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Abstract. We review some recent results on inner and outer j-radii of simplices and
general convex bodies. In particular, we discuss two lines of research whose present-day
developments were strongly influenced by work of Bernulf Weißbach: radii of regular
simplices and geometric inequalities among the radii.

1. Introduction

Let Lj,n be the set of all j-dimensional linear subspaces (hereafter j-spaces) in n-
dimensional Euclidean space En. The inner j-radius rj(C) of a convex body C ⊂ En

is the radius of a largest j-ball (j-dimensional ball) contained in C, and the outer j-radius
Rj(C) is the radius of the smallest enclosing j-ball in an optimal orthogonal projection of
C onto a j-space J ∈ Lj,n, where the optimization is performed over Lj,n.

Studying radii of polytopes is a fundamental topic in convex geometry (see [1, 2, 8,
10, 11, 14]. Applications in functional analysis, statistics, computer vision, robotics, and
medical diagnosis (see [12] and the references therein) have initiated additional interest
from the computational point of view. In the investigation of the inner and outer radii,
the following two questions immediately arise.

a) What are the radii of special classes of convex bodies, such as (regular) simplices?
b) Is there a general order on the radii?

For the outer (n− 1)-radius and its relation to the inner 1-radius (half diameter) these
questions were studied by Weißbach [17, 18]. Section 3 contains an overview on Weißbach’s
results on the radii of regular simplices and extensions which were obtained recently.

Concerning relations among the radii, it is easy to see that for any convex body C ⊂ En

we have rn(C) ≤ · · · ≤ r1(C), R1(C) ≤ · · · ≤ Rn(C), and R1(C) ≤ r1(C). Moreover, in
[13] it was shown rj(C) < Rn+1−j(C). The stated geometric inequalities are also displayed
in Figure 1.

It is not difficult to see that for important classes of bodies (e.g., symmetric bodies)
Rn−1(C) ≤ r1(C) holds. Eggleston [9] first showed that for every n ≥ 3 there are also
bodies with Rn−1(C) > r1(C). A much simpler proof was provided by Weißbach [17].
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Figure 1. An arc between two radii represents a less than or equal
relationship (from the origin to the sink), which holds for all n-dimensional
bodies.

In Section 4 we will see that Figure 1 is complete in the sense that for any two radii which
are not connected by a directed path there exist bodies C1, C2 such that the relationship
between the two radii is ‘less than’ for C1 and ‘greater than’ for C2.

2. Preliminaries

Throughout the paper we work in Euclidean space En, i.e., Rn with the usual scalar
product x · y =

∑n
i=1 xiyi and norm ||x|| = (x · x)1/2. B

n and S
n−1 denote the (closed) unit

ball and unit sphere, respectively. For a set A ⊂ En, the linear hull of A is denoted by
lin A and the convex hull of A is denoted by conv A.

A set C ⊂ En is called a body if it is bounded, closed, convex and contains an interior
point. Let 1 ≤ j ≤ n. A j-flat is an affine subspace of dimension j, and a j-cylinder is
a set of the form J + ρBn with an (n − j)-flat J and ρ > 0. For a body C ⊂ En, the
outer j-radius Rj(C) of C (as defined in the introduction) is the radius ρ of a smallest
enclosing j-cylinder of C. It follows from a standard compactness argument that this
minimal radius is attained (see, e.g., [11]). Let 1 ≤ j ≤ k < n. If C ′ ⊂ En is a compact,
convex set whose affine hull F is a k-flat then Rj(C

′) denotes the radius of a smallest
enclosing j-cylinder C′ relative to F , i.e., C′ = J ′ + Rj(C

′)(Bn ∩ E) with a (k − j)-flat
J ′ ⊂ F and E the linear k-space parallel to F .

For a simplex S = conv{v(1), . . . , v(n+1)}, let S(i) denote the facet of S which does not
contain the vertex v(i), i = 1, . . . , n + 1. Whenever a statement is invariant under orthog-
onal transformations and translations we denote by T n the regular simplex in En with
edge length

√
2. The reason for the choice of

√
2 stems from the convenient embedding

of T n into En+1. Let Hn
α = {x ∈ En+1 :

∑n+1
i=1 xi = α}. Then the standard embedding Tn

of T n is defined by

Tn := conv
{

e(i) ∈ E
n+1 : 1 ≤ i ≤ n + 1

}

⊂ Hn
1 ,

where e(i) denotes the i-th unit vector in En+1. By Sn−1 := Sn ∩Hn
0 we denote the set of

unit vectors parallel to the n-flat in which Tn is embedded.
A j-cylinder C containing some simplex S is called a circumscribing cylinder of S if all

the vertices of S are contained in the boundary of C.
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3. Outer radii of regular simplices

One access to understand the geometry of functionals such as radii and volumes is to
investigate their behavior on special subclasses of convex bodies. Here we mainly consider
the class of regular simplices. In particular, for the analysis of geometric inequalities, they
often attain the extreme values. In [17, Theorem 1] Weißbach showed that

(3.1) Rn−1(T
n) ≥

√

n − 1

n + 1
, with equality if and only if n is odd.

Instead of presenting a proof of (3.1) we will state several generalizations, which were
obtained in a bit different form in [5].

Lemma 1. For 1 ≤ j ≤ n it holds Rj(T
n) ≥

√

j
n+1

, and in case of equality every minimal

enclosing j-cylinder of T n is a circumscribing j-cylinder of T n.

Proof. Let s(1), . . . , s(n) be an orthonormal basis of Hn
0 , p ∈ Hn

1 and ρ > 0 such that
C = J + ρ(Bn+1 ∩ Hn

0 ) is an enclosing j-cylinder of Tn with J = p + lin{s(j+1), . . . , s(n)}.
Further let x 7→ Px be the orthogonal projection onto lin{s(1), . . . , s(j)}, where P =
∑j

k=1 s(k)(s(k))T ∈ E(n+1)×(n+1). Then

(3.2) ||Pe(i)||2 =

j
∑

k=1

(s
(k)
i )2 .

Assume there exists a point x ∈ Hn
0 such that ||x−Pe(i)|| <

√

j
n+1

for all i = 1, . . . , n + 1.

Since
∑n+1

i=1 s
(k)
i = 0 and

∑n+1
i=1 (s

(k)
i )2 = 1, we obtain from summing over all i

j >
n+1
∑

i=1

||x − Pe(i)||2 = (n + 1)||x||2 − 2
n+1
∑

i=1

j
∑

k=1

s
(k)
i xT s(k) +

n+1
∑

i=1

j
∑

k=1

(s
(k)
i )2

= (n + 1)||x||2 + j ≥ j

(3.3)

which is a contradiction. This proves the first part of the theorem. For the second part,

it is easy to see that if Rj(T
n) =

√

j
n+1

then (3.3) becomes an equality chain if and only

if x = 0 and ||x − Pe(i)||2 = j
n+1

for all 1 ≤ i ≤ n + 1. �

Also about the equality cases we can generalize Weißbach’s result (3.1) for general j.

If a sequence of orthogonal vectors s(1), . . . , s(j) ∈ Sn−1 satisfies
∑j

k=1(s
(k)
i )2 = j

n+1
for all

i = 1, . . . , n + 1, we call it a good subspace basis (shortly, gsb). The proof of Lemma 1

implies that Rj(T
n) =

√

j
n+1

if and only if there exists a gsb for the pair (j, n). It is not

hard to see that

(3.4) any orthonormal basis s(1), . . . , s(n) of Hn
0 is a gsb.

It directly follows Rn(T n) =
√

n
n+1

, which is a long known fact, not only since the famous

work of Jung [15].
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As an easy consequence of (3.4), the basis completion theorem implies

(3.5) Rj(T
n) =

√

j

n + 1
if and only if Rn−j(T

n) =

√

n − j

n + 1
.

Property (3.5) immediately shows that Weißbach’s ‘if and only if n is odd’ statement
on equality in (3.1) corresponds directly to the property that the half width satisfies

R1(T
n) =

√

1
n+1

if and only if n is odd, also an old result, shown by Steinhagen [16]. In

fact, Steinhagen first showed that all minimal enclosing 1-cylinders of a regular simplex
are circumscribing. It was shown in [11] that minimal enclosing 1-cylinders are always
circumscribing even for general simplices, and a similar statement for general j will be
given in Proposition 5.

Weißbach showed that the axis direction s(n) ∈ Sn−1 of a minimal enclosing (n − 1)-

cylinder of Tn for odd n must be of the form
√

1
n+1

(1, . . . , 1,−1, . . . ,−1)T where both

the number of 1’s and (-1)’s are n+1
2

. However, for the analysis in which cases the lower

bound
√

j
n+1

holds for general j, it seems to be more convenient to describe the space

where Tn is projected on.

Definition 2. Let 1 ≤ j < m. A sequence v(1), . . . , v(m) ∈ Sj−1 is called (j, m)-isotropic
if

∑m
i=1 v(i) = 0 and

∑m
i=1 v(i)(v(i))T = mI, where I denotes the j-dimensional identity

matrix. A polytope P ⊂ B
j is called (j, m)-isotropic if there exists a (j, m)-isotropic

sequence v(1), . . . , v(m) whose convex hull is P .

The following Proposition is taken from [5]. The proof is quite easy but purely technical.

Proposition 3. Let 1 ≤ j ≤ n. There exists a gsb s(1), . . . , s(j) ∈ Sn−1 if and only if there
exists a (j, n + 1)-isotropic polytope P ⊂ Bj. Moreover, for any gsb s(1), . . . , s(j) ∈ Sn−1

we can choose P such that it is the projection of Tn on lin{s(1), . . . , s(j)} up to a linear
transformation.

Obviously, for every odd n ≥ 1 the unique (1, n + 1)-isotropic polytope is [−1, 1], and
the underlying sequence consists of 1’s and −1’s, both n+1

2
times.

Also it is easy to see that every regular j-dimensional polytope with n + 1 vertices,
all on Sn−1, is (j, n + 1)-isotropic. Hence, at least for j = 2 there exist (2, n + 1)-
isotropic polytopes for all n ≥ 2. Moreover, for odd n we can choose a 3-dimensional
prism with a regular (n+1

2
)-gon as the base. By appropriately choosing the height of

the prism, it becomes (3, n + 1)-isotropic. Finally, if v(1), . . . , v(m1) is a (j, m1)-isotropic
sequence and u(1), . . . , u(m2) a (j, m2)-isotropic sequence, then v(1), . . . , v(m1), u(1), . . . , u(m2)

is a (j, m1 + m2)-isotropic sequence. We call this the additive rule. Now we are ready to
state the following theorem about the radii of regular simplices.

Theorem 4. Let 1 ≤ j ≤ n. If

a) n is odd, or
b) j is even and n 6= 2j,

then Rj(T
n) =

√

j
n+1

.
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Proof. We will show by an inductive proof over j and n that whenever a) or b) holds there
exists a (j, n+1)-isotropic polytope. It was shown before that a) or b) is true if 1 ≤ j ≤ 3
or n − 2 ≤ j ≤ n. So we can assume that n ≥ 7, 4 ≤ j ≤ n − 3, and use the induction
hypothesis that the theorem is true for all pairs (j′, n′) such that j′ < j, n′ ≤ n or j′ ≤ j,
n′ < n which fulfill a) or b). In the inductive step we distinguish three cases: n < 2j,
n > 2j, and n = 2j.

Suppose n < 2j. Then j′ := n − j < j and therefore the statement follows inductively
by applying Property (3.5), as for odd n the precondition does not depend on j and for
even n it holds that j′ is even if j is even and 2j′ = n would mean 2j = n.

If n > 2j we consider the two subcases n−j 6= 2j and n−j = 2j. Let n−j 6= 2j. Define
n′ = n−j−1 and n′′ = j. It is easy to see that each of the pairs (j, n′) and (j, n′′) fulfill a)
or b). Hence, by the induction hypothesis there exists a (j, n′ + 1)-isotropic polytope and
a (j, n′′+1)-isotropic polytope, from which we obtain the existence of a (j, n+1)-isotropic
polytope via the additive rule.

In the case that n − j = 2j we set n′ = n − j − 3 and n′′ = j + 2. By the induction
hypothesis the theorem is true for the pairs (j, n′) and (j, n′′). Applying the additive rule
on a (j, n′ + 1)-isotropic polytope and a (j, n′′ + 1)-isotropic polytope gives a (j, n + 1)-
isotropic polytope.

Finally, in the case n = 2j, n is even and therefore neither a) nor b) is satisfied. �

In [5] also a multiplicative rule to combine two isotropic polytopes was given, which
allows to show that there exist (j, n + 1)-isotropic polytopes even in some cases with
even j and n = 2j. However, Steinhagen’s and Weißbach’s result for the cases j = 1 and
j = n − 1 show that (j, n + 1)-isotropic polytopes do not exist for all pairs (j, n) with
1 ≤ j ≤ n.

There also exists a paper on the determination of Rn−1(T
n) for even n, but unfortu-

nately, that proof contained an error. At the end of 2002, Bernulf Weißbach suggested to
us to work jointly on a new proof, but unfortunately he died in June 2003. In a letter,
he stressed his opinion that a major step would be to show that every minimal enclosing
(n − 1)-cylinder of the regular simplex is always circumscribing. Recently, in [6] we were
able to show the following statement:

Proposition 5. Let 1 ≤ j ≤ n and S be a simplex in E
n with facets S(1), . . . , S(n+1).

Then one of the following is true.

a) Every minimal enclosing j-cylinder of S is a circumscribing j-cylinder of S.
b) Rj(S) = Rj−1(S

(i)) for some i ∈ {1, . . . , n + 1} and j ≥ 2.
c) Rj(S) = Rk(F ), for some k ∈ {1, . . . , j − 1}, where F is a k-face of S.

If j = 1 or if S = T n then always case a) holds.

Rather than presenting the whole proof of Proposition 5 we will concentrate on the case
j = n − 1 and S = T n, as major ideas are already contained in this case.

Lemma 6. The sequence (Rn−1(T
n))n≥2 is strictly increasing.

Proof. Let T n+1 be embedded in En+1 such that S(n+1) (which is T n) lies within H :=
{x ∈ En+1 : xn+1 = 0}, and let C = ℓ + Rn−1(T

n)(Bn+1 ∩ H) be any minimal enclosing
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cylinder of S(n+1) (taken in n-dimensional space) with ℓ a line in H . But, since

dist(v(n+1), ℓ) ≥ dist(v(n+1), H) =

√

n + 1

n
> 1 > Rn(T n+1)

(where dist(·, ·) denotes the Euclidean distance), ℓ cannot be the axis of a minimal en-
closing cylinder of T n+1. Hence Rn−1(T

n) < Rn(T n+1). �

Theorem 7. Let n ≥ 2 and ℓ ⊂ E
n be a line, such that C = ℓ+Rn−1(T

n)Bn is a minimal
enclosing cylinder of T n. Then C is also a circumscribing cylinder of T n.

Proof. The proof is split into three parts. In the first part we will exclude the special cases
that ℓ is parallel or perpendicular to one of the facets S(1), . . . , S(n+1) of T n. The other
two parts deal with the previously excluded cases. We can assume that T n is embedded
in En such that S(n+1) ⊂ H := {x ∈ En : xn = 0}.
Part 1: Suppose ℓ is neither perpendicular nor parallel to any of the facets of T n. Now
assume v(n+1) 6∈ bd(C). Let p, s ∈ E

n such that ℓ = p + lin{s}. Since, by assumption, ℓ is
not parallel to H , we can assume p = 0 ∈ ℓ ∩ H , and sn > 0. For every s′n ∈ (0, sn) and
s′ := (s1, . . . , sn−1, s

′
n) ∈ En let ℓ′ = p+lin{s′}. Geometrically, ℓ′ results from ℓ by rotating

ℓ into the direction of the hyperplane H in such a way that the orthogonal projection of ℓ
onto H remains invariant (see Figure 2). Since ℓ and H are not perpendicular we obtain

H

v
(i)

K

0

ℓ

ℓ
′

Figure 2. For n = 3 the figure shows how the underlying line ℓ of the
cylinder C is rotated towards its orthogonal projection onto the plane H .
The distances between the vertices v(i), 1 ≤ i ≤ n, and the j-cylinder axis
are not increased, and decreased if v(i) 6∈ K.

ℓ 6= ℓ′. Further, since v(1), . . . , v(n) ∈ H , we have

(3.6) dist(v(i), ℓ′) ≤ dist(v(i), ℓ) , 1 ≤ i ≤ n ,

where “<” holds whenever v(i) 6∈ K := ℓ⊥ ∩ H . Obviously, dim(K) = n − 2. If none of
the v(i) lies in K, then, by choosing s′n sufficiently close to sn, all vertices of T n lie in the
interior of C′ = ℓ′ + Rj(T

n)Bn, a contradiction to the minimality of Rj(T
n). Hence, there

must be some vertex of S in K ∩ bd(C).
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Let k + 1 be the number of vertices in K ∩ bd(C). By renumbering the vertices we can
assume v(1), . . . , v(k+1) ∈ K ∩ bd(C), 0 ≤ k ≤ n − 2. Then F := conv{v(1), . . . , v(k+1)} is
a k-face of T n. Since F and ℓ are perpendicular, F is congruent to T k and p = 0 is the
unique center of the circumball of F . Hence,

Rn−1(T
n) = Rk(F ) = Rk(T

k) =

√

k

k + 1
=

√

2k

2k + 2
.

Now Theorem 4 and Lemma 6 imply that n = 2k + 1. But in this case it follows already
from Lemma 1 that C circumscribes T n, contradicting v(n+1) 6∈ bd(C).

Part 2: Now consider the case that ℓ is perpendicular to H and assume again v(n+1) 6∈
bd(C). In this case any small perturbation of ℓ around p := ℓ∩H keeps v(n+1) within the
cylinder not increasing the distances of all the other vertices to the new axis. So the same
argumentation as in the non-perpendicular case shows a contradiction to the assumptions.

Part 3: Finally, consider the case that ℓ is parallel to one of the facets of T n. By Lemma 1
and Theorem 4, we only have to consider the case n even. Suppose ℓ is parallel to S(n+1)

and that v
(n+1)
n > 0. Since Rn−1(T

n−1) =
√

(n − 1)/n we have v
(n+1)
n =

√

(n + 1)/n. Let

p ∈ ℓ. Since v
(n+1)
n > 0 it holds pn ≥ 0 and obviously

(3.7) Rn−1(T
n) ≥

√

n + 1

n
− pn .

On the other hand, since ℓ is parallel to S(n+1), and since the cylinder radius of T n−1 is
√

(n − 2)/n (recall that n − 1 is odd)

(3.8) Rn−1(T
n)2 =

n − 2

n
+ p2

n.

Let

p∗n =
3

2
√

n(n + 1)
> 0

be the unique minimal solution for pn to (3.7) and (3.8). As C is an optimal cylinder it
must hold pn = p∗n. But because of Lemma 1 and the equalities in (3.7) and (3.8) for
p∗n this means that all vertices of T n have the same distance to ℓ, which shows that C is
circumscribing. �

As shown in [6], the optimal choice of ℓ for even n is the one parallel to a facet,
but the proof is long and includes extensive study of the relevant polynomial equations,
which we do not review here in detail. However, a crucial step towards a solution was
the transformation of the original problem into an optimization problem over symmetric
polynomials, an idea which also Weißbach had in mind for solving the problem. In [6]
this transformation is presented for general outer j-radii of the regular simplex, but here
we will keep our focus on the case j = n − 1.

Let ℓ = p + lin{s}, where s ∈ Sn−1 and p ∈ lin{s}. Suppose C = ℓ + Rn−1(T
n)(Bn+1 ∩

Hn
0 ) is a minimal enclosing (and circumscribing) cylinder of the regular simplex Tn in

standard embedding. The orthogonal projection of a vector x ∈ Hn
1 onto the orthogonal

complement of lin{s} (relative to Hn
1 ) can be written as x 7→ Px with P = I − ssT ∈
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E(n+1)×(n+1). Hence, for a general polytope with vertices v(1), . . . , v(m) (embedded in Hn
1 )

the computation of the square of Rn−1 can be expressed by the following optimization
problem. Here, we use the convention x2 := x · x.

(3.9)

min ρ2

(i) s.t. (p − Pv(i))2 ≤ ρ2 , i = 1, . . . , m,
(ii) p · s = 0,
(iii) s ∈ Sn−1,
(iv) p ∈ Hn

1 .

In the case of Tn, (i) can be replaced by

(3.10) (i’) (p − e(i) + sis)
2 = ρ2 , i = 1, . . . , n + 1 ,

where the equality sign comes from the fact that C is circumscribing. By (ii) and s ∈ Sn−1,
(i’) can be simplified to

(i”) p2 − ρ2 = s2
i + 2pi − 1 , i = 1, . . . , n + 1 .

Summing over all i gives (n + 1)(p2 − ρ2) = 1 + 2 − (n + 1), i.e., p2 − ρ2 = 2−n
n+1

. We

substitute this value into (i”) and obtain pi = 1
2

(

3
n+1

− s2
i

)

. Hence, the pi can be replaced
in terms of the si,

ρ2 =
4n − 5

4(n + 1)
+

1

4

n+1
∑

i=1

s4
i ,

p · s = −1

2

n+1
∑

i=1

s3
i .

We arrive at the following characterization of the minimal enclosing cylinders:

Theorem 8. Let n ≥ 2. A vector s ∈ Sn−1 represents the axis direction of a minimal
enclosing cylinder of Tn ⊂ Hn

1 if and only if it is an optimal solution of the problem

(3.11)

min
n+1
∑

i=1

s4
i

s.t.
n+1
∑

i=1

s3
i = 0 ,

n+1
∑

i=1

s2
i = 1 ,

n+1
∑

i=1

si = 0 .

Solving this system for even n in connection with Weißbach’s results for odd n yields
the following proposition.
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Proposition 9. Let n ∈ N and T n be a regular simplex in En with edge length
√

2. Then

Rn−1(T
n) =











√

n−1
n+1

if n is odd,

2n−1

2
√

n(n+1)
if n is even.

4. Geometric inequalities

One reason why Weißbach considered the outer (n − 1)-radius of the regular simplex
was an older result of Eggleston [9], showing that for n ≥ 3 there exists a body C ⊂ En

with Rn−1(C) > r1(C). In [17] Weißbach gives a much simpler proof. By Lemma 1,

(4.1) Rn−1(T
n) ≥

√

n − 1

n + 1
>

√

1

2
= r1(T

n) for n ≥ 4 .

However, for n = 3 it holds Rn−1(T
n) = r1(T

n). By an elegant construction, Weißbach
also provides a proof of the remaining case.

Proposition 10. The Weißbach polytope

W = conv























0

−
√

1
2

1
2






,







0
√

1
2

1
2






,







√

1
2

0

−1
2






,







−
√

1
2

0

−1
2






,







0

0

1−
√

6
2






,







√
2−2

√
3

4

−
√

2+2
√

3
4

0






,







−
√

2+2
√

3
4

−
√

2+2
√

3
4

0























fulfills R2(W ) > r1(W ).

Note that the first four vertices of W are the vertices of a regular simplex with edge
length

√
2. Hence, it suffices to show that r1(W ) = r1(T

3) and in each of the three optimal
projection directions of T 3 the projection of W does not fit into the same circumball. This
situation is visualized in Figure 3.1

It turns out that the boundary of a minimal enclosing cylinder of W contains five
vertices of W , and that this condition can be used to compute the numerical value of
R2(W ). E.g., one of the minimal enclosing cylinders of W contains the vertices 1, 3, 4,
6, and 7. For any five points in general position, there are six (complex) cylinders whose
surface passes through the given points (see [3]). Thus, solving the corresponding systems
of polynomial equations yields six cylinders (which are all real for our configuration),
among which the one with radius ρ ≈

√
2 · 0.50095 is the smallest one containing W .

Hence, R2(W )/r1(W ) ≈ 1.0019.
In fact, R2 > r1 would already be obtained by adding only two of the three new vertices

to the regular simplex.

1A colored, dynamic 3D model of the Weißbach polytope is available from the homepages of the
authors.



10 R. BRANDENBERG AND T. THEOBALD

Figure 3. In the picture, all seven vertices of the Weißbach polytope W
are visible. The upper two and the left most and right most belong to the
original regular simplex T 3. In all three optimal projection directions of T 3

two of the additional vertices of W are projected outside the circumball of
the projection of T 3. The picture shows one of these three projections as
well as the circumball of the projection of T 3.

Since Rn−1(C) < r1(C) for many symmetric bodies, (4.1) and Proposition 10 show that
Rn−1 and r1 are incomparable, i.e., no arc between the nodes for Rn−1 and r1 can be added
in Figure 1. Now the question arises which other pairs of radii (which are not connected
by a directed path in that figure) are provably incomparable. For certain pairs, already
the regular simplex in addition with the class of ellipsoids shows incomparability, but for
example it holds R2(T

n) ≤ r1(T
n) for n ≥ 3 and R1(T

n) ≤ r2(T
n) for n ≥ 5 like for all

symmetric bodies. On the other hand it follows from the monotonicity of the outer and
inner radii chains, that bodies C, C ′ with R2(C) > r1(C) and R1(C

′) > r2(C
′) imply that

the diagram in Figure 1 is already complete (since in both cases the other direction of the
inequalities are fulfilled by ellipsoids).

Bodies C which satisfy the inequalities R2(C) > r1(C) and R1(C) > r2(C) simultane-
ously were considered in [7]. There, a body of constant breadth C with R2(C) > r1(C)
is called a totally non-spherical body as every projection of C onto arbitrary subspaces of
dimension at least 2 is different from the ball.

Proposition 11. For all n ≥ 3 there exists a totally non-spherical body C ⊂ E
n, i.e.,

rn(C) ≤ · · · ≤ r2(C) < r1(C) = R1(C) < R2(C) ≤ · · · ≤ Rn(C) .

Finally, we want to describe a small application of the existence of bodies (such as the
Weißbach polytope) which satisfy radii relations in the unusual direction (say, R2(C) >
r1(C)).

The following Proposition was shown in [11, (1.11)] by use of Helly’s theorem.
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Proposition 12. If C is a body in En then

Rn(C) = sup
S⊂C

S Simplex

Rn(S) .

Proposition 12 provides an algorithmic reduction of the problem to compute Rn(P ) of
a polytope P to the computation of the outer n-radius of simplices defined by vertices of
P . Using the concept of non-spherical bodies, the following results imply that a similar
result does not hold for general outer j-radii, not even for the outer 2-radius in E

3 (the
radius of the smallest enclosing cylinder). We make use of the following result, shown in
[4, Theorem 3.17].

Proposition 13. Let 1 ≤ j ≤ n, such that n − j + 1 divides n + 1, and let S be an
n-dimensional simplex. Then

Rj(S)

r1(S)
≤

√

2j

n + 1
,

with equality if S = T n.

Proposition 10 and the case (j, n) = (2, 3) in Proposition 13 imply that the Weißbach
polytope W satisfies

R2(W ) > r1(W ) ≥ r1(S) ≥ R2(S) for all simplices S ⊂ W.

More generally, we can state the following theorem.

Theorem 14. If 1 ≤ j ≤ n+1
2

then every totally non-spherical body C ⊂ En satisfies

Rj(C) > sup
S⊂C

S Simplex

Rj(S) .

Proof. In case j = 1, note that the constant breadth of C implies r1(C) = R1(C). How-
ever, since no simplex can be of constant breadth, R1(S) < r1(S) ≤ r1(C) for any simplex
S contained in C.

Now suppose j ≥ 2 and let S ⊂ C be a simplex. Since r1(S) ≤ r1(C) < Rj(C), it
remains to show Rj(S) ≤ r1(S). If n + 1 is even, this follows from the monotonicity of
the outer radii and Proposition 13. If n is even, let S̄ be an (n + 1)-simplex, such that
S is congruent to one of the facets of S̄ and r1(S) = r1(S̄). Since j + 1 ≤ n+2

2
, we have

Rj(S) ≤ Rj+1(S̄) ≤ r1(S̄) = r1(S). �
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[9] H.G. Eggleston. Minimal universal covers in En. Israel J. Math. 1:149–155 (1963).
[10] H. Everett, I. Stojmenov́ıc, P. Valtr, and S. Whitesides. The largest k-ball in a d-dimensional box.

Comput. Geom. 11:59-67, 1998.
[11] P. Gritzmann and V. Klee. Inner and outer j-radii of convex bodies in finite-dimensional normed

spaces. Discrete Comput. Geom. 7:255-280, 1992.
[12] P. Gritzmann and V. Klee. Computational complexity of inner and outer j-radii of polytopes in

finite-dimensional normed spaces. Math. Program. 59A:163-213, 1993.
[13] M. Henk. Ungleichungen für sukzessive Minima und verallgemeinerte In- und Umkugelradien. Ph.D.

thesis, Dept. of Mathematics, Universität-GH Siegen, 1991.
[14] M. Henk. A generalization of Jung’s theorem. Geom. Dedicata, 42:235–240, 1992.
[15] H.W.E. Jung. Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. Journal Reine Angew.
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137, 1983.
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