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Abstract

We use Bernstein’s Theorem [1] to obtain combinatorial bounds for the
number of embeddings of Laman graph frameworks modulo rigid motions.
For this, we study the mixed volume of suitable systems of polynomial
equations obtained from the edge length constraints. The bounds can
easily be computed and for some classes of graphs, the bounds are tight.
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1 Introduction

Let G = (V, E) be a graph with |E| = 2|V |−3 edges. If each subset of k vertices
spans at most 2k− 3 edges, we say that G has the Laman property and call it a
Laman graph (see [18]). For generic edge lengths, Laman graphs are minimally
rigid (see [6]), i.e. they become flexible if any edge is removed.

A Henneberg sequence for a graph G is a sequence (Gi)3≤i≤n of Laman graphs
such that G3 is a triangle, Gn = G and each Gi is obtained by Gi−1 via one of
the following two types of steps: A Henneberg I step adds one new vertex vi+1

and two new edges, connecting vi+1 to two arbitrary vertices of Gi. A Henneberg
II step adds one new vertex vi+1 and three new edges, connecting vi+1 to three
vertices of Gi such that at least two of these vertices are connected via an edge
e of Gi and this certain edge e is removed (see Figure 1). Any Laman graph G

can be constructed via a Henneberg sequence and any graph constructed via a
Henneberg sequence has the Laman property (see [25]). We call G a Henneberg
I graph if it is constructable using only Henneberg I steps. Otherwise we call it
Henneberg II.

In the following we look at frameworks which are tuples (G, L) where G =
(V, E) is a graph and L = {li,j : [vi, vj ] ∈ E} is a set of |E| positive numbers
interpreted as edge lengths. Given a framework we want to know how many
embeddings, i.e. maps α : V → R2, exist such that the Euclidean distance
between two points in the image is exactly li,j for all [vi, vj ] ∈ E. Since every
rotation or translation of an embedding gives another one, we ask how many
embeddings exist modulo rigid motions.
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Figure 1: A Henneberg I and a Henneberg II step. New edges are dashed and
the deleted edge is pointed.

Due to the minimal rigidity property, questions about embeddings of Laman
graphs arise naturally in rigidity and linkage problems (see [23] or [14]). Graphs
with less edges will have zero or infinitely many embeddings modulo rigid mo-
tions, and graphs with more edges do not have any embeddings for a generic
choice of edge lengths.

Determining the maximal number of embeddings (modulo rigid motions) for
a given Laman graph is an open problem. The best upper bounds are due to
Borcea and Streinu (see [3] and [4]) who show that the number of embeddings is

bounded by
(2|V |−4
|V |−2

)

. Their bounds are based on degree results of determinantal

varieties, but do not seem to fully exploit the specific combinatorial structure
of Laman graphs.

Here, we present an alternative, combinatorial approach to bound the num-
ber of embeddings of a Laman graph based on Bernstein’s Theorem for sparse
polynomial systems. Since the systems of polynomial equations describing the
Laman embeddings are sparse, the mixed volume of the Newton polytopes pro-
vides a simple combinatorial upper bound on the number of solutions. It is
particularly interesting that for some classes of graphs, the mixed volume bound
is tight (and in these cases improves the general bound in [3]).

To use algebraic tools for this problem we formulate the embedding problem
as a system of polynomial equations. Each prescribed edge length translates into
a polynomial equation. I.e. if [vi, vj ] ∈ E with length li,j , we require (xi−xj)

2+
(yi − yj)

2 = l2i,j where (xi, yi) denote the coordinates of the embedding of the
vertex vi. Thus we obtain a system of |E| quadratic equations whose solutions
represent the embeddings of our framework. To get rid of translations and
rotations we fix one point (x1, y1) = (c1, c2) and the direction of the embedding
of the edge [v1, v2] by setting y2 = c3. (Here we assume without loss of generality
that there is an edge between v1 and v2.) For practical reasons we choose ci 6= 0
and as well c1 6= l1,2. Hence we want to study the solutions to the following
system.































x1 − c1 = 0

y1 − c2 = 0

x2 − (l1,2 − c1) = 0

y2 − c3 = 0

(xi − xj)
2 + (yi − yj)

2 − l2i,j = 0 ∀[vi, vj ] ∈ E − {[v1, v2]}
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We will give bounds on the number of solutions in C. To do this we will study the
mixed volume of the Newton polytopes (i.e. the convex hulls of the monomial
exponent vectors, see for example [22]) of the system (1).

2 Mixed volumes and mixed subdivisions

Let P1, . . . , Pn be n polytopes in Rn. We call P +Q := {pi +qj | pi ∈ P, qj ∈ Q}
the Minkowski sum of P and Q and denote the Euclidean volume in Rn by voln.
For non-negative parameters λ1, . . . , λn, the function voln(λ1P1+. . .+λnPn) is a
homogeneous polynomial of degree n in λ1, . . . , λn with non-negative coefficients
(see [26]). The coefficient of the monomial λ1 · · ·λn is called the mixed volume
of P1, . . . , Pn and is denoted by MVn(P1, . . . , Pn).

The mixed volume is independent of the order of its arguments and linear
in each argument, i.e.

MVn(P1, . . . , αPi + βP ′
i , . . . , Pn) = (2)

α MVn(P1, . . . , Pi, . . . , Pn) + β MVn(P1, . . . , P
′
i , . . . , Pn)

and it generalizes the usual volume in the sense that

MVn(P, . . . , P ) = n! voln(P ) (3)

holds (see [21]).
We state here two explicit formulas for this quantity (see [22] and [15]):

MVn(P1, . . . , Pn)

= (−1)n
∑

(α1,...,αn)∈{0,1}n

(−1)
P

i
αi voln

(

∑

i

αiPi

)

(4)

=
∑

Q mixed cell of a
mixed subdivision

of (P1,...,Pn)

voln (Q) (5)

The first formula (4) is obtained by using inclusion and exclusion formulas to
compute the coefficient of λ1 · · ·λn in voln(λ1P1 + . . . + λnPn), see [21]. To
understand the second formula (5) and for further considerations we have to
introduce the reader to mixed subdivisions. For technical reasons we prefer
here to define mixed subdivisions on point sets rather then on polytopes. This
definition can then easily be extended to polytopes by considering their vertex
sets as point sets.

Let S = (S(1), . . . , S(m)) be a sequence of finite point sets in Rn that affinely
spans the full space. A sequence C = (C(1), . . . , C(m)) of subsets C(i) ⊆ S(i) is
called a cell of S. A subdivision of S is a collection Γ = (C1, . . . , Ck) of cells
such that

i) dim(conv(Ci)) = n for all cells Ci,

ii) conv(Ci) ∩ conv(Cj) is a face of both convex hulls and

iii)
⋃k

i=1 conv(Ci) = conv(S)
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where conv(A) := conv(A(1) + . . . + A(m)) for a sequence of point sets A. A
subdivision is called mixed if additionally

iv)
∑m

i=1 dim(conv(C
(i)
j )) = n for all cells Cj in Γ

and it is called fine mixed if additionally

v)
∑m

i=1(|C
(i)
j | − 1)) = n for all cells Cj in Γ

where |A| denotes the number of points in a finite set A ⊂ Rn. The type of a
cell is defined as

type(C) = (dim(conv(C(1))), . . . , dim(conv(C(m))))

and cells of type (1, 1, . . . , 1) will be called mixed cells. These definitions extend
naturally to sequences of polytopes by considering their vertices as the point sets
above. In this case every mixed subdivision will be a fine mixed subdivision. If
all cells of a subdivision are simplices we will call the subdivision a triangulation.

To construct mixed subdivisions we proceed as in [15]. Not every subdivision
can be constructed in this way but since we will only need one arbitrary mixed
subdivision we can use this simple construction. For each of the point sets S(i)

from S we choose a linear lifting function µi : Rn → R identified by an element
of Rn. By Â we denote the lifted point sets {(q, 〈µi, q〉) : q ∈ A} ⊂ Rn+1.

The set of those facets of conv(Ŝ(1) + . . . + Ŝ(m)) which have an inward
pointing normal with a positive last coordinate is called the lower hull of the
Minkowski sum. If we project down this lower hull back to Rn by forgetting
the last coordinate we get a subdivision of (S(1), . . . , S(m)). We call such a
subdivision coherent and will say it is induced by µ = (µ1, . . . , µm).

For the subdivision induced by µ to be a fine mixed subdivision it is sufficient
that every vertex of the lower envelope can be expressed uniquely as a Minkowski
sum (see [9]). Such a set of liftings will be called (sufficiently) generic.

3 Bernstein’s Theorem

The core theorem that gives a connection between solutions to systems of poly-
nomial equations and discrete geometry is the following.

Theorem 1 (Bernstein [1]) Given polynomials f1, . . . , fn over C with finitely
many common zeroes in (C∗)n where C∗ := C\{0} and let Pi denote the Newton
polytope of fi in Rn. Then the number of common zeroes of the fi in (C∗)n

is bounded above by the mixed volume MVn(P1, . . . , Pn). Moreover for generic
choices of the coefficients in the fi, the number of common solutions is exactly
MVn(P1, . . . , Pn).

Various attempts have been made to generalize these results to count all
common roots in Cn (see for example [10], [16] and [19]). The easiest, but
sometimes not the best bound is MVn(conv(P1 ∪ 0), . . . , conv(Pn ∪ 0)) which
is shown in [19]. Since the Newton polytopes of our system (1) all contain the
point 0 as a vertex, the mixed volume of (1) will give us a bound on the number
of solutions in C.

The bound on the number of solutions of a polynomial system arising from
Bernstein’s Theorem is also often referred to as the BKK bound due to the work
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of Bernstein, Khovanskii and Kushnirenko. The BKK bound generalizes the
Bézout bound (see [7] chapter 7) and for sparse polynomial systems it is often
significantly better.

Bernstein also gives an explicit condition when a choice of coefficients is
generic which we will state in the following. In [8] Canny and Rojas show that
the BKK-bound is sharp under even weaker assumptions.

Let w be a non-zero vector and let ∂wPi denote the face of Pi which is
minimal with respect to the direction w. Also we set ∂wfi =

∑

α∈∂wPi
cαxα to

be the face equation with respect to w.

Theorem 2 (Bernstein’s Second Theorem [1]) If ∀w 6= 0, the face system
∂wf1 = 0, . . . , ∂wfn = 0 has no solution in (C∗)n, then the mixed volume of the
Newton polytopes of the fi gives the exact number of common zeros in (C∗)n

and all solutions are isolated. Otherwise it is a strict upper bound.

Note that it is necessary for a direction w to be a witness of the degeneracy that
it lies on the tropical prevariety (see [20]) of the polynomial equations f1, . . . , fn.

In our case the system (1) allows to choose such a direction w. Namely if
we choose w = (0, 0, 0, 0,−1,−1, . . . ,−1) we get the face system







































x1 − c1 = 0

y1 − c2 = 0

x2 − (l1,2 − c1) = 0

y2 − c3 = 0

x2
i + y2

i = 0 ∀[v1, vi], [v2, vi] ∈ E

(xi − xj)
2 + (yi − yj)

2 = 0 ∀[vi, vj ] ∈ E with i, j 6= 1, 2







































which has (x1, y1, . . . , x|V |, y|V |) = (c1, c2, l1,2 − c1, c3, 1, i, 1, i, . . . , 1, i) as a so-
lution with non-zero complex entries. So the mixed volume of (1) will always
be a strict upper bound on the number of graph embeddings.

To remove this degeneracy Ioannis Emiris1 proposed a simple substitution.
The idea is to introduce new variables si with new equations si = x2

i + y2
i for

i = 1, . . . , |V |. This way the quadratic terms in the equations given by the edge
lengths disappear. So we should deal with the following system of equations.







































x1 − c1 = 0

y1 − c2 = 0

x2 − (l1,2 − c1) = 0

y2 − c3 = 0

si + sj − 2xixj − 2yiyj − l2i,j = 0 ∀[vi, vj ] ∈ E − {[v1, v2]}

si − x2
i − y2

i = 0 ∀i = 1, . . . , |V |







































(6)

4 New technical tools to simplify mixed volume

calculation

In the special case of Henneberg I graphs our system (1) will be in a shape that
allows to separate the mixed volume calculation into smaller pieces. Our main

1Personal communication at EuroCG 2008, Nancy
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tool to do this is the following Lemma. It is most often used in the special case
when all polytopes involved have integer vertices. In this case there is a shorter
proof using Bernstein’s Theorem. However we would like to state it here in the
general case and give a purely geometric proof for it.

Lemma 3 Let P1, . . . , Pk be polytopes in Rm+k and Q1, . . . , Qm be polytopes
in Rm ⊂ Rm+k . Then

MVm+k(Q1, ..., Qm, P1, ..., Pk) = MVm(Q1, ..., Qm) ∗ MVk(π(P1), ..., π(Pk))
(7)

where π : Rm+k → Rk denotes the projection on the last k coordinates.

An equivalent decomposition result was already mentioned in [5] in which the
authors refer to [12] for the proof which unfortunately we were unable to check
and therefore we give a full proof ourselves.

Proof. First we will show the Lemma in the semimixed case where Q1 = . . . =
Qm = Q and P1 = . . . = Pk = P , then we will show that both sides of the
desired equation define a symmetric multilinear function and then we will use
combinatorial identities for symmetric multilinear functions to show the full
result.

By (3) we have to show first that

MVm+k(Q, . . . , Q, P, . . . , P ) = m! k! volm(Q) ∗ volk(π(P )) (8)

where Q is taken m times and P is taken k times. But this formula for semimixed
systems is a special case of Lemma 4.9 in [11] or also of Theorem 1 in [2].

Let Pm (resp. Pm+k) be the set of all m-dimensional (resp. m + k-
dimensional) polytopes and define two functions g1 and g2 on Pm × . . .×Pm ×
Pm+k × . . . × Pm+k via

g1(Q1, . . . , Qm, P1, . . . , Pk) := MVm+k(Q1, . . . , Qm, P1, . . . , Pk)

g2(Q1, . . . , Qm, P1, . . . , Pk) := MVm(Q1, ..., Qm) ∗ MVk(π(P1), ..., π(Pk)) .

It is easy to see that g1 and g2 are invariant under changing the order of the Qi

and also changing the order of the Pj . Furthermore it follows from (2) that both
functions are linear in each argument. Let f : A× . . .×A → B be a symmetric
multilinear function, where A and B are semigroups. By expanding the right
hand side it can be seen that

f(a1, ..., an) =
1

n!

∑

1≤i1<...<iq≤n

(−1)n−qf(ai1 + ... + aiq
, ..., ai1 + ... + aiq

) . (9)

The functions

g̃
(P1,...,Pk)
i (Q1, . . . , Qm) := gi(Q1, . . . , Qm, P1, . . . , Pk) and

ḡ
(Q)
i (P1, . . . , Pk) := gi(Q, . . . , Q, P1, . . . , Pk) for i = 1, 2
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satisfy these conditions. Hence we have for i = 1, 2 that

gi(Q1, . . . , Qm, P1, . . . , Pk)

= g̃
(P1,...,Pk)
i (Q1, . . . , Qm)

=
1

m!

∑

1≤i1<...<iq≤m

(−1)m−q g̃
(P1,...,Pk)
i (Qi1 + ... + Qiq

, ..., Qi1 + ... + Qiq
)

=
1

m!

∑

1≤i1<...<iq≤m

(−1)m−q ḡ
(Qi1

+...+Qiq )

i (P1, . . . , Pk) .

Since we can expand ḡ
(Qi1

+...+Qiq )

i (P1, . . . , Pk) by using (9) as well, we see
that both functions g1 and g2 are fully determined by their images of tuples of
polytopes where Q1 = . . . = Qm = Q and P1 = . . . = Pk = P . This proves the
Lemma. �

Another technical tool which will be needed in a subsequent proof is the
following Lemma. This goes back to an idea of Emiris and Canny [9] to use
linear programming and the formula (5) to compute the mixed volume. The
proof is based on the duality theorem for linear programming.

Lemma 4 Given polytopes P1, . . . , Pn ⊂ Rn and lifting vectors µ1, . . . , µn ∈

Rn
≥0. Denote the vertices of Pi by v

(i)
1 , . . . , v

(i)
ri and choose one edge ei =

[v
(i)
ki

, v
(i)
li

] from each Pi. Then C := (e1, . . . , en) is a mixed cell of the mixed
subdivision induced by the liftings µi if and only if

i) The edge matrix E := Va−Vb is non-singular (where Va := (v
(1)
k1

, . . . , v
(n)
kn

)

and Vb := (v
(1)
l1

, . . . , v
(n)
ln

)) and

ii) For all polytopes Pi and all vertices v
(i)
s of Pi which are not in ei we have:

(

diag
(

µT E
)T

E−1 − µT
i

)

·
(

v
(i)
li

− v(i)
s

)

≥ 0 (10)

where µ := (µ1, . . . , µn) and where diag(V ) denotes the vector of the
diagonal entries of V .

Before we begin with the proof we start with some preliminary considerations
about linear programming and how it can be applied here. In [9] it is shown
that the test, if a cell lies on the lower envelope of the lifted Minkowski sum
can be formulated as a linear program. Let m̂i ∈ Rn+1 denote the midpoint of
the lifted edge êi of P̂i such that m̂ = m̂1 + . . . + m̂k is an interior point of the
Minkowski sum ê1 + . . . + êk. Consider the linear program,

maximize s ∈ R≥0 (11)

s.t. m̂ − (0, . . . , 0, s) ∈ P̂1 + . . . + P̂k .

If we denote the vertices of Pi by v
(i)
1 , . . . , v

(i)
ri this can be written as
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maximize s ∈ R≥0

s.t. m̂ − (0, . . . , 0, s) =

n
∑

i=1

ri
∑

j=1

λ
(i)
j v̂

(i)
j

ri
∑

j=1

λ
(i)
j = 1 ∀ i = 1, ..., n

λ
(i)
j ≥ 0 ∀ i, j .

s measures the distance of m̂ to the lower envelope of the Minkowski sum. Hence
m̂ lies on the lower envelope of P̂1 + . . . + P̂k if and only if the optimal value of
(11) is zero.

We call a linear program in standard form if it is stated as follows

maximize ctx

s.t. Ax = b

xi ≥ 0 ∀i = 1, . . . , n

where c, x ∈ Rn, b ∈ Rm and A ∈ Rn×m. Given a feasible point x̄ ≥ 0 satisfying
A.x̄ = b we want to check whether x̄ is an optimal solution. If x̄ is a vertex
of the polyhedron defined by the constraints and is not degenerate in the sense
defined below, we can use linear programming duality to test for optimality. To
x̄ corresponds a (not necessarily unique) choice B of columns of A such that
the submatrix consisting of these columns AB satisfies A−1

B .b = x̄. (x̄ is non-
degenerate if the inverse of AB exists.) Let AN be the submatrix of A consisting
of the remaining columns and define cB and cN in the same way. Then x̄ is a
feasible point of the dual program and therefore optimal (see [13]) if and only if

ct
N − ct

B · A−1
B · AN ≤ 0 (componentwise) . (12)

Our linear program (11) can be written in standard form using the following
notation.

ct = (0t
r1+...+rn

, 1) ∈ Rr1+...+rn+1

xt = (λ
(1)
1 , . . . , λ(1)

r1
, . . . . . . , λ

(n)
1 , . . . , λ(n)

rn
, s) ∈ Rr1+...+rn+1

bt = (m̂,1t
n) ∈ R2n+1

A =



















v
(1)
1 . . . v

(1)
r1

. . . . . . v
(n)
1 . . . v

(n)
rn 0n

〈µ1, v
(1)
1 〉 . . . 〈µ1, v

(1)
r1 〉 . . . . . . 〈µn, v

(n)
1 〉 . . . 〈µn, v

(n)
rn 〉 1

1t
r1

0t
r2

. . . 0t
rn

0
0t

r1
1t

r2
. . . 0t

rn
0

...
. . .

...
...

0t
r1

0t
r2

. . . 1t
rn

0



















Here we denote by 0n and 1n the column vectors consisting only of 0’s and 1’s
respectively.

In this notation our point m̂ from (11) corresponds to x̄ = (λ
(1)
1 , . . . . . . , λ

(n)
rn , s)

where s = 0 and λ
(i)
j = 1

2 if the edge êi contains the vertex v̂
(i)
j and λ

(i)
j = 0

otherwise.
To prove Lemma 4 we will now assume that this x̄ is optimal and deduce

conditions on the lifting vectors µi by using the inequality (12).
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Proof. (of Lemma 4) Note that C is full-dimensional and hence has a non-zero
volume if and only if E is non-singular. In the following we will only consider
this case. To simplify the notation we write µ(V ) for diag (µt.V )

t
.

We know that C is a mixed cell if and only if the following x̄ is the optimal
solution to the linear program defined above.

x̄ = (λ1,1, . . . , λn,rn
, s) where s = 0 and λi,j =

{

1
2 , j ∈ {ki, li}

0, else
.

For the submatrix of A corresponding to x̄ we have

AB =





Va Vb 0n

µ(Va) µ(Vb) 1
Idn Idn 0n



 and AN =







v
(i)
s

µr.v
(i)
s

ξi







1≤i≤n
1≤s≤ri

s6=ki,li

where ξi denotes the ith unit vector. The inverse of AB is

A−1
B =





E−1 0n −E−1.Vb

−E−1 0n E−1.Va

−µ(E).E−1 1 µ(E).E−1.Vb − µ(Vb)



 .

Since cN = (0, . . . , 0) the criterion (12) tells us that x̄ is optimal if

(0, . . . , 0, 1) · A−1
B · AN ≥ 0 componentwise .

But a single entry of the vector on the left can be explicitly computed as

−
(

µ(E) · E−1
)

· v(i)
s + µr · v

(i)
s +

(

µ(E) · E−1 · Vb − µ(Vb)
)

· ξi

which equals the left hand side of (10). �

Note that (10) is linear in the µj . Hence given a choice of edges we can

explicitly calculate
∑n

i=1 ri normal vectors defining a cone in Rn2

. The interior
of this cone consists of all liftings (µt

1, . . . , µ
t
n) which induce a mixed subdivision

that contains our chosen cell as a mixed cell.

5 Henneberg I graphs

For this simple class of Laman graphs the mixed volume bound is tight as we will
demonstrate below. Our proof exploits the inductive structure of Henneberg I
graphs which is why it cannot be used for Henneberg II graphs.

Theorem 5 A Henneberg I step at most doubles the number of embeddings of
the framework and there is always a choice of edge lengths such that the number
of embeddings is doubled.

Proof. In a Henneberg I step we add one vertex v|V |+1 and two edges [vr, v|V |+1],
[vq, v|V |+1] with lengths lr,|V |+1 and lq,|V |+1. So our system of equations (6) gets
three new equations, namely

s|V |+1 − x2
|V |+1 − y2

|V |+1 = 0 (13)

sr + s|V |+1 − 2xrx|V |+1 − 2yry|V |+1 − l2r,|V |+1 = 0 (14)

sq + s|V |+1 − 2xqx|V |+1 − 2yqy|V |+1 − l2q,|V |+1 = 0. (15)
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In our new system of equations these three are the only polynomials involving
x|V |+1, y|V |+1 and s|V |+1, so we can use Lemma 3 to calculate the mixed volume
separately. The projections of the Newton polytopes of equations (13), (14) and
(15) to the coordinates x|V |+1, y|V |+1 and s|V |+1 are

conv
{

(

2 0 0
)T

,
(

0 2 0
)T

,
(

0 0 1
)T
}

and twice

conv
{

(

1 0 0
)T

,
(

0 1 0
)T

,
(

0 0 1
)T

,
(

0 0 0
)T
}

.

The mixed volumes of these equals 2. So by Lemma 3 the mixed volume of the
new system is twice the mixed volume of the system before the Henneberg I
step.

To get two new embeddings for each previous one we choose our new edge
lengths to be almost equal to each other and much larger then all previous edge
lengths (larger then the sum of all previous is certainly enough). This leads to
the desired new embeddings. �

Each Henneberg sequence starts with a triangle which has obviously at most 2
embeddings up to rigid motions (we count reflections separately). Hence using
our Theorem inductively we get the following corollary.

Corollary 6 The number of embeddings of Henneberg I graphs is less than or
equal 2|V |−2 and this bound is sharp.

6 Laman graphs on 6 vertices

For Laman graphs on 6 vertices, the general bound in [3] on the number of
embeddings is 70. From the Henneberg constructions and simple combinatorial
considerations, it follows that the only Henneberg II Laman graphs on 6 vertices
are the Desargues graph and K3,3 (see figure 2). For the Desargues graph, an

Figure 2: Left: Desargues graph. Right: K3,3.

explicit analysis is given in [3] which shows that the correct number is only 24,
and that there is a choice of edge lengths giving 24 different embeddings. For
the K3,3, Manfred Husty found a construction with 32 embeddings [17].

When we set up the system (6) our mixed volume approach yields a bound
of 32 for both graph classes on 6 vertices2. So in the case of 6 vertices our

2We used the PHCpack by Jan Verschelde for our mixed volume calculations, see [24].
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bound is tight. By glueing several copies of K3,3 together and using Lemma
3 to calculate the mixed volume we get an infinite class of graphs where our
bound is tight as well.

7 General case

For the classes discussed above (Henneberg I, graphs on six vertices) as well as
some other special cases, our bound on the number of embeddings improves the
known general bounds. For the general case, our mixed volume approach for
the system (1) without the substitutions suggested by Ioannis Emiris provides a
simple, but very weak bound. However, it may be of independent interest, that
for this class of problems, it is possible to determine the mixed volume exactly.

Theorem 7 The mixed volume of our initial system (1) is exactly 4|V |−2.

Proof. The mixed volume of (1) is at most the product of the degrees of the
polynomial equations because it is less than or equal to the Bézout bound (see
[22]). To show that the mixed volume is at least this number we will use
Lemma 4 to give a lifting that induces a mixed cell of volume 4|V |−2.

The first 4 equations of (1) give rise to a single edge as a Newton polytope
which is part of any mixed cell. Now we claim that we can order the Newton
polytopes Pi in such a way that, for i ≥ 5, Pi contains the edge [0, 2ξi] where
ξi denotes the ith unit vector. To see this, note first that every equation in (1)
has a non vanishing constant term and therefore its Newton polytope contains
the point 0. To see that Pi contains 2ξi we have to show that we can order the
polynomials of our system (1) such that for i > 5 the ith polynomial contains
the term x2

i+1

2

for i odd and y2
i
2

for i even. To see this it is enough to show

that there is a labeling of the edges of our graph with a direction such that
each vertex except the fixed edge [v1, v2] has exactly two incoming edges. We

Figure 3: A Henneberg I and a Henneberg II step with directed edges.

use the Henneberg constructions to see that this is possible. How to choose the
directions in the Henneberg steps is sketched in figure 3. In a Henneberg I step
we let the two new edges point to the new vertex. While in a Henneberg II step

we remember the direction of the deleted edge
−→

[vr, vs] and let the new edge,
which connects the new vertex to vs, point to vs. The other two new edges
point to the new vertex.

11



Now using Lemma 4 we describe a lifting that induces a subdivision that has
({0, ξ1}, . . . , {0, ξ4}, {0, 2ξ5}, . . . , {0, 2ξ2|V |}) as a mixed cell. In the notation of

Lemma 4 our chosen edges give rise to the edge matrix E =

(

E4 0
0 2E2|V |−4

)

.

Substituting this into the second condition (10) we get that for each Newton

polytope Pi all vertices v
(i)
s of Pi which are not 0 or 2ξi have to satisfy

(

(µ
(1)
1 , . . . , µ

(2|V |)
2|V | ) − µ(i)

)

· v(i)
s ≤ 0 ,

where we denote by µ(j) ∈ Q2|V | the lifting vector for Pj . Since all the entries of

each v
(i)
s are non-negative this can easily be done by choosing the vectors µ(j)

such that their jth entry is relatively small and all other entries are relatively
large. �

Corollary 8 The number of embeddings of a Laman graph framework with
generic edge lengths is strictly less then 4|V |−2.
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Anal. i Priložen.) 9(3) (1975) 1-4.

[2] U. Betke. Mixed volumes of polytopes. (Arch. Math.) 58 (1992) 388-391.

[3] C. Borcea and I. Streinu. The number of embeddings of minimally rigid
graphs. (Discrete Comput. Geom.) 31(2) (2004) 287-303.

[4] C. Borcea. Point configurations and Cayley-Menger varieties. (Arxiv
preprint math.AG/0207110, 2002).

[5] Y.D. Burago and V.A. Zalgaller. Geometric inequalities. Fundamental Prin-
ciples of Mathematical Sciences, vol. 285, Springer Series in Soviet Mathe-
matics. (Springer-Verlag, Berlin, 1988).

[6] R. Conelly. Rigidity. In: P.M. Gruber and J.M. Wills eds., Handbook of
Convex Geometry, Vol. A. (North Holland, Amsterdam, 1993) 223-271.

[7] D.A. Cox, J. Little and D. O’Shea. Using algebraic geometry. Second Edition.
Graduate Texts in Mathematics, Vol. 185. (Springer, New York, 2005).

[8] J.F. Canny and J.M. Rojas. An optimal condition for determining the exact
number of roots of a polynomial system. In: Proc. International Symposium
on Symbolic and Algebraic Computation, 1991. (Bonn, Germany, 1991) 96-
102.

[9] I.Z. Emiris and J.F. Canny. Efficient incremental algorithms for the sparse
resultant and the mixed volume. (J. Symbolic Comput.) 20(2) (1995) 117-149.

[10] I.Z. Emiris and J. Verschelde. How to count efficiently all affine roots of a
polynomial system. (Discrete Appl. Math.) 93(1) (1999) 21-32.

[11] G. Ewald. Combinatorial convexity and algebraic geometry. Graduate Texts
in Mathematics, Vol. 168. (Springer, New York, 1996).

12



[12] V.P. Fedotov. The sum of p-th surface functions. (Ukrain. Geom. Sb.) 21
(1978) 125-131. (Russian)

[13] M. Grötschel, L. Lovasz and A. Schrijver. Geometric algorithms and com-
binatorial optimization. Second edition. Algorithms and Combinatorics, Vol.
2. (Springer-Verlag, Berlin, 1993).

[14] R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius, H. Servatius,
D. Souvaine, I. Streinu and W. Whiteley. Planar minimally rigid graphs and
pseudo-triangulations. (Computational Geometry. Theory and Applications)
31 (2005) 31-61.

[15] B. Huber and B. Sturmfels. A polyhedral method for solving sparse poly-
nomial systems. (Math. Comp.) 64(212) (1995) 1541-1555.

[16] B. Huber and B. Sturmfels. Bernstein’s Theorem in affine space. (Discrete
Comput. Geom.) 17(2) (1997) 137-141.

[17] M. Husty. Talk given at the IMA workshop ’Applications in Biology, Dy-
namics and Statistics’, May 2007.

[18] G. Laman. On graphs and rigidity of plane skeletal structures. (J. Engrg.
Math.) 4 (1970) 331-340.

[19] T.Y. Li and X. Wang. The BKK root count in Cn. (Math. Comput.) 65(216)
(1996) 1477-1484.

[20] J. Richter-Gebert, T. Theobald and B. Sturmfels. First steps in tropical
geometry. In: Proc. Idempotent mathematics and mathematical physics, Vi-
enna 2003. Contemp. Math. Vol. 377 (Amer. Math. Soc., Providence, RI,
2005). 289–317

[21] R. Schneider. Convex bodies: The Brunn-Minkowski theory. Encyclopedia
of Mathematics and its Applications. (Cambridge University Press, Cam-
bridge 44, 1993).

[22] B. Sturmfels. Solving systems of polynomial equations. CBMS Regional
Conference Series in Mathematics, Vol. 97. (Amer. Math. Soc., 2002).

[23] M.F. Thorpe and P.M. Duxbury. Rigidity theory and applications. (Kluwer
Academic/Plenum, New York, 1999).

[24] J. Verschelde. Algorithm 795: PHCpack: a general-purpose solver for poly-
nomial systems by homotopy continuation. (ACM Transactions on Mathe-
matical Software) 25(2) (1999) 251 - 276.

[25] T.-S. Tay and W. Whiteley. Generating isostatic graphs. (Structural Topol-
ogy) 11 (1985) 21-69.

[26] R. Webster. Convexity. (Oxford University Press, New York, 1994).

13


	Introduction
	Mixed volumes and mixed subdivisions
	Bernstein's Theorem
	New technical tools to simplify mixed volume calculation
	Henneberg I graphs
	Laman graphs on 6 vertices
	General case

