.

[20] Takeuchi, K., Commensurability classes of arithmetic triangle groups, J. Fac. Sci.
Univ. Tokio, Sect. 1A Math. (1) 24 (1977), 201–212.
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