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The subject of this article belongs to the general question Under which condition(s) suit-
ably normalized transcendental functions take algebraic values at algebraic arguments? Al-
ready the classical examples of Weierstrass’ result concerning the exponential function
and Theodor Schneider’s result about the elliptic modular function show that arguments
and values in these cases are of particular arithmetical interest. Here we try to answer
this question for the case of Schwarz maps belonging to Appell–Lauricella hypergeometric
functions FD in two and more variables, generalizing our results in [SW2] about Schwarz
triangle functions, i.e. for the classical Gauss hypergeometric functions in one variable.

The first section contains the necessary basic notations, conventions and the known ma-
chineries from hypergeometric functions, transcendence and abelian varieties. The second
presents the main result about necessary and sufficient conditions for algebraic and non–
algebraic values of Schwarz maps. These are valid only in some Zariski open subset of
the domain of definition, and the last section shows by giving some examples that this
restriction is quite natural.

1 Basics

1.1 Appell-Lauricella functions

With the Pochhammer symbol (a, 0) := 1 , (a, n) := a(a+ 1) · . . . · (a+n− 1) for complex
a and positive integers n the Appell–Lauricella functions F1 in the N complex variables
x2, x3, . . . , xN+1 with parameters a, b2, . . . , bN+1 and c ∈ C , c 6= 0,−1,−2, . . . — for
N > 2 often denoted FD in the literature — can be defined by the series

F1(a, b2, . . . , bN+1, c;x2, . . . , xN+1) :=
∑

n2

. . .
∑

nN+1

(a,
∑

j nj)
∏

j(bj, nj)

(c,
∑

j nj)
∏

j(1, nj)

N+1∏

j=2

x
nj

j , (1)

each nj running from 0 to ∞ . The series converges if all |xj| < 1 . We will use almost
everywhere its integral representation

1

B(1 − µ1, 1 − µN+2)

∫
u−µ0(u− 1)−µ1

∏

j

(u− xj)
−µjdu , (2)
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where the exponential parameters µ0, µ1, . . . , µN+2 are related to the parameters in the
series representation by

µj = bj for all j = 2, . . . , N + 1 (3)

µ0 = c−
N+1∑

j=2

bj (4)

µ1 = 1 + a− c (5)
N+2∑

j=0

µj = 2 , i.e. µN+2 := 1 − a . (6)

If µ1 and µN+2 are real < 1 , the integration path can be choosen between u = 1 and u =
∞ avoiding the other singularities and choosing an appropriate branch of the differential

η := u−µ0(u− 1)−µ1

N+1∏

j=2

(u− xj)
−µj du . (7)

Throughout the present paper, we will concentrate on the following

Restricted Assumptions. We suppose that all parameters a, bj, c are rational numbers,
hence also all exponential parameters µj , j = 0, . . . , N + 2 , moreover we assume to be
all µj 6∈ Z . To avoid the singularities of the corresponding hypergeometric differential
equations, we consider only those arguments in which all variables xj are pairwise different
and distinct from 0 and 1 .

These assumptions are not too restrictive: on the hyperplanes avoided by the last condition
the hypergeometric functions restrict to hypergeometric functions in less variables, and for
an integer exponential parameter µj also some obvious reduction of the integral is possible
to a function rational in xj and hypergeometric in the other variables, see e.g. [CW1, §4].
If in the integral representation µ1 or µN+1 are > 1 , an integral between 0 and ∞ is no
longer convergent. We have to replace it by a Pochhammer cycle around 0 and ∞ avoiding
all other singularities of η , and to modify the integral by an algebraic factor. For its precise
definition, see e.g. [Kl], [Y], [Ar] and for the method of factor determination in particular
[STW, Sec. 5]. Since algebraic factors do not count for our considerations, we will always
assume our integrals to be integrals over Pochhammer cycles. Under our assumptions we
have the additional advantage that the integrals become periods

∫
η of the second kind

on nonsingular projective algebraic curves X = X(k;x2, . . . , xN+1) with affine (in general
singular) model

yk = ukµ0(u− 1)kµ1

N+1∏

j=2

(u− xj)
kµj , (8)

taken for the differential η = η(x2, . . . , xN+1) = du/y . A basis for the solution space of the
corresponding system of hypergeometric differential equations E1(a, b2, . . . , bN+1, c) (see
[AK], [Y]) is given by a system of period integrals

∫
γ0
η(x),

∫
γ1
η(x), . . . ,

∫
γN
η(x) where x
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denotes the n–tuple (x2, . . . , xN+1) of variables and the integration paths γi are suitably
chosen Pochhammer cycles in the u–plane, each of them going around a pair of singularities
u = 0, 1, x2, . . . , xN+1,∞ .

1.2 Jacobians and Prym varieties

Following the method of [CW2, Sec. 3] for N = 2 and [SW1, §5] we keep the right hand
side of equation (8) and replace the left hand side with yd where d denotes a proper divisor
of k , obtaining a smooth complex projective algebraic curve X(d, x) and an obvious
epimorphism X(k, x) → X(d, x) . It induces an epimorphism of Jacobians

md : JacX(k, x) → JacX(d, x) .

Let the Prym variety T (k, x) be the connected component of 0 in the intersection
⋂

Kermd ,
d running over all proper divisors of k . Then T (k, x) is an abelian variety of complex di-
mension N+1

2
ϕ(k) where ϕ denotes Euler’s function. As in the case N = 1 (see [Wo]

or [SW2, Sec. 1.2]) it has generalized complex multiplication by a cyclotomic field, more
precisely we have

Q(ζk) ⊆ End0T (k, x) := Q ⊗Z EndT (k, x)

induced by the automorphism of the curve X(k, x) described on its singular model by

σ : (u, y) 7→ (u, ζ−1
k y) , ζk = e

2πi
k .

For a more precise description of the complex analytic family of abelian varieties con-
taining T (k, x) we need also its type. It is determined as follows. On the vector space
H0(T (k, x),Ω) of first kind differentials on T = T (k, x) we have an induced action of
Q(ζk) splitting the vector space in eigenspaces Vσ = Vn, n ∈ (Z/kZ)∗ , of differentials ω
with the property

ω ◦ σ = ζn
k · ω .

According to Chevalley and Weil [ChWe] the dimensions of the eigenspaces can be calcu-
lated as

rn := dimVn = −1 +
N+2∑

j=0

〈nµj〉 (9)

where 〈α〉 := α− [α] denotes the fractional part of α . It is easy to see that

rn + r−n = N + 1

for all n coprime to k . We will always identify the differentials of the first kind with certain
holomorphic differentials on the curve X(k, x) where we can study the action of σ in an
obvious way. If e.g. all exponential parameters satisfy µj < 1 , the differential η = du

y
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in equation (7) is in this identification an element of V1 . Now the type of T (k, x) can be
introduced as the formal sum

∑

σ∈GalQ(ζk)/Q

(dimVσ) · σ

or in simplified version as the ϕ(k)–tuple (rn | n ∈ (Z/kZ)∗)) .

We should remark by the way that we use also two further and similar identifications of
(co)homology groups. First, by the natural action of the endomorphism algebra we can
consider the homology group H1(T (k, x),Z) of rank (N+1)ϕ(k) as being a rank (N+1)–
module over Z[ζk] whose cycles all come from cycles on X(k, x) . In particular, we can
consider the Pochhammer cycles γ0, γ1, . . . , γN as generators of the Q(ζk)–vector space
H1(T (k, x),Q) := Q ⊗Z H

1(T (k, x),Z) .
Second, we identify the space H1

DR(T (k, x)) of second kind differentials on our Prym
variety with a subspace of the second kind differentials on the curve. As H0(T (k, x),Ω) ,
it splits in Q(ζk)–eigenspaces Wn ⊇ Vn , all of dimension dimWn = N + 1 . This can be
shown either by complex algebraic geometry ([GH] or [Be, §4, Remarque 1]) or as another
version of a well known principle concerning associate functions to be explained now.

1.3 Associate hypergeometric functions

Hypergeometric functions F1(a, b2, . . . , bN+1, c;x2, . . . , xN+1) are called associate if their
parameter (N + 2)–tuples (a, b2, . . . , bN+1, c) are congruent mod ZN+2 , in other words if
all their exponential parameters µj differ by integers only (always under the condition that∑
µj = 2 is preserved, of course). If we write their differential in a slightly more general

way than (7) as η = r(u)du/yn ∈ Wn with a rational function r(u) = um0(u−1)m1
∏

(u−
xj)

mj , all mj ∈ Z , then a differential for an associate hypergeometric function differs from
that one by another choice of the rational function r only, but obviously remaining in Wn .
So if we keep the Pochhammer cycle γi on the curve fixed — identified as above with a
generator of H1(T (k, x),Q) — the periods

∫
γi
η(x) , η ∈ Wn , generate as functions of x

a complex vector space of associate hypergeometric functions. Now it is known that this
vector space has dimension N +1 over the space of rational functions in x [Y]. Recall that
all parameters are rational, so all normalizing Beta values for associate hypergeometric
functions differ by rational factors only such that this dimension result may be formulated
for the differentials as follows.

Lemma 1.1. Under our assumptions, for all fixed n coprime to k , any N + 2

different differentials of type

η(x) =
um0(u− 1)m1

∏
(u− xj)

mj

yn
du ∈ Wn , all mj ∈ Z , (10)

satisfy a nontrivial linear relation modulo exact differentials with coefficients in the poly-
nomial ring Q[x2, . . . , xN+1] .
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We will use this fact also in another way, concentrating on the behaviour in special fixed
arguments x . Henceforth we will call these differentials of type (10) in a common eigenspace
Wn associate differentials.

Lemma 1.2. For all n coprime to k and any N+1 different associate differentials ην(x) ∈
Wn ⊂ H1

DR(T (k, x)) there is a Zariski dense subset Z ⊂ CN of arguments x in which the
ην(x) form a basis of Wn .

To the complementary set CN\Z we always add the hyperplanes xj = 0 , 1 and xi = xj

forbidden by our restrictive assumptions.

1.4 Schwarz maps

For any η(x) of type (10) and any such Zariski dense subset Z as in Lemma 1.2 we define
the Schwarz map as the function

Dη : Z → PN(C) : x 7→
(∫

γ0

η(x) : . . . :

∫

γN

η(x)

)
.

(Since the components form a basis of a system of linear differential equations and since we
consider regular points only, these components cannot all vanish.) As always with Schwarz
maps, this is a priori only locally well defined since analytic continuation in Z is not globally
possible without deforming the Pochhammer cycles. Since Z is not simply connected,
Dη is multivalued, and this multivaluedness can be described by the (linear) action of
the homotopy group of Z either on the solution space of the system of hypergeometric
differential equations or on the homology H1(T (k, x),Z) , see [Y]. The components of
the image could have given also in terms of normalized basis solutions of a hypergeometric
differential equation system of Appell–Lauricella type D since the normalizing Beta factors
are all the same up to rational factors, hence do not count if we work with projective
coordinates, at least up to projective linear transformations defined over Q .

The central question is now: suppose the argument x = τ is an algebraic point of Z ,
i.e. has all its coordinates xj = τj ∈ Q . Under which conditions Dη(τ) is an algebraic
point, i.e. is in PN(Q) , in other words has coordinates which are Q–multiples of each
other? Note first that the curve X(k, τ) is defined over Q as well as its Jacobian and the
Prym variety T (k, τ) . Moreover, all differentials in (7) or (10) are defined over Q , and
therefore we will consider all cohomology groups H0(T (k, τ),Ω) , H1

DR(T (k, τ)) as vector
spaces over Q . The question is well posed since under the monodromy action the base
γ0, . . . , γN changes only under a matrix in GLN+1(Z[ζk]) and the differential η(τ) remains
unchanged, so the algebraicity of the value Dη(τ) remains unchanged.
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1.5 Monodromy groups and modular groups

Finally we should mention that all abelian varieties T with common dimension and po-
larization, with generalized CM by Q(ζk) and of the same CM type can be parametrized
by a complex symmetric domain D . According to Siegel [Si] and Shimura [Sh] dimD =∑

R rnr−n where the summation runs over a system R of representatives of (Z/kZ)∗ mod
{±1} , in other words over a system of representations of the CM field modulo complex
conjugation. The symmetric domain is a product of spaces Hrn,r−n

of rn × r−n–matrices
z with the property that 1 − ztz is positive hermitian. Two points on D correspond to
isomorphic abelian varieties if and only if they lie in the same orbit of the modular group for
this family. Since the monodromy group of our hypergeometric function does not change
the curve X(k, x) nor its Jacobian or the Prym variety, we can consider it as a subgroup of
the modular group. Several special cases have to be mentioned (recall rn + r−n = N + 1 ).

• In the case that rn or r−n = 0 the matrix space degenerates to one point, so the factor
Hrn,r−n

of D can be omitted. This may even occur for all n . In that case, there
is only one isogeny class of abelian varieties of this CM type, and this is necessarily
one of complex multiplication type in the narrow sense ([ShT] or [La, Ch 1]), i.e.
isogenous to a product of simple abelian varieties A whose endomorphism algebra
End0A is a (CM) field of degree 2 dimA . In our construction, this occurs precisely
if the hypergeometric functions are algebraic functions, and these cases occur if and
only if there is an x such that T (k, x) is isogenous to a power of a simple abelian
variety with CM. For the classical Schwarz case N = 1 see [SW2, Prop. 2.8], and
in the Appell–Lauricalla cases N > 1 these possibilities are discussed in [Sa] and
[CW1]. For N > 3 there are no such cases.

• In the one variable case (N = 1 ) D is isomorphic to a product of upper half planes.
This case is treated in [SW2].

• In the case N > 1 all nontrivial factors of D are isomorphic to complex N–balls if
rn or r−n = 1 . This is necessarily the case for N = 2 .

• If in these cases D consists of only one factor, i.e. if rn = 1 for precisely one n
coprime to k , the Prym varieties T (k, x) form a Zariski dense subset of all abelian
varieties of its CM type, and the monodromy group is commensurable to the modular
group. In other words, it is arithmetically defined.

• If in these cases moreover η = ω is a generator of the one–dimensional eigenspace
Vn ⊂ H0(T (k, x),Ω) , the Schwarz map Dω has — up to linear transformations —
its images in D and is a converse to a mapping composed by suitably normalized
automorphic functions for an arithmetic group commensurable to the modular group
mentioned above.

• Therefore, in these cases our central question is answered by the Main Theorem and
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its Corollary in [SW1]: for an algebraic τ we have an algebraic value Dω(τ) if and
only if the Prym variety T (k, τ) is of CM type.

For the last statement, [SW1, Cor. 6] gives a slight generalization to a more complicated
situation involving N + 1 differentials of the first kind, but Thms. 3.4 and 3.5 of [SW2]
show that even in the one variable case, such a neat result cannot be expected for Schwarz
maps coming from differentials of the second kind. In Section 2 we will try to extend this
observation to N > 1 .

1.6 Period relations and transcendence

The main instrument to get transcendence results in this context is Wüstholz’ analytic
subgroup theorem [Wü]. The proof for its consequence to period relations is worked out
by Paula Cohen in the appendix of [STW]. We state its content as

Lemma 1.3. Let A be an abelian variety isogenous over Q to the direct product Ak1
1 ×

. . . × AkN

N of simple, pairwise non-isogenous abelian varieties Aν defined over Q, with Aν

of dimension nν , ν = 1, . . . , N . Then the Q–vector space V̂A generated by 1, 2πi together
with all periods of differentials, defined over Q , of the first and the second kind on A , has
dimension

dimQ V̂A = 2 + 4
N∑

ν=1

n2
ν

dimQ End0Aν

.

This Lemma governs all Q–linear relations beween periods, but it does not say anything
about possible nonlinear relations. Riemann’s period relations give examples of those.
Since we will need them in the last section, we state them here as

Lemma 1.4. (Riemann bilinear relations)
Let X be a compact Riemann surface of genus g, and let {A1, ..., Ag, B1, ..., Bg} be a canon-
ical homology basis of X with AiBj = δij, AiAj = BiBj = 0 (1 ≤ i, j ≤ g). For a
holomorphic differential ω and a meromorphic differential η with poles sλ we have

g∑

i=1

(

∫

Ai

ω

∫

Bi

η −
∫

Bi

ω

∫

Ai

η) = 2π
√
−1
∑

λ

Ressλ
(η)

∫ sλ

s0

ω.

2 Algebraic values of Schwarz maps

2.1 A necessary condition

Theorem 2.1. Let τ be an algebraic point of CN , all components pairwise different and
6= 0 , 1 . Under the restricted assumptions and for the differentials η ∈ Wn of type (10)
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suppose that the Schwarz map Dη takes an algebraic value Dη(τ) ∈ PN(Q) . Then the
Prym variety T (k, τ) has a simple CM factor S with complex multiplication by a CM field
K such that η is induced by a K–eigendifferential on S .

Proof. For a first kind differential η = ω this is a consequence of [SW1, Cor. 1]: since
γ0, . . . , γN form a basis of the homology of T (k, τ) as Q(ζk)–vector space and η is an
eigendifferential for the action of this field, all periods

∫
γ
η are algebraic multiples of each

other, so the hypotheses of [SW1, Cor. 1] are satisfied.
For the second kind differentials η not belonging to H0(T (k, τ),Ω) , we can deduce the
existence of a corresponding first kind differential ω with the same property from this one
using the fact that representations of endomorphisms on the period lattice and on the
quasiperiod lattice are complex conjugate to each other, or by passing to the dual abelian
variety, see [Be, §4, Remarques 1 et 2]. Therefore we can apply the argument of the first
part again.

In the case N = 1 there is a much more precise statement due to the fact that the
complement of a CM factor of T (k, τ) is necessarily of CM type as well [SW2, Prop. 2.4],
hence T (k, τ) is itself of CM type. For N > 1 , any factor A of T (k, τ) with CM by Q(ζk)
has — up to isogeny — still a complement B with generalized CM by Q(ζk) [Be, Thm 1],
but since dimB > 1

2
ϕ(k) , it is not necessarily of CM type in the narrow sense.

2.2 Periods on Pryms with CM factors

A closer look to the proof of Theorem 2.1 and its background in transcendence theory
of periods — see [CW1] — shows that Dη can only be algebraic if (up to isogeny) there
is a decomposition T (k, τ) = A ⊕ B in two abelian varieties such that A has complex
multiplication by Q(ζk) and η belongs to the first factor in the corresponding decomposition

H1
DR(T (k, τ) = H1

DR(A) ⊕H1
DR(B) .

This is necessarily the case if the hypergeometric functions are algebraic (see the preceeding
section) since then T (k, x) is isogenous to AN+1 , and this decomposition can be choosen
in many ways such that we can suppose that η belongs to the factor A . Moreover we can
then suppose η ∈ H1

DR(S) , S a simple factor of A with complex multiplication by a CM
field K ⊆ Q(ζk) such that 2 dimS = [K : Q] and η is a K–eigendifferential. In that case
the vector space Πη ⊂ C generated over Q by all periods of η has dimension 1 , see the
arguments of [SW2, Prop. 2.8] which easily extend to the present case. Another situation
where η ∈ H1

DR(A) with dim Πη = 1 occurs if η = ω is a first kind differential and
rn = 1 , Vn ∩H0(A,Ω) 6= {0} such that necessarily Vn ∩H0(B,Ω) = {0} and ω belongs to
A . In general, we cannot expect these hypotheses to be satisfied, as the next result shows.

Theorem 2.2. Let P be a finite set of associate differentials ην(x) ∈ Wn of type (10),
and suppose their monodromy group to be infinite. Then there is a Zariski open subset
Z ⊂ CN depending on P with the following property. For all algebraic τ ∈ Z at most
N + 1 among the Schwarz maps Dην

take algebraic values Dην
(τ) .
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Here we tacitely include the fact that associate hypergeometric functions have the same
monodromy group: as above, we may read the monodromy group as an automorphism
group of the homology of T (k, x) keeping unchanged the differentials.
Proof. As we have seen in Section 1.5, T (k, τ) is never isogenous to a pure power of
a simple abelian variety with complex multiplication. This will enable us to show that
η ∈ H1

DR(T (k, τ)) with a one–dimensional Q–vector space Πη generated by its periods are
quite rare. In fact, by Wüstholz’ analytic subgroup theorem and its consequences described
in Lemma 1.3, period spaces Πηj

of dimension 1 for all differentials ηj in a basis of H1
DR

can occur only if the abelian variety is of CM type, and even then the periods of the ηj

are linearly independent over Q if they belong to non–isogenous simple factors of T (k, τ)
or to different K–eigenspaces of the same factor S , K := End0S , since nontrivial linear
combinations of these basis differentials have period spaces of higher dimension, see the
arguments in the first part of the proof of [STW, Prop. 4.4]. Since S may occur with higher
multiplicity in the decomposition of T (k, τ) , these η with dim Πη = 1 may however form
subspaces of H1

DR(T (k, τ)) of dimension mi , more precisely they are Ki–eigenspaces of
H1

DR(Smi

i ) if T (k, τ) is isogenous to the product Sm1
1 × . . .×Sms

s of simple non–isogenous
factors Sj and if the factor Si has CM by the field Ki . These Ki–eigenspaces are proper
subspaces of H1

DR(T (k, τ)) , and their intersection with Wn are proper subspaces W (i) of
Wn as well, since the decomposition of H1

DR(T (k, τ)) in the subspaces Wn is compatible
with the decomposition in the Ki–eigenspaces, and since s > 1 because T (k, τ) is not a
pure power of a simple CM abelian variety.
A priori it is possible that all η ∈ P ⊂ Wn fall in these W (i) ⊂ Wn , i = 1, . . . , s , common
eigenspaces for the action of Ki and Q(ζk) . By construction, the different W (i) belong
to factors Smi

i of T (k, τ) , all Si simple with CM and pairwise non–isogenous. Then they
form a direct sum of dimension

∑
i dimW (i) ≤ N + 1 inside Wn .

If P contains ≤ N+1 elements, the statement of the theorem is trivial, so we may suppose
that we have to consider at least N + 2 differentials. If all of them lie in that finite union⋃

iW
(i) of proper subspaces, there is — by the pidgeonhole principle — at least one i such

that W (i) contains more than dimW (i) elements of P . Since dimW (i) < N +1 , there are
in particular N + 1 elements of P which are linearly dependent.
Now, Lemma 1.2 gives us the means to exclude this possibility: we can choose the Zariski
dense subset Z ⊂ CN in such a way that for all τ ∈ Z any N + 1 among all (finitely
many) subsystems of N + 2 differentials in P are linearly independent. 2

3 Some application

In this section we show some illustrating examples of the theory stated in the preceeding
section.

Recall that we considered the integral of the differential form

η = η(x, y) = u−µ0(u− 1)−µ1(u− x)−µ2(u− y)−µ3du.
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By the correspondence (3) to (6)





bj = µj(j = 2, 3)

a = µ0 + µ1 + µ2 + µ3 − 1

c = µ0 + µ2 + µ3.

the integral
∫
η is a solution of the Appell hypergeometric differential equationE1(a, b2, b3, c).

We study here the Appell hypergeometric curves

P (x, y) : w3 = u(u− 1)(u− x)(u− y),

Q(x, y) : w5 = u(u− 1)(u− x)(u− y)

together with their corresponding differential equations E1(
1
3
, 1

3
, 1

3
, 1) and E1(

1
5
, 1

5
, 1

5
, 1) .

Note that in these cases the Prym variety T (P (x, y)) (resp. T (Q(x, y))) coincides with the
Jacobi varity Jac(P (x, y)) (resp. Jac(Q(x, y))).

For the differential η, we define the Schwarz map by

D(η, x, y) = (

∫ 1

0

η(x, y) :

∫ y

x

η(x, y) :

∫
∞

1

η(x, y)).

We investigate the Schwarz images of the differentials of second kind at some CM points
(x, y).

For a hypergeometric curve C : wk = ukµ0(u− 1)kµ1(u−x)kµx or an Appell curve C : wk =
ukµ0(u− 1)kµ1(u−x)kµ2(u− y)kµ3 , we have an action of ζk = e2πi/k , so the cyclotomic field
K = Q(ζk) can be considered as a subfield of End0(Jac(C)).

As we studied in the preceeding section, the Schwarz image D(ϕ, x, y) is algebraic only if
Jac(C(x, y)) has a simple component of CM type. But it is not a sufficient condition. We
are going to look at this situation in detail by several examples.

3.1 General results

3.1.1 Decomposition of the Jacobian variety

Here we state how our Jacobi variety Jac(C(x, y)) is decomposed in simple components.
For it, we refer to the following theorems in Lang’s text book [L].

Lemma 3.1. ([L], Theorem 3.1, p.8-9) Let A be a g-dimensional abelian variety. Suppose
F to be a subfield of End0(A). Then

(1) [F : Q] ≤ g

(2) [F : Q] = 2g implies A ∼isog B × · · · × B, B: simple. If A is defined over Q then the
isogeny is defined over Q.
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Let X be a g -dimensional complex torus, and let F = Q(ξ) be a CM field of degree 2g.
We assume that F ⊆ End0(X), and F to be a Galois extension of Q.

In this case we have a basis system {ω1, · · · , ωg} of holomorphic differentials which are
eigendifferentials for the action of F . Set

ξ(ω1) = ξ1ω1, . . . , ξ(ωg) = ξgωg

We define the type Φ(F ) of the action of F by

Φ(F ) = (ξ1, . . . , ξg).

(ξ1, · · · , ξg) are conjugates of ξ. Together with their complex conjugates ξ1, · · · , ξg, ξ1, · · · , ξg
becomes a full set of conjugates of ξ. They correspond to 2g different embeddings
σ1, · · · , σg, σ1, · · · , σg of F into C with σj(ξ) = ξj. So Φ(F ) is a ”type” of F in the sense of
subsection 1.2 with all dimVσ ≤ 1. In case X is an abelian variety, we say X is an abelian
variety of type (F,Φ).

Lemma 3.2. ([L], Theorem 3.5 (p.13))

Let A be an abelian variety of type (F,Φ). Set

H = {σ ∈ Gal(F/Q) : σΦ = Φ}

and suppose B to be a simple factor of A with K = End0(B). Then we have H =
Gal(F/K). Especially H = {1} ⇐⇒ A is simple.

3.2 CM Picard curves

We consider the Picard curve

P (x, y) : w3 = u(u− 1)(u− x)(u− y) for xy(x− 1)(y − 1)(x− y) 6= 0

and differentials of second kind of the form

ϕ =
uℓdu

wn
.

We have
genus of P (x, y) = 3

We assume the variables x, y to be algebraic numbers. Set






ϕ1 = du
w
, ϕ2 = du

w2 , ϕ3 = udu
w2 ,

ϕ4 = udu
w
, ϕ5 = u2du

w
, ϕ6 = u2du

w2 .

(11)

11



They form a basis of the deRham cohomology group H1
DR(P (x, y),Q) and the system

{ϕ1, ϕ2, ϕ3} gives a basis of H0(P (x, y),Ω), the space of holomorphic differentials.

We note the following fact. If we know the algebraicity of D(ϕi, x, y) for a fixed point

(x, y) ∈ Q
2

for every index i, it does not mean that we can see the algebraicity of D(ϕ, x, y)
for a generic differential of H1

DR(P (x, y),Q).

Set ϕ = uℓdu
wn . Now we study the Schwarz values D(ϕ, 1+i

2
, 1−i

2
) for the special Picard curve

P (1+i
2
, 1−i

2
) : w3 = u(u− 1)(u2 − u+ 1

2
).

We have the following results

Theorem 3.1. For the Picard curve P (1+i
2
, 1−i

2
) : y3 = x(x− 1)(x2 − x+ 1

2
), we have

Jac(P (
1 + i

2
,
1 − i

2
)) ∼ E(ζ3) ⊕ E(i)2 ,

and

D(ϕ1;
1 + i

2
,
1 − i

2
), D(ϕ2;

1 + i

2
,
1 − i

2
) ∈ Q,

D(ϕ3;
1 + i

2
,
1 − i

2
), D(ϕ4;

1 + i

2
,
1 − i

2
), D(ϕ5;

1 + i

2
,
1 − i

2
), D(ϕ6;

1 + i

2
,
1 − i

2
) 6∈ Q.

Remark 3.1. Suppose n = 1 or 2 ( mod 3) and 0 ≤ ℓ ≤ 30. We have D(ϕ, 1+i
2
, 1−i

2
) ∈

P 2(Q) if and only if ℓ = 0. This result illustrates our general Theorem 2.2 that inside
some Zariski open set Z we have at most 3 algebraic Schwarz values D(ϕ, τ) for varying
differentials ϕ ∈ Vn.

For the Schwarz values D(ϕ, ζ3, ζ
2
3 ) corresponding to the special Picard curve P (ζ3, ζ

2
3 ) :

w3 = u(u3 − 1), we have:

Theorem 3.2. D(ϕ, ζ3, ζ
2
3 ) ∈ P 2(Q) for any ℓ, n ∈ Z.

This fact illustrates that (ζ3, ζ
2
3 ) belongs to the exceptional set C2 \ Z in Theorem 2.2.

Proof of Theorem 3.1

Set P = P (1+i
2
, 1−i

2
) : w3 = u(u − 1)(u2 − u + 1

2
), and set Σ : t3 = s4 − 1. We have a

biholomorphic isomorphism T : P → Σ over Q by

(s, t) = T (u,w) = (2u− 1, 2
4
3w).

The inverse is given by

(u,w) = T−1(s, t) = (
1

2
(s+ 1), 2−

4
3 t).

We use this isomorphism in our argument. Set





ψ1 = ds
t
, ψ2 = ds

t2
, ψ3 = sds

t2
,

ψ4 = sds
t
, ψ5 = s2ds

t
, ψ6 = s2ds

t2
.

(12)
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{ψ1, ψ2, ψ3} forms a basis of H0(Σ,Ω), and {ψ1, ψ2, · · · , ψ6} forms a basis of H1
DR(Σ,Q).

We have the relation between 2 systems:






(T−1)∗ϕ1 = 16(1/3)
2

ψ1

(T−1)∗ϕ2 = 16(2/3)
2

ψ2

(T−1)∗ϕ3 = 16(2/3)
4

ψ2 + 16(2/3)
4

ψ3

(T−1)∗ϕ4 = 16(1/3)
2

ψ1 + 16(1/3)
2

ψ4

(T−1)∗ϕ5 = 16(1/3)
4

ψ1 + 16(1/3)
2

ψ4 + 16(1/3)
4

ψ5

(T−1)∗ϕ6 = 16(2/3)
4

ψ2 + 16(2/3)
2

ψ3 + 16(2/3)
4

ψ6.

(13)

We define paths α01, α12, α23 in the s space as indicated in Figure 1. Let α
(k)
j,j+1 be the path

on Σ with α
(k+1)
j,j+1 = ρα

(k)
j,j+1 (j = 0, 1, 2), where ρ(s, t) = (s, ζ3t).

O 1

i

Α01Α12

Α23

Figure 1: paths for integrals on Σ

Let IP be the Q vector space generated by the periods

∫

γ

ϕi (i = 1, · · · , 6 , γ ∈ H1(P,Z)),

and let IΣ be the Q vector space generated by the integrals

∫

α
(k)
j,j+1

ψi (j = 0, 1, 2, k = 0, 1, i = 1, · · · , 6).

We can make up a basis of H1(Σ,Z) in terms of α
(k)
j,j+1. So we have IP = IΣ.

Here we note that

D(ϕ,
1 + i

2
,
1 − i

2
) ∈ P 2(Q) ⇐⇒

(∫

α
(0)
01

(T−1)∗(ϕ) :

∫

α
(0)
12

(T−1)∗(ϕ) :

∫

α
(0)
23

(T−1)∗(ϕ)

)
∈ P 2(Q).
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(a) Decomposition of Jac(Σ).

For the basis

ψ1 =
ds

t
, ψ2 =

ds

t2
, ψ3 =

sds

t2
,

F = Q(ζ12) acts by

σ : (s, w) 7→ (ζ3s, ζ4w) (ζ = ζ12). (14)

Set P0 : w′3 = s′2 − 1. The correspondence (s, w) 7→ (s′, w′) = (s2, w) defines a map
π : P → P0 . The differential ψ3 is a lifting of the holomorphic differential on P0. So it
induces a projection H0(C,Ω) → H0(C0,Ω). Hence we have a decomposition

Jac(P ) ∼isog Jac(P0) ⊕B,

where B is the kernel of this projection. There is an action of F = Q(ζ12) on the space
〈ψ1, ψ2〉 induced from (14).

Namely
σψ1 = ζ−1ψ1, σψ2 = ζ−5ψ2.

So we have the type Φ = (ζ−1, ζ−5) = (−1,−5) on B. By considering Lemma 3.2 and
shifting Φ by the residue classes in (Z/12Z)∗ = {1, 5, 7, 11} we obtain

5(−1,−5) = (−1,−5) , 7(−1,−5) = (1, 5) , 11(−1,−5) = (1, 5) .

So we have
H = {σ ∈ (Z/12Z)∗ : σΦ = Φ} = {1, 5}.

Hence B is non-simple, and by Lemma 3.1 it is a product of an elliptic curve with itself.
By Lemma 3.2 again we know that B ∼isog E(i)2. Finally we obtain

Lemma 3.3.

Jac(P ) = Jac(Σ) ∼isog E(ζ3) ⊕ (E(i))2.

(b) By referring to Lemma 1.3 and the fact that E(i) and E(ζ3) are non–isogenous, the
above lemma induces

Lemma 3.4.

dimQ IP = dimQ IΣ = 4.

(c) Set pk =
∫

α
(0)
01
ψk. We can describe the period matrix of Σ with respect to the basis

{ψ1, ψ2, ψ3} of H0(Σ,Ω) and the basis {α(0)
01 , α

(0)
12 , α

(0)
23 , α

(1)
01 , α

(1)
12 , α

(1)
23 } of H1(Σ,Q) in sym-

bolic notation by

Λ =




p1 ip1 −p1 ζ2

3p1 iζ2
3p1 −ζ2

3p1

p2 ip2 −p2 ζ3p2 iζ3p2 −ζ3p2

p3 −p3 p3 ζ3p3 −ζ3p3 ζ3p3



 =




ψ1

ψ2

ψ3




(
α

(0)
01 , α

(0)
12 , α

(0)
23 , α

(1)
01 , α

(1)
12 , α

(1)
23

)
.
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Set

S =





1
2

1
2

1
2

0 0 0
0 1 0 0 0 0
−1

2
1
2

1
2

0 0 0
0 0 0 1

2
1
2

1
2

0 0 0 0 1 0
0 0 0 −1

2
1
2

1
2




.

By the change of basis by S we get




ψ1

ψ2

ψ3




(
α

(0)
01 , α

(0)
12 , α

(0)
23 , α

(1)
01 , α

(1)
12 , α

(1)
23

)
S =




p1 ip1 0 ζ2

3p1 iζ2
3p1 0

p2 ip2 0 ζ3p2 iζ3p2 0
0 0 p3 0 0 ζ3p3



 .

As we mentioned in Lemma 3.1, the cofactor B of E(ζ3), is isogenous to E(i)2 over Q. We
have
( p2

p1
−1

p2

p1
−ζ3

)(
p1 ip1 ζ2

3p1 iζ2
3p1

p2 ip2 ζ2
3p2 iζ2

3p2

)
= p2

(
0 0 (−

√
3i) i(−

√
3i)

(−
√

3ζ3) i(−
√

3ζ3) 0 0

)
.

So we see that p2

p1
∈ Q. Set γk

j,j+1 = αk
j,j+1 − αk+1

j,j+1 and set

M1 =





1 0 0 0 0 0
1 0 −1 0 0 0
0 0 1 1 −1 0
1 −1 0 0 0 −1
0 0 1 1 −1 1
1 −1 0 1 0 0




.

Then
(A1, A2, A3, B1, B2, B3) = (γ

(0)
01 , γ

(0)
01 , γ

(0)
12 , γ

(1)
12 , γ

(1)
23 , γ

(1)
23 )M1

is a canonical homology basis of H1(Σ,Z). We can describe the extended period matrix
as the following diagram:

A1 A2 A3

ψ1
1
2
(3 + (2 + i)

√
3)p1 (−1 − i)

√
3p1

1
2
(−1 + i)(3 +

√
3)p1

ψ2
1
2
(3 − (2 + i)

√
3)p2 (1 + i)

√
3p2

1
2
(1 − i)(−3 +

√
3)p2

ψ3
1
2
(3 + i

√
3)p3 0 −i

√
3p3

ψ4
1
2
(3 − i

√
3)p4 0 i

√
3p3p4

ψ5
1
2
(3 − (2 − i)

√
3)p5 (1 − i)

√
3p5

1
2
(1 + i)(−3 +

√
3)p5

ψ6
1
2
(3 + (2 − i)

√
3)p6 (−1 + i)

√
3p6

1
2
(−1 − i)(3 +

√
3)p6
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B1 B2 B3

ψ1
1
2
(−1 + i)(3 +

√
3)p1

1
2
(−1 + i)

√
3(i+

√
3)p1

1
2
(−3 − (2 + i)

√
3)p1

ψ2
1
2
(1 − i)(−3 +

√
3)p2

1
2
(1 + i)(3i+

√
3)p2

1
2
(−3 + (2 + i)

√
3)p2

ψ3 i
√

3p3 0 1
2
(3 + i

√
3)p3

ψ4 −i
√

3p3p4 0 1
2
(3 − i

√
3)p4

ψ5
1
2
(1 + i)(−3 +

√
3)p5

1
2
(−1 − i)

√
3(i+

√
3)p5

1
2
{−3 + (2 − i)

√
3}p5

ψ6
1
2
(−1 − i)(3 +

√
3)p6

1
2
(−1 + i)(3i+

√
3)p6

1
2
{−3 − (2 − i)

√
3}p6

. According to Lemma 1.4 we obtain three nontrivial relations

p1p6 = − 3

3 +
√

3
π, p2p5 =

3

5(−3 +
√

3)
π, p3p4 = −

√
3

2
π. (15)

Combining it with p2/p1 ∈ Q we obtain p6/p5 ∈ Q. By Lemma 3.4 we obtain

Lemma 3.5. The Q vector space PΣ is generated by

p1, p2, · · · , p6,

and we have only two nontrivial linear relations p2/p1 ∈ Q and p6/p5 ∈ Q.

(d) By putting w3 = A(u) = u(u− 1)(u2 − u+ 1
2
) we have dw3 = A′(u)du, hence

dw =
1

3

A′(u)du

w2
.

By observing d(uℓwm) = ℓuℓ−1wm +muℓwm−1dw we obtain

ℓuℓ−1wmdu ≡ −1

3
muℓwm−3A′(u)du.

Therefore we have

Lemma 3.6. (1) If n ≡ 0 ( mod 3), then ϕ is an exact differential.

(2)
xℓ+3dx

yn
≡ 6ℓ− 6n+ 18

3ℓ− 4n+ 12

xℓ+2dx

yn
− 9ℓ− 6n+ 18

6ℓ− 8n+ 24

xℓ+1dx

yn
+

3ℓ− n+ 3

6ℓ− 8n+ 24

xℓdx

yn

(3)
xℓdx

yn
≡ 12ℓ− 16n+ 60

n− 3

xℓdx

yn−3
− 6ℓ

n− 3

xℓ−1dx

yn−3

The equality (2) in the above lemma is essentially a contiguity relation between Appell’s
hypergeometric functions.

(e) Because ψk is an eigendifferential for the action of Q(ζ12), we have always
(∫

α
(0)
01

ψk :

∫

α
(0)
12

ψk :

∫

α
(0)
23

ψk

)
∈ P 2(Q) for all k = 1, 2, . . . , 6 .
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Looking at (13), we know that D(ϕ1) and D(ϕ2) are algebraic.

Let us observe D(ϕ3). If D(ϕ3) is algebraic, then

(∫

α
(0)
12

ψ2 + ψ3 :

∫

α
(0)
01

ψ2 + ψ3

)
= β ∈ Q.

Because we have ∫

α
(0)
12

ψ2 = i

∫

α
(0)
01

ψ2 ,

∫

α
(0)
12

ψ3 = −
∫

α
(0)
01

ψ3,

it induces a relation (i − β)p2 = (1 + β)p3. It contradicts Lemma 3.5. So D(ϕ3) is
transcendental.

In case we have ϕ = uℓdu
wn (1 ≤ ℓ ≤ 30, n = 1, 2), by a similar argument we obtain

D(ϕ) /∈ P 2(Q).
q.e.d.

Proof of Theorem 3.2. For P = P (ζ3, ζ
2
3 ) : w3 = u(u3 − 1) we get an action of ζ9 :

(u,w) 7→ (ζ−3
9 u, ζ−1

9 w).

We can use again the system (11) as a deRham basis. By the similar argument as (a) in
the previous example but more easily we obtain

Lemma 3.7. Jac(P ) is a simple CM abelian variety with complex multiplication by Q(ζ9).

We see easily the following

Lemma 3.8. ϕk (k = 1, 2, · · · , 6) is an eigendifferential with respect to the action of

Q(ζ9). Moreover, every ϕ = uℓdu
wn is an eigendifferential.

These two lemmas induce the algebraicity D(ϕk) ∈ P 2(Q). More explicitly we can observe
this fact in a direct way.

Q(ζ9) ⊆ End0(Jac(P )).

The action of ζ9 on H0(Q,Ω) is given by

σ(ϕ1) = ζ−2
9 ϕ1 , σ(ϕ2) = ζ−1

9 ϕ2 , σ(ϕ3) = ζ−4
9 ϕ3.

So we obtain the type of the action of Q(ζ9) on Jac(P ) of type Φ = (2, 1, 4). We can show
the type Φ is simple. Hence Jac(P ) is a simple CM abelian variety.

Let α01, α12, α23 be oriented line segments on P given by [0, 1], [0, ζ3], [0, ζ
2
3 ] on a fixed sheet.

Set ρ : w 7→ ζ3w be the covering transformation map. Let us denote ρkαij (k = 0, 1, 2) by

17



α
(k)
ij . Put γ

(k)
i = α

(k)
ij − α

(k+1)
ij (k = 0, 1). Putting

M2 =





−1 0 0 0 0 0
−1 0 −1 0 0 0
1 1 1 0 0 1
0 1 1 −1 1 1
0 −1 −1 1 0 −1
1 −1 0 1 −1 0




,

(A1, A2, A3, B1, B2, B3) = (γ
(0)
01 , γ

(0)
01 , γ

(0)
12 , γ

(1)
12 , γ

(1)
23 , γ

(1)
23 )M2

becomes a symplectic basis of H1(P,Z). By putting q =
∫

α
(0)
01
ϕ we obtain the following

table of integrals.

α
(0)
01 α

(0)
12 α

(0)
23 α

(1)
01 α

(1)
12 α

(1)
23 α

(2)
01 α

(2)
12 α

(2)
23

xmdx
yn q ζ−n

3 q ζ−2n
3 q ζm+1

3 q ζm−n+1
3 q ζm−2n+1

3 q ζ2m+2
3 q ζ2m−n+2

3 q ζ2m−2n+2
3 q .

So we can see D(ϕ) ∈ Q.

3.3 CM Pentagonal curves

Let us consider the following pentagonal curve

Q(λ, µ) : y5 = x(x− 1)(x− λ)(x− µ) for (λµ(λ− 1)(µ− 1)(λ− µ) 6= 0).

This is a curve of genus 6, and we have the following deRham basis:

1st kind : ϕ1 =
dx

y2
, ϕ2 =

dx

y3
, ϕ3 =

xdx

y3
, ϕ4 =

dx

y4
, ϕ5 =

xdx

y4
, ϕ6 =

x2dx

y4
,

2nd kind : ϕ7 =
dx

y
, ϕ8 =

xdx

y
, ϕ9 =

x2dx

y
, ϕ10 =

xdx

y2
, ϕ11 =

x2dx

y2
, ϕ12 =

x2dx

y3
.

For the special CM point (x, y) = (1+i
2
, 1−i

2
), we have the following

Theorem 3.3.

D(ϕ1;
1 + i

2
,
1 − i

2
), D(ϕ2;

1 + i

2
,
1 − i

2
), D(ϕ4;

1 + i

2
,
1 − i

2
), D(ϕ7;

1 + i

2
,
1 − i

2
) ∈ Q,

D(ϕ3;
1 + i

2
,
1 − i

2
), D(ϕ5;

1 + i

2
,
1 − i

2
), D(ϕ6;

1 + i

2
,
1 − i

2
), D(ϕ8;

1 + i

2

1 − i

2
),

D(ϕ9;
1 + i

2
,
1 − i

2
), D(ϕ10;

1 + i

2
,
1 − i

2
), D(ϕ11;

1 + i

2
,
1 − i

2
), D(ϕ12;

1 + i

2
,
1 − i

2
) /∈ Q.
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Remark 3.2. We expect that we have D(xℓdx
ym ; 1+i

2
, 1−i

2
) /∈ Q for all 1 ≤ ℓ and all 1 ≤

m ≤ 4.

Proof of the theorem.

Set
Σ1 : w5 = s4 − 1.

Then we have a deRham basis on Σ1:

1st kind : ψ1 =
ds

w2
, ψ2 =

ds

w3
, ψ3 =

sds

w3
, ψ4 =

ds

w4
, ψ5 =

sds

w4
, ψ6 =

s2ds

w4
,

2nd kind : ψ7 =
ds

w
, ψ8 =

sds

w
, ψ9 =

s2ds

w
, ψ10 =

sds

w2
, ψ11 =

s2ds

w2
, ψ12 =

s2ds

w3
.

We have two cyclic actions by ζ4 and ζ5 on Σ1:

(s, w) 7→ (ζ4s, w) , (s, w) 7→ (s, ζ5w).

They are generated by a single action

(s, w) 7→ (ζ5
20s, ζ

4
20w).

And it induces an action of Q(ζ20) on the space of the deRham cohomology groupH1
DR(Σ1,Q).

Namely
Q(ζ20) ⊆ End0(Jac(Σ1)).

Every ψi (1 ≤ i ≤ 12) is an eigen differential for this action. Define

T : s(x) = 2x− 1, w(y) = 2
4
5y.

The CM curve Σ1 is shifted to the pentagonal curve

Q(
1 + i

2
,
1 − i

2
) : y5 = x(x− 1)(x2 − x+

1

2
).

Set
C1 : w5 = u2 − 1.

By putting s 7→ u = s2, we have a double covering map Σ → C1. Hence, Jac(Σ1) is
nonsimple and A1 = Jac(C1) is a component. Here the differentials

ψ3 =
sds

w3
, ψ5 =

sds

w4

are liftings of the differential on C1.

The action of ζ20 on the space of holomorphic differentials given by σ : (s, w) 7→ (ζ5
20s, ζ

4
20w)

is described as follows:

σ(ψ1) = ζ−3
20 ψ1, σ(ψ2) = ζ−7

20 ψ2, σ(ψ3) = ζ−1
10 ψ3, σ(ψ4) = ζ−11

20 ψ4, σ(ψ5) = ζ−3
10 ψ5, σ(ψ6) = ζ−1

20 ψ6.
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Thus the cofactor of Jac(Σ1) has the CM type (1, 3, 7, 11). We can see easily this is a
simple CM-type . So we have the decomposition

Jac(Σ1) ∼ A1 ⊕ A2 with dimA1 = 2 , dimA2 = 4,

Q(ζ10) = End0(JacA1),Q(ζ20) = End0(JacA2).

According to Lemma 1.3 we have

dimQ 〈
∫

γi

ψk〉 = 12 (i = 1, ..., 12 , k = 1, ..., 12). (16)

Let α01, α12, α23 be the oriented arcs on Σ1 with the projection [1, i], [i,−1], [−1,−i] on the

same sheet, respectively. We make the exchange of the sheets by ρ : w 7→ ζ5w, and let α
(k)
ij

denote ρkαij (k = 0, 1, 2, 3, 4). Set γ
(k)
ij = α

(k)
ij − α

(k+1)
ij (k = 0, 1, 2, 3). By putting

M =





1 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 1 0 0 1
0 0 0 1 0 −1 0 0 1 0 0 0
0 0 0 0 0 −1 1 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 1 0 0 1
0 0 0 0 0 −1 0 0 2 0 0 1
0 0 0 0 0 −1 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 1 0 1 0





we have a symplectic basis

(A1, A2, A3, A4, A5, A6, B1, B2, B3, B4, B5, B6)

= (γ
(0)
01 , γ

(1)
01 , γ

(2)
01 , γ

(3)
01 , γ

(0)
12 , γ

(1)
12 , γ

(2)
12 , γ

(3)
12 , γ

(0)
23 , γ

(1)
23 , γ

(2)
23 , γ

(3)
23 )M

of H1(Σ1,Z). The extended period matrix of Σ1 with respect to the basis

{α(0)
01 , α

(1)
01 , α

(2)
01 , α

(3)
01 , α

(0)
12 , α

(1)
12 , α

(2)
12 , α

(3)
12 , α

(0)
23 , α

(1)
23 , α

(2)
23 , α

(3)
23 } is given by the following table.

α
(0)
01 α

(1)
01 α

(2)
01 α

(3)
01 α

(0)
12 α

(1)
12 α

(2)
12 α

(3)
12 α

(0)
23 α

(1)
23 α

(2)
23 α

(3)
23

ψ1 p1 ζ3
5p1 ζ1

5p1 ζ4
5p1 ip1 iζ3

5p1 iζ1
5p1 iζ4

5p1 −p1 −ζ3
5p1 −ζ1

5p1 −ζ4
5p1

ψ2 p2 ζ2
5p2 ζ4

5p2 ζ1
5p2 ip2 iζ2

5p2 iζ4
5p2 iζ1

5p2 −p2 −ζ2
5p2 −ζ4

5p2 −ζ1
5p2

ψ3 p3 ζ2
5p3 ζ4

5p3 ζ1
5p3 −p3 −ζ2

5p3 −ζ4
5p3 −ζ1

5p3 p3 ζ2
5p3 ζ4

5p3 ζ1
5p3

ψ4 p4 ζ1
5p4 ζ2

5p4 ζ3
5p4 ip4 iζ1

5p4 iζ2
5p4 iζ3

5p4 −p4 −ζ1
5p4 −ζ2

5p4 −ζ3
5p4

ψ5 p5 ζ1
5p5 ζ2

5p5 ζ3
5p5 −p5 −ζ1

5p5 −ζ2
5p5 −ζ3

5p5 p5 ζ1
5p5 ζ2

5p5 ζ3
5p5

ψ6 p6 ζ1
5p6 ζ2

5p6 ζ3
5p6 −ip6 −iζ1

5p6 −iζ2
5p6 −iζ3

5p6 −p6 −ζ1
5p6 −ζ2

5p6 −ζ3
5p6

ψ7 q1 ζ4
5q1 ζ3

5q1 ζ2
5q1 iq1 iζ4

5q1 iζ3
5q1 iζ2

5q1 −q1 −ζ4
5q1 −ζ3

5q1 −ζ2
5q1

ψ8 q2 ζ4
5q2 ζ3

5q2 ζ2
5q2 −q2 −ζ4

5q2 −ζ3
5q2 −ζ2

5q2 q2 ζ4
5q2 ζ3

5q2 ζ2
5q2

ψ9 q3 ζ4
5q3 ζ3

5q3 ζ2
5q3 −iq3 −iζ4

5q3 −iζ3
5q3 −iζ2

5q3 −q3 −ζ4
5q3 −ζ3

5q3 −ζ2
5q3

ψ10 q4 ζ3
5q4 ζ1

5q4 ζ4
5q4 −q4 −ζ3

5q4 −ζ1
5q4 −ζ4

5q4 q4 ζ3
5q4 ζ1

5q4 ζ4
5q4

ψ11 q5 ζ3
5q5 ζ1

5q5 ζ4
5q5 −iq5 −iζ3

5q5 −iζ1
5q5 −iζ4

5q5 −q5 −ζ3
5q5 −ζ1

5q5 −ζ4
5q5

ψ12 q6 ζ2
5q6 ζ4

5q6 ζ1
5q6 −iq6 −iζ2

5q6 −iζ4
5q6 −iζ1

5q6 −q6 −ζ2
5q6 −ζ4

5q6 −ζ1
5q6
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Here we use
∫

α
(k)
i,i+1

ψm/

∫

α
(k′)

i′,i′+1

ψm ∈ Q(ζ20) (0 ≤ k, k′ ≤ 3, 0 ≤ i, i′ ≤ 2, 0 ≤ m ≤ 12).

According to (16), the Q–vector space generated by all periods of H1
DR(Σ1,Q) is generated

by the Q–linearly independent integrals

{
∫

α
(0)
01

ψi} (i = 1, ..., 12) . (17)

We have the pull backs:
T ∗(ϕ1) = 2

3
5ψ1, T

∗(ϕ2) = 2
7
5ψ2,

T ∗(ϕ3) = 2
2
5 (ψ2 + ψ3), T

∗(ϕ4) = 2
11
5 ψ4,

T ∗(ϕ5) = 2
6
5 (ψ4 + ψ5), T

∗(ϕ6) = 2
1
5 (ψ4 + 2ψ5 + ψ6)

T ∗(ϕ7) = 2−
1
5ψ7, T

∗(ϕ8) = 2−
6
5 (ψ7 + ψ8),

T ∗(ϕ9) = 2−
11
5 (ψ7 + 2ψ8 + ψ9), T

∗(ϕ10) = 2−
2
5 (ψ1 + ψ10),

T ∗(ϕ11) = 2−
7
5 (ψ1 + ψ10 + ψ11), T

∗(ϕ12) = 2−
3
5 (ψ2 + 2ψ3 + ψ12).

Here ϕ1, ϕ2, ϕ4, ϕ7 are eigen differentials for the action of Q(ζ20). So we have

D(ϕ1;
1 + i

2
,
1 − i

2
), D(ϕ2;

1 + i

2
,
1 − i

2
), D(ϕ4;

1 + i

2
,
1 − i

2
), D(ϕ7;

1 + i

2
,
1 − i

2
) ∈ Q.

On the other hand, if we assume

D(ϕ3;
1 + i

2
,
1 − i

2
) ∈ Q,

it induces a Q linear relation between ψ2 and ψ3. This is a contradiction, so

D(ϕ3;
1 + i

2
,
1 − i

2
) /∈ Q.

We obtain the results for other cases by similar arguments.

Theorem 3.4. For the CM pentagonal curve Q(ζ3, ζ
2
3 ) : y5 = x(x3 − 1), every Schwarz

value D(ϕi; ζ3, ζ
2
3 ) (i = 1, ..., 12) is algebraic. Moreover, we have

D(
xmdx

yn
; ζ3, ζ

2
3 ) ∈ Q ∀m,∀n ∈ Z.
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proof. Let α01, α12, α23 be the oriented arcs on Σ1 with the projection [0, 1], [0, ζ3], [0, ζ
2
3 ]

on the same sheet, respectively. We make the exchange of the sheets by ρ : w 7→ ζ5w, and
let α

(k)
ij denote ρkαij (k = 0, 1, 2, 3, 4). Set γ

(k)
ij = α

(k)
ij − α

(k+1)
ij (k = 0, 1, 2, 3). By putting

M =





0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 1 0 1 0
1 0 0 0 0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 −1 0 0 −1
0 0 0 0 0 0 1 0 −1 1 0 0
0 −1 1 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 −1 1 0 0 1
0 0 0 0 −1 −1 0 0 1 0 0 0
0 0 0 0 0 −1 0 −1 0 0 −1 0





,

we obtain a symplectic basis

(A1, A2, A3, A4, A5, A6, B1, B2, B3, B4, B5, B6)

= (γ
(0)
01 , γ

(1)
01 , γ

(2)
01 , γ

(3)
01 , γ

(0)
12 , γ

(1)
12 , γ

(2)
12 , γ

(3)
12 , γ

(0)
23 , γ

(1)
23 , γ

(2)
23 , γ

(3)
23 )M

of H1(Q(ζ3, ζ
2
3 ),Z). We have the following table of path integrals

α
(0)
01 α

(0)
12 α

(0)
23 α

(1)
01 α

(1)
12 α

(1)
23

xmdx
yn q ωm+1q ω2m+2q ζ−n

5 q ωm+1ζ−n
5 q ω2m+2ζ−n

5 q

α
(2)
01 α

(2)
12 α

(2)
23 α

(3)
01 α

(3)
12 α

(3)
23

ζ−2n
5 q ωm+1ζ−2n

5 q ω2m+2ζ−2n
5 q ζ−3n

5 q ωm+1ζ−3n
5 q ω2m+2ζ−3n

5 q
,

namely we have

∫

α
(k)
i,i+1

xmdx

yn
/

∫

α
(k′)

i′,i′+1

xmdx

yn
∈ Q(ζ15) (0 ≤ k, k′ ≤ 3, 0 ≤ i, i′ ≤ 2).

So we obtain the required result.

We can make the argument by the decomposition of the Jacobian varity instead of the
above direct proof. We have an action of ζ15 on Q(ζ3, ζ

2
3 ):

σ : (x, y) 7→ (ζ5
15x, ζ

1
15y).

Hence
Q(ζ15) ⊆ End0(Jac(C(ζ3, ζ

2
3 ))).
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Every holomorphic differential ϕ1, · · · , ϕ6 is an eigen-differential for this action:

σ(ϕ1) = ζ1
5ϕ1, σ(ϕ2) = ζ2

15ϕ2, σ(ϕ3) = ζ7
15ϕ3,

σ(ϕ4) = ζ1
15ϕ1, σ(ϕ5) = ζ2

5ϕ2, σ(ϕ6) = ζ11
15ϕ3.

So we have
Jac(C(ζ3, ζ

2
3 )) ∼ A1 ⊕ A2 with dimA1 = 2 , 2 = 4 ,

Q(ζ5) = End0(JacA1),Q(ζ15) = End0(JacA2).

The CM type of Jac(A1) is (ζ1
5 , ζ

2
5 ). This is a simple CM type. So Jac(A1) is simple. The

CM type of Jac(A2) is (ζ2
15, ζ

7
15, ζ

1
15, ζ

11
15 ). By ζ15 7→ ζ11

15 we have

(ζ2
15, ζ

7
15, ζ

1
15, ζ

11
15 ) 7→ (ζ7

15, ζ
2
15, ζ

11
15 , ζ

1
15).

So it is decomposed with CM type (ζ2
15, ζ

7
15) and CM type (ζ1

15, ζ
11
15 ). These two CM types

are isomorphic by ζ15 7→ ζ−2
15 . Hence we have

Jac(A2) ∼ B2 with dimB = 2.

Consequently

Jac(C(ζ3, ζ
2
3 )) ∼ A1 ⊕B2 with dimA1 = 2 , dimB = 2.

Our differentials ϕi, i = 1, . . . , 6, are eigen-differentials for the CM–actions.

3.4 CM Hypergeometric curves

Set
HP (x) : w3 = u2(u− 1)(u− x) (x ∈ Q − {0, 1}).

It is an algebraic curve of genus 2 defined over Q. We have a deRham basis

1st kind : ϕ1 =
du

w
, ϕ2 =

udu

w2
,

2nd kind : ϕ3 =
udu

w
, ϕ4 =

du

w2
.

Theorem 3.5. For HP (−1) : w3 = u2(u2 − 1) we have

Jac(HP (−1)) ∼isog E(ζ3)
2

and
D(ϕi,−1) ∈ Q for i = 1, 2, 3, 4 .
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Set
HQ(x) : w5 = u2(u− 1)(u− x) (x ∈ Q − {0, 1}).

It is an algebraic curve of genus 4 defined over Q. We have a deRham basis

1st kind : ϕ1 =
du

w2
, ϕ2 =

udu

w3
, ϕ3 =

udu

w4
, ϕ4 =

u2du

w4
,

2nd kind : ϕ5 =
du

w
, ϕ6 =

udu

w
, ϕ7 =

udu

w2
, ϕ8 =

du

w3
.

Theorem 3.6. For HQ(−ζ3) : w5 = u2(u− 1)(u+ ζ3) , Jac(HQ(−ζ3)) is a simple abelian
variety of CM type with End0(Jac(HQ(−ζ3)) ∼= Q(ζ15). We have

D(ϕi,−1) ∈ Q for i = 1, 2, 4

and
D(ϕi,−1) /∈ Q for i = 3, 5, 6, 7, 8 .

To prove this result, we use a biholomorphic isomorphism from HQ(−ζ3) to
HΣ : t5 = s2(s3 − 1):

HT : (u,w) 7→ (s, t) =

(
u

ζ3(−1 + ζ3 + u)
,
(−1)1/1033/10w

−1 + ζ3 + u

)
.

Theorem 3.7. For HQ(−1) : w5 = u2(u2 − 1), we have a decomposition

Jac(HQ(−1)) ∼isog A
2

here A is a two dimensional simple abelian variety with End0(A) ∼= Q(ζ5).

D(ϕi;−1) ∈ Q for all 1 ≤ i ≤ 8 .

Remark. To get the results for HP (−1), HQ(−1), HQ(−ζ3) we can use results of Koblitz
and Ogus on classical relations among Γ values at rational points, see [KO] and [Su].
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