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Abstract. We introduce the imaginary projection of a multivariate polynomial f ∈ C[z]
as the projection of the variety of f onto its imaginary part, I(f) = {Im(z) : z ∈ V(f)}.
Since a polynomial f is stable if and only if I(f) ∩ Rn

>0 = ∅, the notion offers a novel
geometric view underlying stability questions of polynomials.

We show that the connected components of the complement of the closure of the
imaginary projections are convex, thus opening a central connection to the theory of
amoebas and coamoebas. Building upon this, the paper establishes structural properties
of the components of the complement, such as lower bounds on their maximal number,
proves a complete classification of the imaginary projections of quadratic polynomials
and characterizes the limit directions for polynomials of arbitrary degree.

1. Introduction

Recent years have seen a lot of interest in stable polynomials, see, e.g., [5, 6, 20, 30]
and the references therein. A polynomial f = f(z) = f(z1, . . . , zn) ∈ C[z] = C[z1, . . . , zn]
is called stable if every root z satisfies Im(zj) ≤ 0 for some j. We call f real stable if f
has real coefficients and is stable.

As recent prominent applications, Marcus, Spielman, and Srivastava employed stable
polynomials in the proof of the Kadison-Singer Conjecture [20] and in the existence proof
of families of bipartite Ramanujan graphs of every degree larger than two [19]. Stable
polynomials have also been used by Borcea and Brändén to prove Johnson’s Conjecture
[5] and in Gurvits’ simple proof of a generalization of van der Waerden’s Conjecture for
permanents [15]. Moreover, there are strong connections to hyperbolic polynomials and
their hyperbolicity cones, see Section 2.1.

In this paper, we initiate to study the underlying projections on the imaginary parts
from a geometric point of view. Given a polynomial f ∈ C[z], introduce the imaginary
projection of f as

I(f) = {Im(z) : z ∈ V(f)} ⊆ Rn ,

where V(f) denotes the variety of f and Im(z) = (Im(z1), . . . , Im(zn)). So, in particular,
f is stable if and only if

I(f) ∩ Rn
>0 = ∅ .
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Our work is motivated by the theory of amoebas as well as by the general goal to reveal
and understand convexity phenomena in algebraic geometry, see [3]. Amoebas are the
images of algebraic varieties in the algebraic torus (C∗)n under the log-absolute map:

A(f) = {(log |z1|, . . . , log |zn|) : z ∈ V(f) ∩ (C∗)n} ⊆ Rn ,

see [13]. Coamoebas employ the arg-map rather than the log-absolute map; see, e.g., [11].
For amoebas, important structural results as well as their occurrences in a broad spec-

trum of mathematical disciplines have been intensively studied, see [21, 23, 24] as well as
the recent survey [31]. For coamoebas, investigations are much more recent [11, 12, 22]. A
prominent result states that the complement of an amoeba as well as the complement of
the closure of a coamoeba consists of finitely many convex components, see [12, 13]. As a
key result, which also motivates our study, we show that the closure of the complement
of the imaginary projection of a polynomial consists of finitely many convex components
as well, see Theorem 4.1.

While there are important analogies among amoebas, coamoebas, and imaginary pro-
jections, there are also fundamental differences between these structures. The fibers of the
log-absolute maps underlying amoebas are compact, whereas for imaginary projections
they are not compact. Furthermore, the limit directions of amoebas, also known as tenta-
cles, are characterized by the logarithmic limit sets and thus carry a polyhedral structure;
see [18, Theorem 1.4.2]. In contrast, the limit directions of the imaginary projections are
not polyhedral in general, see Section 6. For coamoebas, which are defined on a torus,
Nisse and Sottile have introduced a variant of the logarithmic limit sets, by considering
accumulation points of arguments of sequences with unbounded logarithm [22].

Building upon the fundamental convexity result, we study structural properties of imag-
inary projections. We also give lower bounds on the maximal number of components of
the complement, see Corollary 4.5.

We investigate important subclasses, such as quadratic and multilinear polynomials.
For the class of real quadratic polynomials, we can provide a complete classification of the
imaginary projections, see Theorem 5.4. Indeed, this classification result in Theorem 5.4
is somewhat unexpected, since it involves various qualitatively different cases.

Starting from the well-known results on tentacles of amoebas, we characterize the limit
points of the imaginary projections. Contrary to the case of the amoeba of a non-zero
polynomial f , it is possible that every point on the sphere Sn−1 is a limit direction of the
imaginary projection of f . For f ∈ C[z], we provide a criterion for one-dimensional families
of limit directions at infinity. In the case n = 2 this also characterizes the situations that
all points are limit points. See Theorem 6.5 and Corollary 6.7 for further details.

It is easy to see that real projections of complex polynomials should behave in the same
way as imaginary projections, since one projection is easily seen to be an instance of the
other by replacing the polynomial f(x) with f(

√
−1x). However, we focus on imaginary

projections since the latter projections are more naturally connected to stability and
hyperbolicity in the setting of real polynomials.

Our paper is structured as follows. Section 2 collects existing facts on stable polynomials
as well as on amoebas and coamoebas. In Section 3, we study the structure of imaginary
projections. Section 4 considers the components of the complement. In Section 5, we
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discuss quadratic and multilinear (in the sense of multi-affine-linear) polynomials, and
Section 6 is concerned with the situation at infinity. In Section 7 we close with some open
questions.

2. Preliminaries

We collect basic notions on stable polynomials as well as on amoebas and coamoebas.
Let R≥0 and R>0 denote the set of non-negative and the set of strictly positive real
numbers.

Throughout the paper, we use bold letters for vectors, e.g., z = (z1, . . . , zn) ∈ Cn.
Unless stated otherwise, the dimension of these vectors is n. Denote by V(f) the complex
variety of a polynomial f ∈ C[z] and by VR(f) the real variety of f .

We denote by Re(z) and Im(z) the real and the imaginary part of a point z ∈ C, i.e.,
z = Re(z) + i Im(z), and component-wise for points z ∈ Cn. For an arbitrary set M ⊆ Cn

we understand Re(M) and Im(M) as the real parts and the imaginary parts of all elements
in M . Moreover, for a polynomial f ∈ C[z] we denote by Re(f) and Im(f) the real part
and the imaginary part of f after the realification z = x + iy ∈ Cn 7→ (x,y) ∈ R2n, i.e.,
f(x,y) = Re f(x,y) + i Im f(x,y). Note that Re(f) and Im(f) are real polynomials in
R[x,y].

Furthermore, we use the notations Hn
C for the set {z ∈ Cn : Im(zj) > 0, 1 ≤ j ≤ n}

and Hn
R = ImHn

C, which is the positive orthant.

2.1. Stable polynomials. Based on the notions of stability and real stability defined in
the introduction, we collect the following statements and properties. As a general source
on stability of polynomials, we refer to [30] and the references therein.

Definition 2.1. A polynomial f ∈ C[z] is called stable if it has no root z in Hn
C.

Example 2.2. [5, Proposition 2.4] For positive semidefinite d × d-matrices A1, . . . , An
and a Hermitian d× d-matrix B, the polynomial

f(z) = det(z1A1 + · · ·+ znAn +B)

is real stable or identically zero.

There is a close connection between stable, homogeneous polynomials and hyperbolic
polynomials. A homogeneous polynomial f ∈ R[z] is called hyperbolic in direction e ∈ Rn,
if f(e) 6= 0 and for every x ∈ Rn the real function t 7→ f(x + te) has only real roots. It is
known that a homogeneous polynomial f ∈ R[z] is real stable if and only if f is hyperbolic
with respect to every point in the positive orthant, see [14, 30].

Stability of univariate polynomials can be tested as follows. Here, we call two univariate
polynomials f, g ∈ R[z] in proper position, f � g, if the zeros of f and g interlace (i.e.,
alternate, see [8, 19]), and if their Wronskian W [f, g] := f ′g − fg′ is non-negative on R.
Note that if the roots of two polynomials f and g interlace, then W [f, g] is non-negative
or non-positive.

Theorem 2.3. (Hermite-Biehler, see [25, Thm. 6.3.4] or [30]) A non-constant univariate
polynomial f ∈ C[z] is stable if and only if Im f � Re f .
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Borcea and Brändén gave the following multivariate generalization of the Hermite-
Biehler Theorem. Here, two multivariate polynomials f, g ∈ R[z] are called in proper
position, written f � g, if the univariate polynomials f(x + te), g(x + te) are in proper
position for all x ∈ Rn, e ∈ Rn

≥0 \ {0}.

Theorem 2.4. ([7, Cor. 2.4], see also [8, Thm. 5.3]) A non-constant polynomial f ∈ C[z]
is stable if and only if Im f � Re f .

We call a polynomial f ∈ C[z] multilinear if it has degree at most 1 with respect to each
variable. Brändén characterized stability of multilinear polynomials with real coefficients.

Theorem 2.5. [8, Theorem 5.6] Let f ∈ R[z] be non-constant and multilinear. Then f is
stable if and only if for all 1 ≤ j, k ≤ n the function

∆jk(f) =
∂f

∂zj

∂f

∂zk
− ∂2f

∂zj∂zk
· f

is non-negative on Rn.

Hence, a non-zero bivariate polynomial f(z1, z2) = αz1z2+βz1+γz2+δ with α, β, γ, δ ∈
R is real stable if and only if βγ − αδ ≥ 0.

The non-multilinear case can be reduced to the multilinear case via the polarization
P(f) of a multivariate polynomial f , see [8]. Denoting by dj the degree of f in the variable
zj, P(f) is the unique polynomial in the variables zjk, 1 ≤ j ≤ n, 1 ≤ k ≤ dj with the
properties

(1) P(f) is multilinear,
(2) P(f) is symmetric in the variables zj1, . . . , zjdj , 1 ≤ j ≤ n,
(3) if we apply the substitutions zjk = zj for all j, k, then P(f) coincides with f .

By the Grace-Walsh-Szegö Theorem, P(f) is stable if and only if f is stable; see, e.g., [8,
Cor. 5.9].

By Theorem 2.5, deciding whether a multilinear polynomial f is stable is equivalent to
deciding whether ∆jk(f) ≥ 0 on Rn for all j, k. In [17], sum of squares-relaxations are
considered to decide this question.

2.2. Amoebas and coamoebas. The theory of amoebas builds upon algebraic varieties
in the complex torus (C∗)n = (C \ {0})n. For a Laurent polynomial f ∈ C[z±11 , . . . , z±1n ],
define the semialgebraic amoeba S(f) (also known as unlog amoeba) by

(2.1) S(f) = {|z| = (|z1|, . . . , |zn|) ∈ Rn : z ∈ V(f) ∩ (C∗)n},
and the amoeba A(f) by

(2.2) A(f) = {log |z| = (log |z1|, . . . , log |zn|) ∈ Rn : z ∈ V(f) ∩ (C∗)n} .
Amoebas were first introduced and studied by Gelfand, Kapranov and Zelevinsky in

[13]. Similarly, the coamoeba of f is defined as

(2.3) coA(f) = {arg(z) = (arg(z1), . . . , arg(zn)) : z ∈ V(f) ∩ (C∗)n} ⊆ Tn ,
where arg denotes the argument of a complex number and Tn = (R/2πZ)n.
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If logC is the complex logarithm, then we have the relations

A(f) = Re ◦ logC V(f) and coA(f) = Im ◦ logC V(f) ,

where all maps are understood component-wise. See Figure 1 for an example of an amoeba
and a coamoeba.

We recall some basic statements about amoebas, see [10, 13, 28]. For a Laurent poly-
nomial f ∈ C[z], the amoeba A(f) is a closed set. The complement of A(f) consists of
finitely many convex regions, and these regions are in bijective correspondence with the
different Laurent series expansions of the rational function 1/f . The number of compo-
nents in the complement of an amoeba is bounded from above by the number of lattice
points in the Newton polytope of f and bounded from below by the number of vertices
of the Newton polytope of f .

Figure 1. An approximation of the amoeba and the coamoeba of the Lau-
rent polynomial f(z1, z2) = 2z31z2+z1z

2
2−4z1z2−2.5 ·e0.7·π·iz21z2+1 together

with its corresponding Newton polytope.

For coamoebas, it has been conjectured that the complement of the closure of coA(f)
contains at most n! vol New(f) connected components, where vol denotes the volume,
see [11] for more background as well as a proof for the special case n = 2. One can also
consider amoebas and coamoebas of arbitrary varieties rather than of hypersurfaces alone,
see, e.g., [29].

3. The structure of the imaginary projection of polynomials

We investigate the structure of the imaginary projection of multivariate polynomials.
Writing zj = xj + iyj with real variables xj, yj, we see that I(f) is the projection

(3.1) R2n → Rn , (x1, y1, . . . , xn, yn) 7→ (y1, . . . , yn)

of a real algebraic variety, and thus I(f) is a semialgebraic set. Since the map (3.1) is
continuous, the imaginary projection of an irreducible polynomial f is connected. See
Figure 2 for an example.

The following fact allows to reduce the case of reducible polynomials to the case of
irreducible polynomials.

Lemma 3.1. For f1, f2 ∈ C[z], we have I(f1 · f2) = I(f1) ∪ I(f2).
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Figure 2. The imaginary projection of f(z1, z2) = z21+z22+z1z2+z1+z2+1,
intersected with [−2, 2]2.

Proof. By definition of the imaginary projection we have

I(f1 · f2) = ImV(f1 · f2) = Im(V(f1) ∪ V(f2)) = ImV(f1) ∪ ImV(f2) = I(f1) ∪ I(f2).

�

The imaginary projections of affine hyperplanes can be characterized as follows.

Theorem 3.2. For every affine-linear polynomial f = a0 +
∑n

j=1 ajzj ∈ C[z] with

(a1, . . . , an) 6= 0 the following statements hold.

(1) I(f) =


VR (Im(a0e

−iϕ) +
n∑
j=1

aje
−iϕyj) , if a0 ∈ C and (a1, . . . , an) = b · eiϕ

with some b ∈ Rn and ϕ ∈ [0, 2π) .

Rn , otherwise.

(2) If all coefficients of f are real, then f is stable if and only if a1, . . . , an ≥ 0 or
a1, . . . , an ≤ 0.

Note that by statement (1), an affine-linear polynomial f cannot be stable if (a1, . . . , an) 6∈
eiϕ · Rn, and thus statement (2) provides a complete classification for the stability of an
affine-linear polynomial.

Proof. If all coefficients a1, . . . , an are real, then

I(f) =

{
y ∈ Rn : ∃x ∈ Rn Re(a0) +

n∑
j=1

ajxj = 0 and Im(a0) +
n∑
j=1

ajyj = 0

}

=

{
y ∈ Rn : Im(a0) +

n∑
j=1

ajyj = 0

}
,

and in the situation (a1, . . . , an) ∈ eiϕ · Rn, apply the real case to e−iϕf .
Now assume that (a1, . . . , an) is not a complex multiple of a real vector. That is, the

real matrix

(
Re(a1) · · · Re(an)
Im(a1) · · · Im(an)

)
has rank 2. By possibly changing the order of the
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coefficients aj, we can assume that the matrix A =

(
Re(a1) Re(a2)
Im(a1) Im(a2)

)
is invertible. In

order to show I(f) = Rn, consider a fixed y ∈ Rn and choose arbitrary x3, . . . , xn ∈ R.
Then the conditions Re f(x + iy) = 0 and Im f(x + iy) = 0 yield a system of two real
linear equations in x1, x2 with coefficient matrix A,

0 = Re f(x + iy) = Re a0 +
n∑
j=1

Re(aj)xj −
n∑
j=1

Im(aj)yj ,

0 = Im f(x + iy) = Im a0 +
n∑
j=1

Im(aj)xj +
n∑
j=1

Re(aj)yj .

Since A is invertible and x3, . . . , xn are fixed, there exists a solution x1, x2 ∈ R, and thus
y ∈ I(f). This completes the proof of (1).

Now let all coefficients of f be real. By part (1), f has a zero with Im(zj) > 0 for all j
if and only if there exists at least one positive coefficient and one negative coefficient. �

Corollary 3.3. Let n ≥ 2 and f = a0 +
∑n

j=1 ajzj be a stable affine-linear polynomial.

Then there exists a (complex) ε-perturbation of the coefficients such that the resulting
polynomial is not stable. If all coefficients a0, . . . , an are real and non-zero then for any
real infinitesimal perturbations the stability of f is preserved.

Figure 3. The imaginary projections of f(z1, z2) = z21 + z22 + 1 and
f(z1, z2) = z1z2 + z1 + z2 − 1.

The set I(f) is not always a closed set. Indeed, already in the quadratic setting all the
following cases can occur.

(1) I(f) is open for f(z1, z2) = z21 + z22 − 1. In fact, I(f) = Rn.
(2) I(f) is closed for f(z1, z2) = z21 + z22 + 1.
(3) I(f) is neither open nor closed for f(z1, z2) = z1z2 + z1 + z2 − 1. The hyperbolic

curve belongs to I(f), but, except the origin, the axes do not belong to I(f).

See Figure 3, and for further details on the specific examples we refer to the discussion of
quadratic polynomials in Section 5.

Open problem 3.4. Let f ∈ C[z] be a polynomial. Is I(f) open if and only if I(f) = Rn?
Clearly, the if-direction is obvious.
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Remark 3.5. If f has real coefficients, then the zeros of f come in conjugated pairs.
Therefore, I(f) is symmetric with respect to the origin.

4. Components of the complement

Similar to amoebas and coamoebas, the complement of an imaginary projection can have
several connected components. In contrast to amoebas, already quadratic polynomials can
lead to bounded components in the complement. Indeed, the complement of the imaginary
projection of f(z1, z2) = z21+z22+1 has a bounded component, see Figure 3. The existence of
this bounded component of the complement is a consequence of Re(f(x1+iy1, x2+iy2)) =
x21− y21 + x22− y22 + 1. If y21 + y22 < 1, then there cannot be any x1, x2 ∈ R with Re(f) = 0.
Also note that the origin is contained in the complement of an imaginary projection I(f)
whenever f has a real solution.

Set Ac = Rn \A for the complement of a set A ⊂ Rn, and write A for the closure of A.
As pointed out in Section 2.2, it is an important property of amoebas and coamoebas
that the components of A(f) and of coA(f) are convex. As a key property of imaginary
projections, we show that the closure their complement consists of convex components as
well.

Theorem 4.1. For every polynomial f ∈ C[z], all components of I(f)
c

are convex. The
number of these convex components is finite.

Proof. Let C be a component of the complement of I(f). Define the holomorphic map

ψ : Cn → Cn, z 7→ z · e−i
π
2 ,

which is equivalent to x + iy 7→ y− ix. Furthermore, let

Cψ = ψ(Rn + iC) = C − iRn = C + iRn.

We observe that Cψ is a tubular region, that is, for any y ∈ Cψ∩Rn we have y+ix ∈ Cψ
for all x ∈ Rn. Moreover, the function

g : Cψ → C, w 7→ 1

f(ψ(w))

is holomorphic on Cψ, and Cψ is the maximal tube with this property. By Bochner’s Tube
Theorem [4], g is holomorphic on the convex hull of Cψ (considered as set in R2n ∼= Cn).
Due to the maximality of Cψ, this implies the convexity of Cψ. Since Cψ = ψ(Rn + iC) =
C + iRn, we obtain the convexity of C.

As I(f) is a semialgebraic set, the complement of I(f) is semialgebraic as well. Then
finiteness of the number of convex components follows from the classical bounds of Oleinik-
Petrovski or Milnor-Thom, see, e.g., [1, Chapter 7]. �

Theorem 4.1 implies the following statement on the unbounded components of the
complement.

Corollary 4.2. Every unbounded component of the complement of the closure of an imag-
inary projection contains a ray.



9

Proof. Let C be an unbounded component of the complement of I(f). Then the convex
set C is at least one-dimensional. By well-known results in convex analysis (see [26, Cor.
II.8.3.1, Thm. II.8.4]), the relative interior of C has a recession cone which coincides with
the recession cone of the closure of C, and that recession cone contains a non-zero vector.
Hence, C contains a ray. �

The left picture in Figure 4 shows the imaginary projection of the polynomial f(z1, z2) =
z21 + z21z2 + 2z1 + z2 + 1 with its 6 convex components of the complement. The imaginary
projection of a non-constant polynomial is always unbounded, see Section 6. As the two
right pictures in Figure 4 show, it is possible that an imaginary projection contains both
bounded and unbounded components in the complement.

Figure 4. The imaginary projection of f(z1, z2) = z21 + z21z2 + 2z1 + z2 + 1,
f(z1, z2) = z41 + iz31 − z21z22 + 3z21 − 2iz1z

2
2 + (4 − 2i)z1 + 0.5z22 + 1.5 and of

f(z1, z2) = z31z
2
2− iz31z2 +2z31−1.8z21z2−1.8iz21 +2.1z1z

2
2 +2.1iz1z2 +4.2z1−

0.2iz22 + 0.4z2 + 1.6i

Corollary 4.3. For any integers n > 0 and t > 0, there exists a polynomial f ∈ C[z] =
C[z1, . . . , zn] such that the complement of I(f) has exactly t bounded components.

Proof. We choose an arrangement H of d hyperplanes H1, . . . , Hd ⊆ Rn such that H has t
bounded components of the complement. Using Theorem 3.2, each of the hyperplanes is
the imaginary projection of an affine-linear polynomial f1, . . . , fd ∈ C[z]. By Lemma 3.1,
the imaginary projection of the product of these polynomials gives exactly the hyperplane
arrangement. �

The proof of Corollary 4.3 constructed f as a product of linear polynomials. In the
following, we investigate the imaginary projection of products of linear polynomials in
more detail.

Theorem 4.4. Let f ∈ C[z] be a product of m affine-linear polynomials in n variables.
Then the complement of I(f) consists of at most

∑n
k=0

(
m
k

)
components, and this bound

is tight.

Proof. By Theorem 3.2, the imaginary projection of an affine-linear polynomial is either a
hyperplane or the whole space Rn. We can assume here that the first case holds for every
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affine-linear polynomial. Then the imaginary projection of the product defines a hyper-
plane arrangement in Rn. If the hyperplanes are in general position, then they decompose
the ambient space into exactly

∑n
k=0

(
m
k

)
many regions, see [27, Proposition 2.4]. �

Theorem 4.4 implies the following lower bound for the maximal number of components
of the complement of I(f) for polynomials f of total degree d in n variables.

Corollary 4.5. There exists a polynomial f of total degree d in n variables such that the
complement of I(f) consists of exactly

∑n
k=0

(
d
k

)
components.

For homogeneous polynomials, the components of the complement are always un-
bounded since the imaginary projection is a cone. Furthermore, we have the following
relation to hyperbolic polynomials.

Theorem 4.6. Let f ∈ R[z] be homogeneous. Then I(f) 6= Rn if and only if f is hyper-
bolic (with respect to some vector e ∈ Rn).

Proof. Let f be hyperbolic with respect to e ∈ Rn. Assuming e ∈ I(f) then implies that
for some x ∈ Rn, the imaginary unit i is a root of the real function t 7→ f(x + te). This
is a contradiction to the hyperbolicity of f .

Conversely, let e 6∈ I(f). Then we have f(x+ie) 6= 0 for all x ∈ Rn, so that in particular

f(e) = (1 + i)− deg ff((1 + i)e) = (1 + i)− deg ff(e + ie) 6= 0 .

Furthermore, if there exists an x ∈ Rn such that t 7→ f(x + te) has a complex solution
a+ ib with b 6= 0, then the homogeneous function f would satisfy

f(x + ae + ibe) = 0

in contradiction to e 6∈ I(f). Hence, f is hyperbolic with respect to e. �

Similar to Theorem 4.6, for the case of homogeneous polynomials f ∈ R[z], the com-
ponents of the complement of I(f) actually coincide with the hyperbolicity cones of f
(as defined, e.g., in [14]). The connection between hyperbolicity cones of homogeneous
polynomials and imaginary connections are explored further in a follow-up article by the
first and the second author [16].

5. Quadratic and multilinear polynomials

In this section, we deal with quadratic and multilinear polynomials. First, we character-
ize the imaginary projections of quadratic polynomials with real coefficients. The initial
two lemmas reduce the problem to the imaginary projections of quadratic polynomials in
a normal form.

Lemma 5.1. Let f ∈ C[z] and A ∈ Rn×n be an invertible matrix. Then, I(f(Az)) =
A−1I(f(z)).

Proof. Writing z = x + iy, the matrix A operates separately on x and y. Hence,

I(f(Az)) = {y : ∃x ∈ Rn f(A(x + iy)) = 0} = {A−1y′ : ∃x′ ∈ Rn f(x′ + iy′) = 0}
= A−1I(f(z)).

�
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Lemma 5.2. A real translation z 7→ z + a, a ∈ Rn, does not change the imaginary
projection of a polynomial. An imaginary translation z 7→ z + ia, a ∈ Rn, shifts an
imaginary projection in direction −a.

Proof. The statement holds, since the first kind of transformation just translates the real
part of the variables and the second one shifts the imaginary parts of the solutions of
f(z) = 0 in direction −a. �

By the Lemmas 5.1 and 5.2, it suffices to study the imaginary projections of polynomials
in a normal form in order to understand the imaginary projections of general quadratic
polynomials with real coefficients. Every real bivariate quadric is affinely equivalent to a
quadric given by one of the following polynomials, where the names come from the conic
sections arising from considering these polynomials as real polynomials.

(i) z21 + z22 − 1 (ellipse),
(ii) z21 − z22 − 1 (hyperbola),

(iii) z21 + z2 (parabola),
(iv) z21 + z22 + 1 (empty set),

or one of the special cases (v) z21 − z22 (pair of crossing lines), (vi) z21 − 1 (parallel lines, or
a single line z21), (vii) z21 + z22 (isolated point), (viii) z21 + 1 (empty set).

In the following theorem, we characterize the imaginary projections of these quadratic
polynomials.

Theorem 5.3. For a quadratic polynomial f ∈ R[z1, z2], we have

I(f) =


R2 if f is of type (i),

{−1 ≤ y21 − y22 < 0} ∪ {0} if f is of type (ii),

R2 \ {(0, y2) : y2 6= 0} if f is of type (iii),

{y21 + y22 − 1 ≥ 0} if f is of type (iv).

In the cases (v) – (viii), we respectively have I(f) = {y ∈ R2 : y21 − y22 = 0}, I(f) =
{y ∈ R2 : y1 = 0}, I(f) = R2, and I(f) = {y ∈ R2 : y1 = ±1}.

Figure 5. The imaginary projections of f(z1, z2) = −z21+z22−1, f(z1, z2) =
z21 − z22 − 1, and f(z1, z2) = 2z21 + z22 + 1.
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The imaginary projections of some quadratic polynomials are shown in Figure 5, in
particular, the middle figure depicts case (ii) from Theorem 5.3.

Proof. For cases (i)–(ii) and (iv)–(viii), we consider a polynomial f = αz21 +βz22 +γ with
α, β, γ ∈ R. Decomposing f(z) = 0 into the real and imaginary parts gives αx21 − αy21 +
βx22 − βy22 + γ = 0 and αx1y1 + βx2y2 = 0. For y1 6= 0, eliminating x1 shows that

(5.1) I(f) = {y ∈ Rn : x22
(
αβy21 + β2y22

)
= αy21(αy21+βy22−γ) has a real solution x2} .

In case (i), we have α = β = 1, γ = −1, which altogether gives I(f) = R2. In case (ii), we
have α = 1, β = γ = −1. For y1 6= 0, real solutions for x2 in (5.1) exist for 0 < y22−y21 < 1
as well as in the special case y21 − y22 + 1 = 0. And for y1 = 0, we obtain y ∈ I(f) if and
only if y22 ≤ 1.

Cases (iv)–(viii) can be treated similarly. Finally, case (iii) is linear in z2, so that the
equations for the real and imaginary part can be solved directly for x2 and y2. �

Now we deal with quadrics in n-dimensional space. Since every quadric in Rn is affinely
equivalent to a quadric given by one of the following polynomials,

(I)
∑p

j=1 z
2
j −

∑r
j=p+1 z

2
j (1 ≤ p ≤ r, r ≥ 1, p ≥ r

2
) ,

(II)
∑p

j=1 z
2
j −

∑r
j=p+1 z

2
j + 1 (0 ≤ p ≤ r, r ≥ 1) ,

(III)
∑p

j=1 z
2
j −

∑r
j=p+1 z

2
j + zr+1 (1 ≤ p ≤ r, r ≥ 1, p ≥ r

2
) ,

it suffices to discuss these cases. (See, e.g., [2] as a general background reference for real
quadrics.)

Theorem 5.4. Let n ≥ r ≥ 3 and f ∈ R[z] be a quadratic polynomial.

(1) If f is of type (I), then

(5.2) I(f) =

{
Rn if r

2
≤ p < r − 1 or p = r ,

{y ∈ Rn : y2r ≤
∑r−1

j=1 y
2
j} if p = r − 1 .

(2) If f is of type (II), then

(5.3) I(f) =


Rn if p = 0 or 1 < p < r − 1 ,

{y ∈ Rn : y21 −
∑r

j=2 y
2
j ≤ 1} if p = 1 ,

{y ∈ Rn :
∑r−1

j=1 y
2
j > y2r} ∪ {0} if p = r − 1 ,

{y ∈ Rn :
∑r

j=1 y
2
j ≥ 1} if p = r .

(3) If n > r and f is of type (III), then

I(f) = Rn \ {(0, . . . , 0, yr+1, yr+2, . . . , yn) : yr+1 6= 0, yr+2, . . . , yn ∈ R}.

Note that the case n ≥ 3 differs significantly from n = 2. The proof of Theorem 5.4 is
given in the Lemmas 5.5–5.7.

Lemma 5.5. Let n ≥ r ≥ 3. If f(z) =
∑p

j=1 z
2
j −
∑r

j=p+1 z
2
j with r

2
< p ≤ r, then I(f) is

given by (5.2).
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Proof. Without loss of generality we can assume r = n. Splitting the problem into the
real and imaginary part yields

p∑
j=1

x2j −
n∑

j=p+1

x2j −
p∑
j=1

y2j +
n∑

j=p+1

y2j = 0 ,(5.4)

p∑
j=1

xjyj −
n∑

j=p+1

xjyj = 0 .(5.5)

Consider a fixed y ∈ Rn. If −
∑p

j=1 y
2
j +

∑n
j=p+1 y

2
j = 0, then x1 = · · · = xn = 0 gives a

solution to (5.4) and (5.5). Therefore, we can assume −
∑p

j=1 y
2
j +

∑n
j=p+1 y

2
j 6= 0.

In the case p = n, by reordering the indices, we can assume that y21 +y22 6= 0, and choose

x = ‖y‖2
(y21+y

2
2)

1/2 (−y2, y1, 0, . . . , 0) to obtain a solution for (5.4) and (5.5).

In the case p = n − 1, the n-dimensional hyperboloid (5.4) in the x-variables is one-
sheeted for −

∑n−1
j=1 y

2
j + y2n < 0 and two-sheeted for −

∑n−1
j=1 y

2
j + y2n > 0. In case of a one-

sheeted hyperboloid, its intersection with the hyperplane (5.5) is never empty. Namely,
choosing x3 = · · · = xn−1 = 0, gives the hyperboloid x21 + x22 − x2n =

∑n−1
j=1 y

2
j − yn in

x1, x2, xn, that contains the origin in the inner component of its complement.

Now consider the case where the hyperboloid consists of two sheets. For any α > 0,
the sets {y ∈ Rn : −

∑n−1
j=1 y

2
j + y2n = α > 0} and {x ∈ Rn :

∑n−1
j=1 x

2
j − x2n = −α}

coincide. Furthermore, after a coordinate transformation we can assume α = 1 and set
H = {x ∈ Rn : −

∑n−1
j=1 x

2
j + x2n = 1}.

We claim that the intersection of H with the hyperplane (5.5) is always empty. Due to
the symmetry of H with respect to all the coordinate hyperplanes xk = 0 for 1 ≤ k ≤ n−1,
it suffices by (5.5) to show that the hyperboloid H does not contain two distinct points,
whose position vectors are orthogonal to each other with respect to the Euclidean scalar
product. Because of the rotational symmetry of H with regard to the xn-axis and the
invariance of scalar products under orthogonal transformations, by applying an orthogonal
transformation it suffices to consider the situation x2 = · · · = xn−1 = 0. The resulting
hyperbola −x21 + x2n = 1 in the x1-xn-plane has no two orthogonal position vectors.
Namely, the asymptotes x1 = ±xn divide the plane into four quarters, and the hyperbola
is contained in the strict interiors of two opposite quarters.

Now consider the case n
2
< p < n − 1. By our initial considerations in the proof, we

have already covered the case y = 0. In the case y 6= 0, by changing the coordinates we
can assume that (y1, y2, yp+1) is not the zero vector. Choose (xp+2, . . . , xn) ∈ Rn−p−1 such
that −

∑n
j=p+2 x

2
j −

∑p
j=1 y

2
j +

∑n
j=p+1 y

2
j =: α < 0. Then, since y is fixed, (5.4) becomes

a hyperboloid of one sheet and (5.5) becomes an affine hyperplane. The intersection of
these two hypersurfaces is non-empty. Namely, choosing x3 = · · · = xp = 0, gives the one-
sheeted hyperboloid {(x1, x2, xp+1) ∈ R3 : x21 + x22 − x2p+1 = −α > 0}, which intersects
the affine hyperplane with normal vector (y1, y2,−yp+1) and constant term −

∑n
j=p+2 xjyj.

Hence, there exists an x ∈ Rn satisfying (5.4) and (5.5). �

Lemma 5.6. Let n ≥ r ≥ 3 and f(z) =
∑p

j=1 z
2
j −

∑r
j=p+1 z

2
j + 1 with 0 ≤ p ≤ r.
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(1) If p = 0 then I(f) = Rn.
(2) If p = 1 then I(f) = {y ∈ Rn : y21 −

∑r
j=2 y

2
j ≤ 1}.

(3) If 1 < p < r − 1 then I(f) = Rn.
(4) If p = r − 1 then I(f) = {y ∈ Rn :

∑r−1
j=1 y

2
j > y2r} ∪ {0}.

(5) If p = r then I(f) = {y ∈ Rn :
∑r

j=1 y
2
j ≥ 1}.

Note that for r = 3 the case (3) cannot occur.

Proof. Similar to the proof of Lemma 5.5, we can assume r = n and split the problem
into the real and imaginary part,

p∑
j=1

x2j −
n∑

j=p+1

x2j −
p∑
j=1

y2j +
n∑

j=p+1

y2j + 1 = 0 ,(5.6)

p∑
j=1

xjyj −
n∑

j=p+1

xnyn = 0 .(5.7)

Consider a fixed y ∈ Rn.
In the case p = 0, we obtain the two equations

∑n
j=1 x

2
j =

∑n
j=1 y

2
j +1 and

∑n
j=1 xjyj =

0. Setting x =
(‖y‖22+1

y21+y
2
2

)1/2
(−y2, y1, 0, . . . , 0) gives a solution.

In the case p = 1, set α = −y21 +
∑n

j=2 y
2
j + 1. Then the statement follows identically

as in Lemma 5.5 in the cases α = 0, α < 0 and α > 0. For α = 0, the point x = 0
is a solution for f(z) = f(x + iy) = 0. For α > 0, (5.6) is a one-sheeted hyperboloid
and (5.7) is a hyperplane. Their intersection is non-empty. For α < 0, the formula for
α and (5.6) both define two-sheeted hyperboloids. We consider the hyperboloids H1 :=
{y ∈ Rn : y21 −

∑n
j=2 y

2
j = 1 − α} and H2 := {x ∈ Rn : x21 −

∑n
j=2 x

2
j = −α}. Via

the transformations y 7→ y/
√

1− α and x 7→ x/
√
−α these sets are transformed into the

same set C = {x ∈ Rn : x21 −
∑n

j=2 x
2
j = 1}. We know by the proof of Lemma 5.5 that

there is no pair of orthogonal position vectors on C. Therefore, there are no orthogonal
position vectors in H1 and H2. Hence, for α < 0 the equation f(z) = 0 has no solution in
x. The case p = r − 1 is similar.

In the case 1 < p < r − 1, the statement follows as in Lemma 5.5.
In the case p = n, there exists an x satisfying (5.6) and (5.7) if and only if

∑n
j=1 y

2
j−1 ≥

0. �

Lemma 5.7. Let n > r ≥ 2. If f(z) =
∑p

j=1 z
2
j −

∑r
j=p+1 z

2
j + zr+1 with 1 ≤ p ≤ r, then

I(f) = Rn \ {(0, . . . , 0, yr+1, yr+2, . . . , yn) : yr+1 6= 0, yr+2, . . . , yn ∈ R}.

Proof. We can assume n = r + 1. In the system for the real and the imaginary parts
p∑
j=1

x2j −
n−1∑
j=p+1

x2j −
p∑
j=1

y2j +
n−1∑
j=p+1

y2j + xn = 0 ,(5.8)

2

p∑
j=1

xjyj − 2
n−1∑
j=p+1

xjyj + yn = 0 ,(5.9)
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consider a fixed (y1, . . . , yn) ∈ Rn. If (y1, . . . , yn−1) 6= 0, then we can choose (x1, . . . , xn−1) ∈
Rn such that (5.9) is satisfied. Since (5.8) is linear in xn, it has a real solution for xn. In
the special case (y1, . . . , yn−1) = 0, we see that y = (y1, . . . , yn) ∈ I(f) if and only if
yn = 0. �

Lemmas 5.1 and 5.2 also provide a statement about the existence of unbounded com-
ponents in the complement.

Theorem 5.8. Let f ∈ C[z].

(1) The complement of I(f) contains the non-negative y1-axis R≥0 × {0}n−1 if and
only if the polynomial f(z1 + ir, z2, . . . , zn) has no real solution in z for any r ≥ 0.

(2) I(f) has an unbounded component in the complement if and only if there is an
affine transformation z 7→ Az + ib with a real matrix A and a real vector b such
that condition (1) is satisfied.

Proof. The first statement immediately follows from the definition of I(f). For the second
statement, Corollary 4.2 implies that the existence of an unbounded component in the
complement is equivalent to the existence of a ray in the complement. By the Lemmas 5.1
and 5.2, the affine transformation reduces the situation to (1). �

Multilinear polynomials. We study the imaginary projection of multilinear polyno-
mials (in the sense of multi-affine-linear). Brändén’s stability result for this class was
given in Theorem 2.5. The next statement describes the imaginary projection of bivariate
multilinear polynomials; see the right picture in Figure 3 for an example.

Theorem 5.9. Let f(z1, z2) = z1z2 + βz1 + γz2 + δ be a multilinear polynomial with
β, γ, δ ∈ R. Then

I(f) =
{

y ∈ R2 : 0 <
y1y2
δ − βγ

≤ 1
}
∪ {0} for δ − βγ 6= 0 .

In the special case δ = βγ, the multilinear polynomial is reducible and thus I(f) = I(z1 +
γ) ∪ I(z2 + β) = I(z1) ∪ I(z2) = (R× {0}) ∪ ({0} × R).

As a consequence, we rediscover that the multilinear polynomial f is stable if and only
if βγ − δ ≥ 0, see Theorem 2.5.

Proof. Since f can be written as f(z1, z2) = (z1 + γ)(z2 + β) + δ − βγ, Lemma 5.2
implies that I(f) = I(g) where g(z1, z2) = z1z2 + δ − βγ. Substituting z1 = z′1 + z′2
and z2 = (βγ − δ)(z′1 − z′2), we can express g as g(z′1, z

′
2) = (βγ − δ)(z21 − z22 − 1), and

by Theorem 5.3, the imaginary projection of g with respect to the z′-variables is

{y′ ∈ R2 : −1 ≤ (y′1)
2 − (y′2)

2 < 0} ∪ {0} .

Using

(
1 1

βγ − δ −(βγ − δ)

)−1
= 1

2

(
1 1/(βγ − δ)
1 −1/(βγ − δ)

)
, transforming back to the z-vari-

ables with Lemma 5.1 yields the claim. �

For the case of n-dimensional multilinear polynomials, we provide the subsequent, less
explicit, characterization of the imaginary projection, and more generally, of polynomials
of the form f = g + zn+1h ∈ C[z, zn+1] with g, h ∈ C[z].
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Lemma 5.10. Let f = g+zn+1h ∈ C[z, zn+1] and v ∈ R. A point (z, zn+1) with Im zn+1 =
v and h(z) 6= 0 is contained in V(f) if and only if the determinant

(5.10) det

(
Re g − v Imh Reh
Im g + vReh Imh

)
vanishes in z.

Proof. Writing zn+1 = u+ iv, the conditions Re f = 0 and Im f = 0 give(
Re g
Im g

)
+

(
Reh − Imh
Imh Reh

)(
u
v

)
=

(
Re g − v Imh
Im g + vReh

)
+ u

(
Reh
Imh

)
= 0 .

Considering this equation as a linear equation in u shows that there exists a solution if
and only if the coefficient vector and the constant vector are linearly dependent, that is,
if and only the determinant (5.10) vanishes. �

We obtain the following corollary.

Corollary 5.11. Let f = g + zn+1h ∈ C[z, zn+1]. Then, writing z = x + iy, the sets
I(g + zn+1h) and

(5.11)

{
(y, v) ∈ Rn+1 : ∃x ∈ Rn with det

(
Re g − v Imh Reh
Im g + vReh Imh

)
= 0

}
coincide outside of the exceptional set E = {Im((z, zn+1)) : h(z) = 0 and g(z) 6= 0}.

We observe that the determinantal condition in (5.10) and (5.11) gives a linear condition
in v. For a multilinear polynomial of the form f = g + zn+1h ∈ R[z, zn+1] with g and
h multilinear, the condition is quadratic in any of the variables x = (x1, . . . , xn) and
y = (y1, . . . , yn).

Example 5.12. We revisit the multilinear polynomial f(z1, z2) = z1z2 + δ, δ ∈ R \ {0} to
illustrate Corollary 5.11; see Theorem 5.9. Setting g = δ and h = z1, the determinantal
condition (5.10) gives (where we write y2 instead of v)

δy1 − y21y2 − x21y2 = 0 .

For y2 6= 0, there exists a real solution for x1 if and only if y1
y2

(δ − y1y2) ≥ 0. Taking into

account the exceptional set E = {0}×R, we obtain I(f) = {y ∈ R2 : 0 < y1y2
δ
≤ 1}∪{0},

in accordance with Theorem 5.9.

Example 5.13. We consider the non-multilinear polynomial f(z1, z2) = 1+z2z
2
1 , which is

of the form f = g+ z2h with g = 1 and h = z21 . Corollary 5.11 gives the quartic condition
in the variable x1

(5.12) − y2x41 − 2y21y2x
2
1 + 2y1x1 − y2y41 = 0 .

Recall that the discriminant of a general polynomial p(z) =
∑n

j=0 ajz
j is given by Disc(p) =

(−1)
1
2
n(n−1) 1

an
Res(p, p′), where Res denotes the resultant. For a quartic, a positive discrim-

inant corresponds to zero or four real roots, while a negative discriminant corresponds to
two real roots. Moreover, with the notation

H = 8a2a4 − 3a23 , I = 12a0a4 − 3a1a3 + a22 ,
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the case of four real roots corresponds to H ≤ 0 and H2 − 16a24I ≥ 0, while the case of
four complex roots corresponds to H > 0 or H2 − 16a24I < 0, see, e.g., [9, Proposition 7].
In our situation, p = p(x1) is the polynomial in (5.12), Disc(p) = 16(64y41y

2
2 − 27)y41y

2
2,

H = 16y21y
2
2 and H2 − 16a24I = 0. The set of points y ∈ R2, where (5.12) has at least

two real solutions in x1, is given by 64y41y
2
2 ≤ 27. Taking into account the exceptional set

E = {0} × R gives

I(f) = {y ∈ R2 : 0 < 64y41y
2
2 ≤ 27} ∪ (R× {0}) .

We will return to multilinear polynomials when studying their asymptotic geometry in
Theorem 6.3.

6. The limit set of imaginary projections

For the amoeba A(f) of a polynomial f it is well-known that the set of limit points of
points in 1

r
A(f) ∩ Sn−1, where r > 0 tends to infinity, is a spherical polyhedral complex.

It is called the logarithmic limit set

A∞(f) = lim
r→∞

(
1

r
A(f) ∩ Sn−1

)
and provides one way of defining a tropical hypersurface; see, e.g., [18, Section 1.4].

For imaginary projections, the situation is different from amoebas, as shown by the
following counterexample: For f ∈ C[z],

I∞(f) = lim
r→∞

(
1

r
I(f) ∩ Sn−1

)
is not a spherical polyhedral complex in general.

Example 6.1. Let f(z) = z21 −
∑n

j=2 z
2
j + 1 with n ≥ 3. Then, by Theorem 5.4,

I(f) = {y ∈ Rn : y21 −
n∑
j=2

y2j ≤ 1} .

Therefore, I∞(f) = limr→∞
{
y ∈ Sn−1 : (ry1)

2 −
∑n

j=2(ryj)
2 ≤ 1

}
can be written as

I∞(f) =
{

y ∈ Sn−1 : y21 ≤
n∑
j=2

y2j

}
=
{

y ∈ Sn−1 : y21 ≤
1

2

}
.

Since n ≥ 3, this cannot be written as the intersection of Sn−1 with a polyhedral fan.
Hence, I∞(f) is not a spherical polyhedral complex, and since I∞(f) is already closed,
this persists under taking the closure.

Definition 6.2. Let f ∈ C[z]. We call a point p ∈ Rn a limit direction of the imaginary
projection of f if p ∈ I∞(f).
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Unless f is univariate or constant, f has at least one limit direction. Namely, for
any integer N > 0 and (z1, . . . , zn−1) ∈ Cn−1 such that ‖(Im(z1), . . . , Im(zn−1))‖2 > N
and f(z1, . . . , zn−1, zn) ∈ C[zn] is not a non-zero constant, there exists a zn ∈ C with
f(z1, . . . , zn−1, zn) = 0. The resulting sequence of points zN induces a sequence of points
Im(zN)/‖ Im(zN)‖ on the unit sphere Sn−1. By compactness, there exists a convergent
subsequence. If f has real coefficients, then, by Remark 3.5, the limit directions are sym-
metric with respect to the origin.

In Theorem 6.3 and Corollary 6.4, we deal with the limit directions of multilinear poly-
nomials. Then, in Theorem 6.5 and Corollary 6.7, we provide criteria for one-dimensional
families of limit directions, which means in the case n = 2 that every point on S1 is a
limit direction of the imaginary projection.

Theorem 6.3. Let f ∈ C[z] be a multilinear polynomial, and assume that the monomial
z1 · · · zn appears in f , i.e., deg(f) = n. Then the limit directions of I(f) are given by
Sn−1 ∩ H, where H is the union of the n coordinate hyperplanes {y ∈ Rn : yj = 0},
1 ≤ j ≤ n.

Proof. Homogenizing f to fh(z0, z1, . . . , zn), the homogeneous polynomial fh has a zero
at infinity, i.e., (0, z1, . . . , zn) ∈ V(fh), if and only if z1 · · · zn = 0. Hence, the set of limit
points of points in 1

r
V(f), r → ∞, is V(z1 · · · zn). The imaginary projections of the n

hyperplanes {z ∈ Cn : zj = 0} then imply the claim. �

Theorem 6.3 allows one to characterize the number of unbounded components in the
complement of the imaginary projection of multilinear polynomials.

Corollary 6.4. Let f ∈ C[z] be a multilinear polynomial, and assume that the monomial
z1 · · · zn appears in f , i.e., deg(f) = n. Then the complement of I(f) contains exactly 2n

unbounded components.

We remark that this number coincides with the number stated in Theorem 4.4 when
choosing m = n.

Proof. By Theorem 6.3, the complement of I∞(f) consists of 2n components. Therefore,
the complement of I(f) has exactly 2n unbounded components. �

Theorem 6.5. Let f ∈ C[z] be a non-constant polynomial. If its homogenization fh ∈
C[z0, z] has a zero ph = (0 : p) = (0 : p1 : · · · : pn) ∈ PnC, then every point in the
intersection Sn−1 ∩H is a limit direction, where H = {λRe(p) + µ Im(p) : λ, µ ∈ R} and
p = (p1, . . . , pn).

Proof. Let ph = (0 : p1 : · · · : pn) be a zero at infinity of fh. Since iph is also a point
at infinity for fh, we can assume that

∑n
j=1 Im(pj)

2 6= 0. Since f is non-constant, there

exists a sequence (p(k)) = (p
(k)
1 , . . . , p

(k)
n ) of points in V(f) such that (1 : p

(k)
1 : · · · : p

(k)
n )

converges to ph. Hence,

1

(
∑n

j=1 Im(pj)2)1/2
(Im p1, . . . , Im pn)
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is a limit direction. Multiplying ph with a complex number µ + iλ, λ, µ ∈ R keeps ph
invariant, and under the imaginary projection it leads to a projected point Im((µ+iλ)·p) =
µ Im(p) + λRe(p). Considering all complex numbers µ + iλ ∈ C, these points form the
subspace H. �

Example 6.6. We revisit the polynomial f(z1, z2) = z21 − z22 − 1; see Figure 5 for its
imaginary projection. Its homogenization is fh(z0, z1, z2) = z21 − z22 − z23 whose zeros at
infinity are given by the equation z21− z22 = (z1 + z2)(z1− z2) = 0. For the points ph = (0 :
1 : ±1), Theorem 6.5 provides the two one-dimensional lines H1,2 = {λ(1,±1) : λ ∈ R}.
We obtain the intersection S1 ∩ H1,2 = {(± 1√

2
,± 1√

2
)}. Indeed, we know by Theorem 5.3

that I(f) = {y ∈ R2 : y21 − y22 = 0}, which confirms I∞(f) = {(± 1√
2
,± 1√

2
)}.

Theorem 6.5 implies the following statement about bivariate polynomials of arbitrary
degree:

Corollary 6.7. Let f ∈ C[z1, z2] be of total degree d and assume its homogenization fh
has the zeros at infinity (0 : 1 : aj), j = 1, . . . , d. Then,

I∞(f) =


d⋃
j=1

{
± 1√

1+a2j
(1, aj)

}
if all aj are real,

S1 otherwise.

Note that by changing coordinates, zeros of the form (0 : 0 : bj) with bj 6= 0 are covered
by the statement as well.

Proof. Assume first that there is an aj with Im(aj) 6= 0, say a1. Then, by Theorem 6.5,
the subspace H = {λ(1,Re(a1)) + µ(0, Im(a1)) : λ, µ ∈ R} is two-dimensional and thus
the set of limit directions is H ∩ S1 = S1.

If all aj are real, then all the subspaces Hj corresponding to the points (0 : 1 : aj) are
one-dimensional. The intersection Hj ∩ S1 contains the points ± 1√

1+a2j
(1, aj).

In order to show that there are no further limit directions, let (p(n))n∈N be a sequence
of points in V(f) with ‖ Im(p(n))‖2 →∞. Since the curve V(f) has only a finite number
of points in the plane at infinity, namely d, the sequence (p(n))n∈N can be decomposed

into d disjoint subsequences (q
(n)
1 ), . . . , (q

(n)
l ) (some of them possibly contain only finitely

many elements) such that any infinite sequence (q
(n)
j ) converges to the projective point

(0 : 1 : aj). �

Example 6.8. Let f(z1, z2) = z21 + z22 + 1. Then the zeros of fh at infinity are determined
by the equation z21 + z22 = 0, giving the two zeros (0 : 1 : ±i). Since the third coordinate
is purely imaginary, any point on S1 is a limit direction, as already visualized in the left
picture of Figure 3.

7. Open questions

In this paper, we have introduced and developed the foundations of the imaginary
projection of complex polynomial zero sets. A central open question is whether there
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exists an order map which distinguishes the different components of the complement, as
in the case of amoebas. For coamoebas such an order map is known only in special cases
so far (see [12]). Moreover, no sharp upper bound (as a function of the underlying Newton
polytope) is known for the number of components of the complement of an imaginary
projection.

It is also an open problem to provide effective criteria for general n to decide whether
all points on the sphere are limit directions of the imaginary projection of an n-variate
polynomial.

Acknowledgment. We would like to thank the referees for helpful comments.
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