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COMMON TRANSVERSALS AND TANGENTS TO

TWO LINES AND TWO QUADRICS IN P

3

G

�

ABOR MEGYESI, FRANK SOTTILE, AND THORSTEN THEOBALD

Abstrat. We solve the following geometri problem, whih arises in several three-

dimensional appliations in omputational geometry: For whih arrangements of two

lines and two spheres in R

3

are there in�nitely many lines simultaneously transversal to

the two lines and tangent to the two spheres?

We also treat a generalization of this problem to projetive quadris: Replaing the

spheres in R

3

by quadris in projetive spae P

3

, and �xing the lines and one general

quadri, we give the following omplete geometri desription of the set of (seond)

quadris for whih the two lines and two quadris have in�nitely many transversals and

tangents: In the nine-dimensional projetive spae P

9

of quadris, this is a urve of degree

24 onsisting of 12 plane onis, a remarkably reduible variety.

Introdution

In [14℄, one of us (Theobald) onsidered arrangements of k lines and 4�k spheres in R

3

having in�nitely many lines simultaneously transversal to the k lines and tangent to the

4�k spheres. Sine for generi on�gurations of k lines and 4�k spheres there are only

�nitely many ommon transversals/tangents, the goal was to haraterize the non-generi

on�gurations where the disrete and ombinatorial nature of the problem is lost. One

ase left open was that of two lines and two spheres. We solve that here.

A seond purpose is to develop and present a variety of tehniques from omputational

algebrai geometry for takling problems of this kind. Sine not all our readers are fa-

miliar with these tehniques, we explain and doument these tehniques, with the goal of

inreasing their appliability. For that reason, we �rst deal with the more general problem

where we replae the spheres in R

3

by general quadrati surfaes (hereafter quadris) in

omplex projetive 3-spae P

3

. In order to study the geometry of this problem, we �x two

lines and a quadri in general position, and desribe the set of (seond) quadris for whih

there are in�nitely many ommon transversals/tangents in terms of an algebrai urve.

It turns out that this set is an algebrai urve of degree 24 in the spae P

9

of quadris.

Fatoring the ideal of this urve shows that it is remarkably reduible:

Theorem 1. Fix two skew lines `

1

and `

2

and a quadri Q in P

3

that is neither tangent

to either line nor ontains any ommon transversal to the lines. The losure of the set of

quadris Q

0

for whih there are in�nitely many lines simultaneously transversal to `

1

and

`

2

and tangent to both Q and to Q

0

is a urve of degree 24 in the P

9

of quadris. This

urve onsists of 12 plane onis.
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We prove this theorem by investigating the ideal de�ning the algebrai urve desribing

the set of (seond) quadris. Based on this, we prove the theorem with the aid of a

omputer alulation in the omputer algebra system Singular [4℄. As explained in

Setion 3, the suess of that omputation depends ruially upon the preeding analysis

of the urve. Quite interestingly, there are real lines `

1

and `

2

and real quadris Q suh

that all 12 omponents of the urve of seond quadris are real. In general, given real

lines `

1

and `

2

, and a real quadri Q, not all of the 12 omponents are de�ned over the

real numbers.

While the beautiful and sophistiated geometry of our fundamental problem on lines

and quadris ould be suÆient motivation to study this geometri problem, the original

motivation ame from algorithmi problems in omputational geometry. As explained

in [14℄, problems of this type our in appliations where one is looking for a line or ray

interating (in the sense of \interseting" or in the sense of \not interseting") with a given

set of three-dimensional bodies, if the lass of admissible bodies onsists of polytopes and

spheres (respetively quadris). Conrete appliation lasses of this type inlude visibility

omputations with moving viewpoints [15℄, ontrolling a laser beam in manufaturing [11℄,

or the design of envelope data strutures supporting ray shooting queries (i.e., seeking the

�rst sphere, if any, met by a query ray) [1℄. With regard to related treatments of the

resulting algebrai-geometri ore problems, we refer to [9, 10, 13℄. In these papers, the

question of arrangements of four (unit) spheres in R

3

leading to an in�nite number of

ommon tangent lines is disussed from various viewpoints.

The present paper is strutured as follows: In Setion 1, we review the well-known

Pl�uker oordinates from line geometry. In Setion 2, we haraterize the set of lines

transversal to two skew lines and tangent to a quadri in terms of algebrai urves; we

study and lassify these (2; 2)-urves. Then, in Setion 3, we study the set of quadris

whih (for presribed lines `

1

and `

2

) lead to most (2; 2)-urves. This inludes omputer-

algebrai alulations, based on whih we establish the proof of Theorem 1. The appendix

to the paper ontains annotated omputer ode used in the proof. In Setion 4, we give

some detailed examples illustrating the geometry desribed by Theorem 1, and omplete

its proof. Finally, in Setion 5, we solve the original question of spheres and give the

omplete haraterization of on�gurations of two lines and two spheres having in�nitely

many lines transversal to the lines and tangent to the spheres. For a preise statement of

that haraterization see Theorems 16 and 20.

1. Pl

�

uker Coordinates

We review the well-known Pl�uker oordinates of lines in three-dimensional (omplex)

projetive spae P

3

. For general referenes, see [2, 7, 12℄. Let x = (x

0

; x

1

; x

2

; x

3

)

T

and

y = (y

0

; y

1

; y

2

; y

3

)

T

2 P

3

be two points spanning a line `. Then ` an be represented (not

uniquely) by the 4 � 2-matrix L whose two olumns are x and y. The Pl�uker vetor

p = (p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

2 P

5

of ` is de�ned by the determinants of the 2 � 2-

submatries of L, that is, p

ij

:= x

i

y

j

� x

j

y

i

. The set G

1;3

of all lines in P

3

is alled the

Grassmannian of lines in P

3

. The set of vetors in P

5

satisfying the Pl�uker relation

p

01

p

23

� p

02

p

13

+ p

03

p

12

= 0(1.1)
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is in 1-1-orrespondene with G

1;3

. See, for example Theorem 11 in [2, x 8.6℄.

A line ` intersets a line `

0

in P

3

if and only if their Pl�uker vetors p and p

0

satisfy

p

01

p

0

23

� p

02

p

0

13

+ p

03

p

0

12

+ p

12

p

0

03

� p

13

p

0

02

+ p

23

p

0

01

= 0:(1.2)

Geometrially, this means that the set of lines interseting a given line is desribed by a

hyperplane setion of the Pl�uker quadri (1.1) in P

5

.

In Pl�uker oordinates we also obtain a nie haraterization (given in [13℄) of the

lines tangent to a given quadri in P

3

. (See [14℄ for an alternative dedution of that

haraterization). We identify a quadri x

T

Qx = 0 in P

3

with its symmetri 4 � 4-

representation matrix Q. Thus the sphere with enter (

1

; 

2

; 

3

)

T

2 R

3

and radius r and

desribed in P

3

by (x

1

� 

1

x

0

)

2

+ (x

2

� 

2

x

0

)

2

+ (x

3

� 

3

x

0

)

2

= r

2

x

2

0

, is identi�ed with the

matrix

0

B

B

�



2

1

+ 

2

2

+ 

2

3

� r

2

�

1

�

2

�

3

�

1

1 0 0

�

2

0 1 0

�

3

0 0 1

1

C

C

A

:

The quadri is smooth if its representation matrix has rank 4. To haraterize the tangent

lines, we use the seond exterior power of matries

^

2

: C

m�n

! C

(

m

2

)

�

(

n

2

)

(see [12, p. 145℄,[13℄). Here C

a�b

is the set of a � b matries with omplex entries. The

row and olumn indies of the resulting matrix are subsets of ardinality 2 of f1; : : : ; mg

and f1; : : : ; ng, respetively. For I = fi

1

; i

2

g with 1 � i

1

< i

2

� m and J = fj

1

; j

2

g with

1 � j

1

< j

2

� n,

�

^

2

A

�

I;J

:= A

i

1

;j

1

A

i

2

;j

2

� A

i

1

;j

2

A

i

2

;j

1

:

Let ` be a line in P

3

and L be a 4� 2-matrix representing `. Interpreting the 6� 1-matrix

^

2

L as a vetor in P

5

, we observe that ^

2

L = p

`

, where p

`

is the Pl�uker vetor of `.

Reall the following algebrai haraterization of tangeny: The restrition of the qua-

drati form to the line ` is singular, in that either it has a double root, or it vanishes

identially. When the quadri is smooth, this implies that the line is tangent to the

quadri in the usual geometri sense.

Proposition 2 (Proposition 5.2 of [13℄). A line ` � P

3

is tangent to a quadri Q if and

only if the Pl�uker vetor p

`

of ` lies on the quadrati hypersurfae in P

5

de�ned by ^

2

Q,

if and only if

p

T

`

�

^

2

Q

�

p

`

= 0:(1.3)
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For a sphere with radius r and enter (

1

; 

2

; 

3

)

T

2 R

3

the quadrati form p

T

`

�

^

2

Q

�

p

`

is

0

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

A

T

0

B

B

B

B

B

�



2

2

+ 

2

3

� r

2

�

1



2

�

1



3



2



3

0

�

1



2



2

1

+ 

2

3

� r

2

�

2



3

�

1

0 

3

�

1



3

�

2



3



2

1

+ 

2

2

� r

2

0 �

1

�

2



2

�

1

0 1 0 0



3

0 �

1

0 1 0

0 

3

�

2

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

A

:(1.4)

2. Lines in P

3

meeting 2 lines and tangent to a quadri

We work here over the ground �eld C . First suppose that `

1

and `

2

are lines in P

3

that

meet at a point p and thus span a plane �. Then the ommon transversals to `

1

and `

2

either ontain p or they lie in the plane �. This redues any problem involving ommon

transversals to `

1

and `

2

to a planar problem in P

2

(or R

2

), and so we shall always assume

that `

1

and `

2

are skew. Suh lines have the form

`

1

= fwa+ xb : [w; x℄ 2 P

1

g ;

`

2

= fy+ zd : [y; z℄ 2 P

1

g

(2.1)

where the points a; b; ; d 2 P

3

are aÆnely independent. We desribe the set of lines

meeting `

1

and `

2

that are also tangent to a smooth quadri Q. We will refer to this set

as the envelope of ommon transversals and tangents, or (when `

1

and `

2

are understood)

simply as the envelope of Q.

The parametrization of (2.1) allows us to identify eah of `

1

and `

2

with P

1

; the point

wa + xb 2 `

1

is identi�ed with the parameter value [w; x℄ 2 P

1

, and the same for `

2

. We

will use these identi�ations throughout this setion. In this way, any line meeting `

1

and

`

2

an be identi�ed with the pair ([w; x℄; [y; z℄) 2 P

1

�P

1

orresponding to its intersetions

with `

1

and `

2

. By (1.2), the Pl�uker oordinates p

`

= p

`

(w; x; y; z) of the transversal `

passing through the points wa+xb and y+zd are separately homogeneous of degree 1 in

eah set of variables fw; xg and fy; zg, alled bihomogeneous of bidegree (1,1) (see, e.g.,

[2, x8.5℄).

By Proposition 2, the envelope of ommon transversals to `

1

and `

2

that are also tangent

to Q is given by the ommon transversals ` of `

1

and `

2

whose Pl�uker oordinates p

`

additionally satisfy p

T

`

�

^

2

Q

�

p

`

= 0. This yields a homogeneous equation

F (w; x; y; z) := p

`

(w; x; y; z)

T

�

^

2

Q

�

p

`

(w; x; y; z) = 0(2.2)

of degree four in the variables w; x; y; z. More preisely, F has the form

F (w; x; y; z) =

2

X

i;j=0



ij

w

i

x

2�i

y

j

z

2�j

(2.3)

with oeÆients 

ij

, that is F is bihomogeneous with bidegree (2; 2). The zero set of a (non-

zero) bihomogeneous polynomial de�nes an algebrai urve in P

1

�P

1

(see the treatment of

projetive elimination theory in [2, x8.5℄). In orrespondene with its bidegree, the urve
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de�ned by F is alled a (2; 2)-urve. The nine oeÆients of this polynomial identify the

set of (2; 2)-urves with P

8

.

It is well-known that the Cartesian produt P

1

� P

1

is isomorphi to a smooth quadri

surfae in P

3

[2, Proposition 10 in x 8.6℄. Thus the set of lines meeting `

1

and `

2

and

tangent to the quadri Q is desribed as the intersetion of two quadris in a projetive 3-

spae. When it is smooth, this set is a genus 1 urve [6, Exer. I.7.2(d) and Exer. II.8.4(g)℄.

This set of lines annot be parametrized by polynomials|only genus 0 urves (also alled

rational urves) admit suh parametrizations (see, e.g., [8, Corollary 2 on p.268℄). This

observation is the starting point for our study of ommon transversals and tangents.

Let C be a (2; 2)-urve in P

1

�P

1

de�ned by a bihomogeneous polynomialF of bidegree 2.

The omponents of C orrespond to the irreduible fators of F , whih are bihomogeneous

of bidegree at most (2; 2). Thus any fators of F must have bidegree one of (2; 2), (2; 1),

(1; 1), (1; 0), or (0; 1). (Sine we are working over C , a homogeneous quadrati of bidegree

(2; 0) fators into two linear fators of bidegree (1; 0).) Reall (for example, [2℄) that a

point ([w

0

; x

0

℄; [y

0

; z

0

℄) 2 C � P

1

� P

1

is singular if the gradient rF vanishes at that

point, rF ([w

0

; x

0

℄; [y

0

; z

0

℄) = 0. The urve C is smooth if it does not ontain a singular

point; otherwise C is singular. We lassify (2; 2)-urves, up to hange of oordinates on

`

1

� `

2

, and interhange of `

1

and `

2

. Note that an (a; b)-urve and a (; d)-urve meet if

ad+ b 6= 0, and the intersetion points are singular on the union of the two urves.

Lemma 3. Let C be a (2; 2)-urve on P

1

� P

1

. Then, up to interhanging the fators of

P

1

� P

1

, C is either

1. smooth and irreduible,

2. singular and irreduible,

3. the union of a (1; 0)-urve and an irreduible (1; 2)-urve,

4. the union of two distint irreduible (1; 1)-urves,

5. a single irreduible (1; 1)-urve, of multipliity two,

6. the union of one irreduible (1; 1)-urve, one (1; 0)-urve, and one (0; 1)-urve,

7. the union of two distint (1; 0)-urves, and two distint (0; 1)-urves,

8. the union of two distint (1; 0)-urves, and one (0; 1)-urve of multipliity two,

9. the union of one (1; 0)-urve, and one (0; 1)-urve, both of multipliity two.

In partiular, when C is smooth it is also irreduible.

When the polynomial F has repeated fators, we are in ases (5), (8), or (9). We study

the form F when the quadri is reduible, that is either when Q has rank 1, so that it

de�nes a double plane, or when Q has rank 2 so that it de�nes the union of two planes.

Lemma 4. Suppose Q is a reduible quadri.

(1) If Q has rank 1, then ^

2

Q = 0, and so the form F in (2.2) is identially zero.

(2) Suppose Q has rank 2, so that it de�nes the union of two planes meeting in a line

`. If ` is one of `

1

or `

2

, then the form F in (2.2) is identially zero. Otherwise

the form F is the square of a (1; 1)-form, and hene we are in ases (5) or (9) of

Lemma 3.

Proof. The �rst statement is immediate. For the seond, let `

0

be a line in P

3

with

Pl�uker oordinates p

`

0

. From the algebrai haraterization of tangeny of Proposition 2,
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p

T

`

0

�

^

2

Q

�

p

`

0

= 0 implies that the restrition of the quadrati form to `

0

either has a zero

of multipliity two, or it vanishes identially. In either ase, this implies that `

0

meets the

line ` ommon to the two planes. Conversely, if `

0

meets the line `, then p

T

`

0

�

^

2

Q

�

p

`

0

= 0.

Thus if ` equals one of `

1

or `

2

, then p

T

`

0

�

^

2

Q

�

p

`

0

= 0 for every ommon transversal `

0

to `

1

and `

2

, and so the form F is identially zero. Suppose that ` is distint from both

`

1

and `

2

. We observed earlier that the set of lines transversal to `

1

and `

2

that also meet

` is de�ned by a (1; 1)-form G. Sine the (2; 2)-form F de�nes the same set as does the

(1; 1)-form G, we must have that F = G

2

, up to a onstant fator.

As above, let C be the (2; 2)-urve de�ned by the polynomial F . For a �xed point [w; x℄,

the restrition of the polynomial F to [w; x℄� P

1

is a homogeneous quadrati polynomial

in y; z. A line passing through [w; x℄ 2 `

1

and the point of `

2

orresponding to any zero

of this restrition is tangent to Q. This onstrution gives all lines tangent to Q that

ontain the point [w; x℄. We all the zeroes of this restrition the �ber over [w; x℄ of the

projetion of C to `

1

.

We investigate these �bers. Consider the polynomial F as a polynomial in the variables

y; z with oeÆients polynomials in w; x. The resulting quadrati polynomial in y; z has

disriminant

 

2

X

i=0



i1

w

i

x

2�i

!

2

� 4

 

2

X

i=0



i0

w

i

x

2�i

! 

2

X

i=0



i2

w

i

x

2�i

!

:(2.4)

Lemma 5. If this disriminant vanishes identially, then the polynomial F has a repeated

fator.

Proof. Let �; �;  be the oeÆients of y

2

; yz; z

2

in the polynomial F , respetively. Then

we have �

2

= 4�, as the disriminant vanishes. Sine the ring of polynomials in w; x is

a unique fatorization domain, either � di�ers from  by a onstant fator, or else both

� and  are squares. If � and  di�er by a onstant fator, then so do � and �. Writing

� = 2d� for some d 2 C , we have

F = �y

2

+ 2d�yz + d

2

�z

2

= �(y + dz)

2

:

If we have � = Æ

2

and  = �

2

for some linear polynomials Æ and �, then

F = Æ

2

y � 2Æ�yz + �

2

z

2

= (Æy � �z)

2

:

The �ber of C over the point [w; x℄ of `

1

onsists of two distint points exatly when the

disriminant does not vanish at [w; x℄. Call the points [w; x℄ of `

1

where the disriminant

vanishes (so that the �ber does not onsist of two distint points) a rami�ation point of

the projetion from C to `

1

. Suppose that F does not have repeated fators so that the

disriminant does not vanish identially. Sine the disriminant (2.4) has degree 4, there

are at most four rami�ation points of C. If C is irreduible, then these are the points

where the �ber onsists of a double point rather than two distint points.

This disussion shows how we may parametrize the urve C, at least loally. Suppose

that we have a point [w; x℄ 2 P

1

where the disriminant (2.4) does not vanish. Then we
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may solve for [y; z℄ in the polynomial F in terms of [w; x℄. The di�erent branhes of the

square root funtion give loal parametrizations of the urve C.

2.1. A normal form for asymmetri smooth (2; 2)-urves. Reall that for any dis-

tint points a

1

; a

2

; a

3

2 P

1

and any distint points b

1

; b

2

; b

3

2 P

1

, there exists a pro-

jetive linear transformation (given by a regular 2 � 2-matrix) whih maps a

i

to b

i

,

1 � i � 3 [2, 12℄.

Lemma 6. A (2; 2)-urve C is smooth if and only if its projetion to `

1

has four distint

rami�ation points.

Proof. Suppose C is a smooth (2; 2)-urve. Changing oordinates on `

1

and `

2

by a

projetive linear transformation if neessary, we may assume that this projetion to `

1

is

rami�ed over [w; x℄ = [1; 0℄, and the double root of the �ber is at [y; z℄ = [1; 0℄. Restriting

the polynomial F (2.3) to the �ber over [w; x℄ = [1; 0℄ gives the equation



22

y

2

+ 

21

yz + 

20

z

2

= 0 :

Sine we assumed that this has a double root at [y; z℄ = [1; 0℄, we have 

21

= 

22

= 0.

Suppose now that the projetion from C to `

1

is rami�ed at fewer than four points. We

may assume that [w; x℄ = [1; 0℄ is a double root of the disriminant (2.4), whih implies

that the oeÆients of w

4

and w

3

x in (2.4) vanish. The previously derived ondition



21

= 

22

= 0 implies that the oeÆient of w

4

vanishes and the oeÆient of w

3

x beomes

�4

20



12

. If 

20

= 0, then every non-vanishing term of (2.3) depends on x; hene, x divides

F , and so C is reduible, and hene not smooth. If 

12

= 0 then the gradient rF vanishes

at the point ([1; 0℄; [1; 0℄), and so C is not smooth.

Conversely, suppose that C is not smooth. Assume that the point ([w; x℄; [y; z℄) =

([1; 0℄; [1; 0℄) is a singular point of C. Then the projetions of C to `

1

and to `

2

are both

rami�ed over [1; 0℄. We onlude as before that the oeÆients 

21

; 

22

, and 

12

of the form

F (2.3) vanish. But then the disriminant (2.4) is divisible by x

2

, and so it has a double

root. In partiular, the projetion of C to `

1

has fewer than 4 rami�ation points.

Suppose that C is a smooth (2; 2)-urve. Then its projetion to `

1

is rami�ed at four

distint points. We further assume that the double points in the rami�ed �bers projet

to at least 3 distint points in `

2

. We all suh a smooth (2; 2)-urve asymmetri. The

hoie of this terminology will beome lear in Setion 4. We will give a normal form for

suh asymmetri smooth urves.

Hene, we may assume that three of the rami�ation points are [w; x℄ = [0; 1℄, [1; 0℄,

and [1; 1℄, and the double points in these rami�ation �bers our at [y; z℄ = [0; 1℄, [1; 0℄,

and [1; 1℄, respetively. As in the proof of Lemma 6, the double point at [y; z℄ = [1; 0℄

in the �ber over [w; x℄ = [1; 0℄ implies that 

21

= 

22

= 0. Similarly, the double point

at [y; z℄ = [0; 1℄ in the �ber over [w; x℄ = [0; 1℄ implies that 

00

= 

01

= 0. Thus the

polynomial F (2.3) beomes



20

w

2

z

2

+ 

10

wxz

2

+ 

11

wxyz + 

12

wxy

2

+ 

02

x

2

y

2

Restriting F to the �ber of [w; x℄ = [1; 1℄ gives



10

z

2

+ 

20

z

2

+ 

11

yz + 

02

y

2

+ 

12

y

2

:
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Sine this has a double root at [y; z℄ = [1; 1℄, we must have

�

1

2



11

= 

10

+ 

20

= 

02

+ 

12

:

Dehomogenizing (setting 

11

= �2) and letting 

20

:= s and 

02

:= t for some s; t 2 C , we

obtain the following theorem.

Theorem 7. After projetive linear transformations in `

1

and `

2

, an asymmetri smooth

(2; 2)-urve is the zero set of a polynomial

sw

2

z

2

+ (1�s)wxz

2

� 2wxyz + (1�t)wxy

2

+ tx

2

y

2

;(2.5)

for some (s; t) 2 C

2

satisfying

st(s�1)(t�1)(s�t) 6= 0 :(2.6)

We omplete the proof of Theorem 7. The disriminant (2.4) of the polynomial (2.5) is

4wx(w�x) (s(t�1)w � t(s�1)x) ;

whih has roots at [w; x℄ = [0; 1℄; [1; 0℄; [1; 1℄, and � = [t(s�1); s(t�1)℄. Sine we assumed

that these are distint, the fourth point � must di�er from the �rst three, whih implies

that (s; t) satis�es (2.6). The double point in the �ber over � ours at [y; z℄ = [s�1; t�1℄.

This equals a double point in another rami�ation �ber only for values of the parameters

not allowed by (2.6).

Remark 8. These alulations show that smooth (2; 2)-urves exhibit the following di-

hotomy. Either the double points in the rami�ation �bers projet to four distint points

in `

2

or to two distint points. They must projet to at least two points, as there are at

most two points in eah �ber of the projetion to `

2

. We showed that if they projet to

at least three, then they projet to four.

We ompute the parameters s and t from the intrinsi geometry of the urve C. Reall

the following de�nition of the ross ratio (see, for example [12, x1.1.4℄).

De�nition 9. For four points a

1

; : : : ; a

4

2 P

1

with a

i

= [�

i

; �

i

℄, the ross ratio of

a

1

; : : : ; a

4

is the point of P

1

de�ned by

2

6

6

4

det

�

�

1

�

4

�

1

�

4

�

det

�

�

1

�

3

�

1

�

3

�

;

det

�

�

2

�

4

�

2

�

4

�

det

�

�

2

�

3

�

2

�

3

�

3

7

7

5

:

If the points are of the form a

i

= [1; �

i

℄, this simpli�es to

�

�

4

� �

1

�

3

� �

1

;

�

4

� �

2

�

3

� �

2

�

:

The ross ratio of four points a

1

; a

2

; a

3

; a

4

2 P

1

remains invariant under any projetive

linear transformation.
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The projetion of C to `

1

is rami�ed over the points [w; x℄ = [0; 1℄; [1; 0℄; [1; 1℄ and

� = [t(s � 1); s(t � 1)℄. The ross ratio of these four (ordered) rami�ation points is

[t(s�1); s(t�1)℄. Similarly, the ross ratio of the four (ordered) double points in the

rami�ation �bers is [s�1; t�1℄.

This omputation of ross ratios allows us to ompute the normal form of an asymmetri

smooth (2; 2)-urve. Namely, let a

1

; a

2

; a

3

, and a

4

be the four rami�ation points of the

projetion of C to `

1

and b

1

; b

2

; b

3

, and b

4

be the images in `

2

of the orresponding double

points. Let 

1

be the ross ratio of the four points a

1

; a

2

; a

3

, and a

4

(this is well-de�ned,

as ross ratios are invariant under projetive linear transformation). Similarly, let 

2

be

the ross ratio of the points b

1

; b

2

; b

3

, and b

4

. For four distint points, the ross ratio is

an element of C n f0; 1g, so we express 

1

; 

2

as omplex numbers. The invariane of the

ross ratios yields the onditions on s and t

s(t�1)

t(s�1)

= 

1

and

t�1

s�1

= 

2

:

Again, sine 

1

; 

2

2 C n f0; 1g, these two equations have the unique solution

s =



1

(

2

� 1)



2

(

1

� 1)

and t =



2

� 1



1

� 1

:

Remark 10. We interpret the rami�ation of the (2; 2)-urve C of ommon tangents to

a smooth quadri Q geometrially and haraterize when C is smooth. Let `

1

and `

2

be

skew lines and Q be a quadri whose tangent lines meeting `

1

and `

2

are desribed by the

(2; 2)-urve C � P

1

� P

1

.

The �ber over p 2 `

1

of the projetion of C to `

1

onsists of the lines through p meeting

`

2

that are tangent to Q. These are the lines through p lying in the plane � := p; `

2

that

are tangent to the oni Q \ �. Sine Q is smooth, either (a) Q \ � is smooth, or (b)

Q \� onsists of distint lines m;m

0

. In this seond ase, � is tangent to Q at the point

q where the lines meet so that the tangents to Q lying in � are the lines in � through q.

The urve C is rami�ed over p when the number of tangents to Q\� through p is not

2. That is, either (i) every line in � through p is tangent to Q or (ii) there is a single line

in � through p tangent to Q. In ase (i), Q is neessarily tangent to � at p, so that we

are in (b) above with p = q. In this ase, the �ber of C over p is a (0; 1)-urve and so C is

reduible and hene not smooth. In ase (ii), if (a) Q \ � is smooth, then p 2 Q and the

unique tangent is the tangent to this oni at p, and if (b) Q \ � is singular, then p 6= q

and the unique tangent is the line p; q.

We use this disussion and Lemma 6 to give a geometri haraterization of when the

(2; 2)-urve is smooth.

Theorem 11. Let `

1

and `

2

be skew lines and Q a smooth quadri in P

3

. Then the (2; 2)-

urve C of ommon transversals to `

1

and `

2

that are tangent to Q is smooth if and only

if Q is neither tangent to either line nor ontains any ommon transversal to the lines.

Proof. Suppose that Q is tangent to neither `

1

nor `

2

and that no ommon transversal to

`

1

and `

2

lies in Q. Then Q\ `

1

onsists of two points p; p

0

, eah of whih is a rami�ation

point of the projetion of C to `

1

. Also, exatly two planes �;�

0

ontaining `

2

are tangent
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to Q. Let q; q

0

2 `

1

be the points of intersetion of these tangent planes with `

1

, whih are

also rami�ation points of the projetion of C to `

1

. Suppose that fp; p

0

g \ fq; q

0

g 6= ;,

say p = q. Then the plane � = p; `

2

is tangent to Q and so it onsists of two lines m;m

0

.

As p 2 Q, p lies on one of these lines, whih is thus a ommon transversal to `

1

and `

2

lying in Q. But this ontradits our assumptions, so we onlude that fp; p

0

g\fq; q

0

g = ;.

Thus the projetion of C to `

1

has four distint rami�ation points and so by Lemma 6

C is smooth.

Suppose now that C is smooth. Then it is irreduible, and ase (ii) of the disussion

above annot our. By Lemma 6 the projetion of C to `

1

has four rami�ation points.

These rami�ation points are those in Q \ `

1

together with those points of `

1

lying in a

tangent plane to Q ontaining `

2

. We do not have `

1

� Q or `

2

� Q, as either implies

that every point of `

1

is a rami�ation point (if `

2

� Q, then every plane ontaining `

2

is

tangent to Q). This implies that there are at most two points in Q \ `

1

and at most two

tangent plane to Q ontaining `

2

, and so there are exatly two of eah type. But then

neither line is tangent to Q. Moreover the points inQ\`

1

do not meet either tangent plane

to Q ontaining `

2

, and the argument in the �rst paragraph shows this to be equivalent

to the ondition that Q does not ontain a ommon transversal to the two lines.

3. Proof of Theorem 1

We haraterize the quadris Q whih generate the same envelope of tangents as a given

quadri. A symmetri 4� 4 matrix has 10 independent entries whih identi�es the spae

of quadris with P

9

. Central to our analysis is a map ' de�ned for almost all quadris

Q. For a quadri Q (onsidered as a point in P

9

) whose assoiated (2; 2)-form (2.2) is not

identially zero, we let '(Q) be this (2; 2)-form, onsidered as a point in P

8

. With this

de�nition, we see that the Theorem 1 is onerned with the �ber '

�1

(C), where C is the

(2; 2)-urve assoiated to a general quadri Q. Sine the domain of ' is 9-dimensional

while its range is 8-dimensional, we expet eah �ber to be 1-dimensional.

We will show that every smooth (2; 2) urve arises as '(Q) for some quadri Q. This,

together with Theorem 11 implies that Theorem 1 is a onsequene of the following the-

orem.

Theorem 12. Let C 2 P

8

be a smooth (2; 2)-urve. Then the losure '

�1

(C) in P

9

of

the �ber of ' is a urve of degree 24 that is the union of 12 plane onis.

We prove Theorem 12 by omputing the ideal J of the �ber '

�1

(C). Then we fator

J into several ideals, whih orresponds to deomposing the urve of degree 24 into the

union of several urves. Finally, we analyze the output of these omputations by hand to

prove the desired result.

Our initial formulation of the problem gives an ideal I that not only de�nes the �ber

of ', but also the subset of P

9

where ' is not de�ned. We identify and remove this subset

from I in several ostly auxiliary omputations that are performed in the omputer algebra

system Singular [4℄. It is only after removing the exess omponents that we obtain the

ideal J of the �ber '

�1

(C).

Sine we want to analyze this deomposition for every smooth (2; 2)-urve, we must

treat the representation of C as symboli parameters. This leads to additional diÆulties,
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whih we irumvent. It is quite remarkable that the omputer-algebrai alulation

sueeds and that it is still possible to analyze its result.

In the following, we assume that `

1

is the x-axis. Furthermore, we may apply a proje-

tive linear transformation and assume without loss of generality that `

2

is the yz-line at

in�nity. Thus we have

`

1

= f(w; x; 0; 0)

T

2 P

3

: [w; x℄ 2 P

1

g ;

`

2

= f(0; 0; y; z)

T

2 P

3

: [y; z℄ 2 P

1

g :

Hene, in Pl�uker oordinates, the lines interseting `

1

and `

2

are given by

f(0; wy; wz; xy; xz; 0)

T

2 P

5

: [w; x℄; [y; z℄ 2 P

1

g :(3.1)

By Proposition 2, the envelope of ommon transversals to `

1

and `

2

that are also tangent

to Q is given by those lines in (3.1) whih additionally satisfy

(0; wy; wz; xy; xz; 0)

�

^

2

Q

�

(0; wy; wz; xy; xz; 0)

T

= 0 :(3.2)

A quadri Q in P

3

is given by the quadrati form assoiated to a symmetri 4�4-matrix

Q :=

0

B

B

�

a b  d

b e f g

 f h k

d g k l

1

C

C

A

:(3.3)

In a straightforward approah, the ideal I of quadris giving a general (2; 2)-urve C is

obtained by �rst expanding the left hand side of (3.2) into

(el�g

2

)x

2

z

2

+ 2(bl�dg)wxz

2

+ (al�d

2

)w

2

z

2

+ 2(ek�gf)x

2

yz + 2(2bk�g�df)wxyz + 2(ak�d)w

2

yz

+ (eh�f

2

)x

2

y

2

+ 2(bh�f)wxy

2

+ (ah�

2

)w

2

y

2

:

(3.4)

We equate this (2; 2)-form with the general (2; 2)-form (2.3), as points in P

8

. This is

aomplished by requiring that they are proportional, or rather that the 2� 9 matrix of

their oeÆients

�



00



10



20



01



11

: : : 

22

el � g

2

2(bl � dg) al � d

2

2(ek � gf) 2(2bk � g � df) : : : ah� 

2

�

has rank 1. Thus the ideal I is generated by the

�

9

2

�

minors of this oeÆient matrix.

With this formulation, the ideal I will de�ne the �ber '

�1

(C) as well as additional,

exess omponents that we wish to exlude. For example, the variety in P

9

de�ned by

the vanishing of the entries in the seond row of this matrix will lie in the variety I,

but these points are not those that we seek. Geometrially, these exess omponents

are preisely where the map ' is not de�ned. By Lemma 4, we an identify three of

these exess omponents, those points of P

9

orresponding to rank 1 quadris, and those

orresponding to rank 2 quadris onsisting of the union of two planes meeting in either `

1

or in `

2

. The rank one quadris have ideal E

1

generated by the entries of the matrix ^

2

Q,

the rank 2 quadris whose planes meet in `

1

have ideal E

2

generated by a; b; ; d; e; f; g,

and those whose plane meets in `

2

have ideal E

3

generated by ; d; f; g; h; k; l.



12 G

�

ABOR MEGYESI, FRANK SOTTILE, AND THORSTEN THEOBALD

We remove these exess omponents from our ideal I to obtain an ideal J whose set of

zeroes ontain the �ber '

�1

(C). After fatoring J into its irreduible omponents, we will

observe that ' does not vanish identially on any omponent of J , ompleting the proof

that J is the ideal of '

�1

(C), and also the proof of Theorem 12.

Sine 

00

; 

10

; : : : ; 

22

have to be treated as parameters, the omputation should be

arried out over the funtion �eld Q(

00

; 

10

; : : : ; 

22

). That omputation is infeasible.

Even the initial omputation of a Gr�obner basis for the ideal I (a neessary prerequisite)

did not terminate in two days. In ontrast, the omputation we �nally desribe termi-

nates in 7 minutes on the same omputer. This is beause the original omputation in

Q(

00

; 

10

; : : : ; 

22

)[a; b; : : : ; l℄ involved too many parameters.

We instead use the 2-parameter normal form (2.5) for asymmetri smooth (2; 2)-urves.

This will prove Theorem 12 in the ase when C is an asymmetri smooth (2; 2)-urve. We

treat the remaining ases of symmetri smooth (2; 2)-urves in Setion 4. As desribed in

Setion 2.1, by hanging the oordinates on `

1

and `

2

, every asymmetri smooth (2; 2)-

urve an be transformed into one de�ned by a polynomial in the family (2.5). Equating

the (2; 2)-form (3.4) with the form (2.5) gives the ideal I generated by the following

polynomials:

el � g

2

; ek � gf ; ak � d ; ah� 

2

;(3.5)

and the ten 2� 2 minors of the oeÆient matrix:

M :=

�

s 1� s �2 1� t t

al � d

2

2 � (bl � dg) 2 � (2bk � g � df) 2 � (bh� f) eh� f

2

�

:(3.6)

This ideal I de�nes the same three exess omponents as before, and we must remove

them to obtain the desired ideal J . Although the ideal I should be treated in the ring

S := Q (s; t)[a; b; ; d; e; f; g; h; k; l℄, the neessary alulations are infeasible even in this

ring, and we instead work in subring R := Q [a; b; ; d; e; f; g; h; k; l℄[s; t℄. In the ring R,

the ideal I is homogeneous in the set of variables a; b; : : : ; l, thus de�ning a subvariety

of P

9

� C

2

. The ideals E

1

, E

2

, and E

3

desribing the exess omponents satisfy E

j

� I,

1 � j � 3.

A Singular omputation shows that I is a �ve-dimensional subvariety of P

9

� C

2

(see

the Appendix for details). Moreover, the dimensions of the three exess omponents are

5, 4, and 4, respetively. In fat, it is quite easy to see that dim E

2

= dim E

3

= 4 as both

ideals are de�ned by 7 independent linear equations.

We are faed with a geometri situation of the following form. We have an ideal I whose

variety ontains an exess omponent de�ned by an ideal E and we want to ompute the

ideal of the di�erene

V(I)� V(E) ;

here, V(K) is the variety of an ideal K. Computational algebrai geometry gives us an

e�etive method to aomplish this, namely saturation. The elementary notion is that of

the ideal quotient (I : E), whih is de�ned by

(I : E) := ff 2 R j fg 2 I for all g 2 Eg :
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Then the saturation of I with respet to E is

(I : E

1

) :=

1

[

n=1

(I : E

n

) :

The least number n suh that (I : E

1

) = (I : E

n

) is alled the saturation exponent.

Proposition 13 ([2, x4.4℄ or [3, x15.10℄ or the referene manual for Singular). Over an

algebraially losed �eld,

V(I : E

1

) = V(I)� V(E) :

A Singular omputation shows that the saturation exponent of the �rst exess ideal

E

1

in I is 1, and so the ideal quotient suÆes to remove the exess omponent V(E

1

) from

V(I). Set I

0

:= (I : E

1

), an ideal of dimension 4. The exess ideals E

2

and E

3

eah have

saturation exponent 4 in I

1

, and so we saturate I

0

with respet to eah to obtain an ideal

J := ( (I

0

: E

1

2

) : E

1

3

), whih has dimension 3 in P

9

� C

2

.

To study the omponents of V(J), we �rst apply the fatorization Gr�obner basis al-

gorithm to J , as implemented in the Singular ommand fastd (see [5℄ or the refer-

ene manual of Singular). This algorithm takes two arguments, an ideal I and a list

L = f

1

; : : : ; f

n

of polynomials. It proeeds as in the usual Buhberger algorithm to om-

pute a Gr�obner basis for I, exept that whenever it omputes a Gr�obner basis element G

that it an fator, it splits the alulation into subalulations, one for eah fator of G

that is not in the list L, adding that fator to the Gr�obner basis for the orresponding

subalulation. The output of fastd is a list I

1

; I

2

; : : : ; I

m

of ideals with the property

that

m

[

j=1

V(I

j

) � V(f

1

� � � f

n

) = V(I)� V(f

1

� � � f

n

) :

Thus, the zero set of I oinides with the union of zero sets of the fators I

j

, in the region

where none of the polynomials in the list L vanish. In terms of saturation, this is

rad(I

1

� � � I

m

: (f

1

f

2

� � � f

n

)

1

) = rad(I : (f

1

f

2

� � � f

n

)

1

)(3.7)

where rad(K) denotes the radial of an ideal K. Some of the ideals I

j

may be spurious

in that V(I

j

) is already ontained in the union of the other V(I

i

).

We run fastd on the ideal J with the list of polynomials s, t, s�1, t�1, and s�t, and

obtain seven omponents J

0

; J

1

; : : : ; J

6

. The omponents J

1

; : : : ; J

6

eah have dimension

3, while the omponent J

0

has dimension 2. Sine V(J

0

) is ontained in the union of the

V(J

1

); : : : ;V(J

6

), it is spurious and so we disregard it.

We now, �nally, hange from the base ring R to the base ring S, and ompute with

the parameters s; t. There, J de�nes an ideal of dimension 1 and degree 24 in the 9-

dimensional projetive spae over the �eld Q (s; t). As we remarked before, we have that

V(J) � '

�1

(C). The fatorization of J into J

1

; : : : ; J

6

remains valid over S. The reason

we did not ompute the fatorization over S is that fastd and the saturations were

infeasible over S, and the standard arguments from omputational algebrai geometry we
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have given show that it suÆes to ompute without parameters, as long as are is taken

when interpreting the output.

Eah of the fators J

i

has dimension 1 and degree 4. Moreover, eah ideal ontains

a homogeneous quadrati polynomial in the variables k; l whih must fator over some

�eld extension of Q (s; t). In fat, these six quadrati polynomials all fator over the �eld

Q(

p

s;

p

t). For example, two of the J

i

ontain the polynomial (s� 1)k

2

� 2kl� l

2

, whih

is the produt

�

(

p

s+1)k + l

� �

(

p

s�1)k � l

�

:

For eah ideal J

i

, the fatorization of the quadrati polynomial indues a fatorization of

J

i

into two ideals J

i1

and J

i2

. Inspeting a Gr�obner basis for eah ideal shows that eah

de�nes a plane oni in P

9

. Thus, over the �eld Q(

p

s;

p

t), J de�nes 12 plane onis.

Theorem 12 is a onsequene of the following two observations.

(1) The fatorization of J gives 12 distint omponents for all values of the parameters

s; t satisfying (2.6).

(2) The map ' does not vanish identially on any of the omponents V(J

ij

) for values

of the parameters s; t satisfying (2.6).

By (1), no omponent of J is empty for any s; t satisfying (2.6) and thus, for every

asymmetri (2; 2)-urve C, there is a quadri Q with '(Q) = C. Also by (1), J has

exatly 12 omponents with eah a plane oni, for any s; t satisfying (2.6), and by (2),

V(J) = '

�1

(C).

4. Symmetri smooth (2; 2)-urves

We investigate smooth urves C whose double points in the rami�ed �bers over `

1

have only two distint projetions to `

2

. Assume that the rami�ation is at the points

[w; x℄ = [1; 1℄; [1;�1℄; [1; s℄, and at [1;�s℄, for some s 2 C nf0;�1g with the double points

in the �bers at [y; z℄ = [1; 0℄ for the �rst two and at [0; 1℄ for the seond two. Sine the

points [1; 1℄; [1;�1℄; [1; s℄, and [1;�s℄ have ross ratio

�

1 + s

1� s

;

1� s

1 + s

�

=

�

1;

(1� s)

2

(1 + s)

2

�

;

we see that all ross ratios in P

1

nf[1; 0℄; [0; 1℄; [1; 1℄g are obtained for some s 2 C nf0;�1g.

Thus our hoie of rami�ation results in no loss of generality.

As in Setion 2, these onditions give equations on the oeÆients 

ij

of the general

(2; 2)-urve (2.3):



00

+ 

10

+ 

20

= 0; 

01

+ 

11

+ 

21

= 0; 

00

� 

10

+ 

20

= 0;



01

� 

11

+ 

21

= 0; 

02

+ 

12

s+ 

22

s

2

= 0; 

01

+ 

11

s+ 

21

s

2

= 0;



02

� 

12

s + 

22

s

2

= 0; 

01

� 

11

s+ 

21

s

2

= 0:

These equations have the following onsequenes

0 = 

21

= 

01

= 

12

= 

11

= 

10

= 

02

+ 

22

s

2

= 

00

+ 

20

:

Hene after normalizing by setting 

20

= 1, the (2; 2)-form (2.3) beomes

(x

2

� w

2

)y

2

+ 

22

(x

2

� s

2

w

2

)z

2

:
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While the hoie of rami�ation points [1; 1℄; [1;�1℄; [1; s℄; [1;�s℄ �xes the parametrization

of `

1

, the double points in the �bers of [1; 0℄ and [0; 1℄ do not �x the parametrization of

`

2

. Thus we are still free to sale the z-oordinate. We normalize this equation setting



22

= �1. We do not simply set 

22

= 1 beause that misses an important real form of

the polynomial. This normalization gives

(x

2

� w

2

)y

2

� (x

2

� s

2

w

2

)z

2

= (y

2

� z

2

)x

2

� (y

2

� s

2

z

2

)w

2

:(4.1)

This shows the equation to be symmetri under the involution [w; x℄ $ [

p

�1z; y℄. This

symmetry is the soure of our terminology for the two lasses of (2; 2)-urves. Also, if

s 62 f�1; 0g, then this is the equation of a smooth (2; 2)-urve. With the hoie of sign

(�), whih we all the urve C(s).

Note that (4.1) is real if s either is real or is purely imaginary (s 2 R

p

�1 ). We

omplete the proof of Theorem 1 with the following result for symmetri (2; 2)-urves.

Theorem 14. For eah s 2 C n f�1; 0g, the losure of the �ber '

�1

(C(s)) onsists of 12

distint plane onis. When s 2 R or s 2 R

p

�1 and we use the real form of (4.1) with

the plus sign (+), then exatly 4 of these 12 omponents will be real. If we use the real

form of (4.1) with the minus sign (�), then if s 2 R, all 12 omponents will be real, but

if s 2 R

p

�1, then exatly 4 of these 12 omponents will be real.

Proof. Our proof follows the proof of Theorem 12 almost exatly, but with signi�ant

simpli�ations and a ase analysis. Unlike the proof desribed in Setion 3, we do not give

annotated Singular ode in an appendix, but rather supply suh annotated Singular

ode on the web page

y

.

The outline is as before, exept that we work over the ring of parameters Q (s), and

�nd no extraneous omponents when we fator the ideal into omponents. We formulate

this as a system of equations, remove the same three exess omponents, and then fator

the resulting ideal. We do this alulation four times, one for eah hoie of sign (�)

in (4.1), and for s 2 R and s 2 R

p

�1. Examining the output proves the result.

We onsider in some detail four ases of the geometry studied in Setion 2, whih

orrespond to the four real ases of Theorem 14. As in Setion 2, let `

1

be the x-axis

and `

2

be the yz-line at in�nity. Viewed in R

3

, lines transversal to `

1

and `

2

are the set

of lines perpendiular to the x-axis. For a transversal line `, the oordinates [y; z℄ of the

point ` \ `

2

an be interpreted as the slope of ` in the two-dimensional plane orthogonal

to the x-axis.

Consider real quadris given by an equation of the form

x

2

+ (y � y

0

)

2

� z

2

= 1 :(4.2)

The quadris with the plus (+) sign are spheres with enter (0; y

0

; 0)

T

and radius 1,

and those with the minus (�) sign are hyperboloids of one sheet. When jy

0

j > 1 the

quadri does not meet the x-axis. We look at four families of suh quadris: spheres and

y

http://www.math.umass.edu/~sottile/pages/2l2s/
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hyperboloids that meet and do not meet the x-axis. We remark that quadris whih are

tangent to the x-axis give singular (2; 2)-urves, as shown in Theorem 11.

First, onsider the resulting (2; 2)-urve

(x

2

� w

2

)y

2

� (x

2

� (1 � y

2

0

)w

2

)z

2

:

Thus we see that these orrespond to the ase s =

p

1� y

2

0

in the parametrization of

symmetri (2; 2)-urves given above (4.1), while in (4.2) and (4.1) the signs (�) orrespond.

Figures 1 and 2 display pitures of these four quadris, together with the x-axis, some

tangents perpendiular to the x-axis, and the urve on the quadri where the lines are

tangent.

(a) (b)

Figure 1. Real quadris not meeting the x-axis.

(a) (b)

Figure 2. Real quadris meeting the x-axis.

Remark 15. For eah of the spheres, there is another sphere of radius r whih leads to

the same envelope, namely the one with enter (0;�y

0

; 0)

T

.

The rami�ation of the (2; 2)-urve of tangents perpendiular to the x-axis is evident

from Figures 1 and 2. When x = �1, there is a single tangent line; this line has slope
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[y; z℄ = [1; 0℄, i.e., it is a horizontal line. When x = �

p

1� y

2

0

, there is a single tangent

line, whih is vertial (i.e., whih has slope [y; z℄ = [0; 1℄). Figures 1 and 2 depit these

lines in ase they are real. In Figure 1 we have jy

0

j > 1, and hene the vertial tangent

lines are omplex. All other values of x give two lines perpendiular to the x-axis and

tangent to the quadri, but some have imaginary slope.

The di�erene in the number of real omponents of the �ber '

�1

(C(s)) noted in The-

orem 14 an be seen in these examples. The spheres and hyperboloid displayed together

are isomorphi under the hange of oordinates z 7!

p

�1 � z, whih interhanges the

transversal tangents of purely imaginary slope for one quadri with the real transversal

tangents of the other and orresponds to the di�erent signs � in (4.2) and (4.1).

For the sphere of Figure 1, only 4 of the 12 families are real. One onsists of ellipsoids,

inluding the original sphere, one of hyperboloids of two sheets, and two of hyperboloids of

one sheet. Sine a hyperboloid of two sheets an be seen as an ellipsoid meeting the plane

at in�nity in a oni, we see there are two families of ellipsoids and two of hyperboloids.

In Figure 3, we display one quadri from eah family (exept the family of the sphere),

together with the original sphere, the x-axis, and the urve on the quadri where the lines

perpendiular to the x-axis are tangent to the quadri.

Figure 3. The other three families.

Similarly, the hyperboloid of Figure 1 has only 4 of its 12 families real with two families

of ellipsoids and two of hyperboloids. The sphere of Figure 2 has only 4 of its 12 families

real, and all 4 ontain ellipsoids. In ontrast, the hyperboloid of Figure 2 has all 12 of its

families real, and they ontain only hyperboloids of one sheet.

Many more pitures (in olor) are found on the web page aompanying this artile.

5. Transversals to two lines and tangents to two spheres

We solve the original question of on�gurations of two lines and two spheres for whih

there are in�nitely many real transversals to the two lines that are also tangent to both

spheres. While general quadris are naturally studied in projetive spae P

3

, spheres

naturally live in (the slightly more restrited) aÆne spae R

3

. As noted in Setion 2, we
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treat only skew lines. There are two ases to onsider. Either the two lines are in R

3

or

one lies in the plane at in�nity. We work throughout over the real numbers.

5.1. Lines in aÆne spae R

3

. The omplete geometri haraterization of on�gura-

tions where the lines lie in R

3

is stated in the following theorem and illustrated in Figure 4.

Theorem 16. Let S

1

and S

2

be two distint spheres and let `

1

and `

2

be two skew lines

in R

3

. There are in�nitely many lines that meet `

1

and `

2

and are tangent to S

1

and S

2

in exatly the following ases.

(1) The spheres S

1

and S

2

are tangent to eah other at a point p whih lies on one line,

and the seond line lies in the ommon tangent plane to the spheres at the point

p. The penil of lines through p that also meet the seond line is exatly the set of

ommon transversals to `

1

and `

2

that are also tangent to S

1

and S

2

.

(2) The lines `

1

and `

2

are eah tangent to both S

1

and S

2

, and they are images of eah

other under a rotation about the line onneting the enters of S

1

and S

2

. If we rotate

`

1

about the line onneting the enters of the spheres, it sweeps out a hyperboloid of

one sheet. One of its rulings ontains `

1

and `

2

, and the lines in the other ruling are

tangent to S

1

and S

2

and meet `

1

and `

2

, exept for those that are parallel to one of

them.

(1) (2)

Figure 4. Examples from Theorem 16.

Let `

1

and `

2

be two skew lines. The lass of spheres is not invariant under the set

of projetive linear transformations, but rather under the group generated by rotations,

translations, and saling the oordinates. Thus we an assume that

`

1

=

8

<

:

0

�

0

0

1

1

A

+ x

0

�

1

Æ

0

1

A

: x 2 R

9

=

;

; `

2

=

8

<

:

0

�

0

0

�1

1

A

+ z

0

�

�1

�Æ

0

1

A

: z 2 R

9

=

;

for some Æ 2 R n f0g. As before, there is a one-to-one orrespondene between lines

meeting `

1

and `

2

and pairs (x; z) 2 R

2

. The transversal orresponding to a pair (x; z)

passes through the points (x; Æx; 1)

T

and (z;�Æz;�1)

T

, and has Pl�uker oordinates

(x� z; Æ(x+ z); 2; 2Æxz; x+ z; Æ(x� z))

T

:
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Let S

1

have enter (a; b; )

T

and radius r. By Proposition 2 and (1.4), the transversals

tangent to S

1

are parametrized by a urve C

1

of degree 4 with equation

0 = 4Æ

2

x

2

z

2

+ 4Æ(b�aÆ)x

2

z +

�

(b�aÆ)

2

+ (1+Æ

2

)((1+)

2

� r

2

)

�

x

2

� 4Æ(b+ aÆ)xz

2

+ 2

�

(r

2

�

2

)(1�Æ

2

) + (1�b

2

) + Æ

2

(a

2

�1)

�

xz(5.1)

� 4(1+)(a+bÆ)x +

�

(b+aÆ)

2

+ (1+Æ

2

)((1�)

2

�r

2

)

�

z

2

+4(�1)(a�bÆ)z + 4(a

2

+ b

2

� r

2

) :

This is a dehomogenized version of the bihomogeneous equation (2.3) of bidegree (2; 2).

Note also that the urve C

1

is de�ned over our ground �eld R. The transversals to `

1

and `

2

tangent to S

2

are parametrized by a similar urve C

2

. There are in�nitely many

lines whih meet `

1

and `

2

and are tangent to S

1

and S

2

if and only if the urves C

1

and

C

2

have a ommon omponent. That is, if and only if the assoiated polynomials share a

ommon fator. We �rst rule out the ase when the urves are irreduible.

Lemma 17. The urve C

1

in (5.1) determines the sphere S

1

uniquely.

Proof. Given the urve (5.1), we an resale the equation suh that the oeÆient of x

2

z

2

is 4Æ

2

. From the oeÆients of x

2

z and xz

2

we an determine a and b, and then from the

oeÆients of x

2

and z

2

we an determine  and r.

Remark 18. By Remark 15, Lemma 17 does not hold if the lines are allowed to live in

projetive spae P

3

. We ome bak to this in Setion 5.2.

By Lemma 17, there an be in�nitely many ommon transversals to `

1

and `

2

that are

tangent to two spheres only if the urves C

1

and C

2

are reduible. In partiular, this rules

out ases (1) and (2) of Lemma 3. Our lassi�ation of fators of (2; 2)-forms in Lemma 3

gives the following possibilities for the ommon irreduible fators (over R) of C

1

and

C

2

, up to interhanging x and z. Either the fator is a ubi (the dehomogenization of

a (2; 1)-form), or it is linear in x and z (the dehomogenization of a (1; 1)-form), or it is

linear in x alone (the dehomogenization of a (1; 0)-form). There is the possibility that the

ommon fator will be an irreduible (over R) quadrati polynomial in x (oming from a

(2; 0)-form), but then this omponent will have no real points, and thus ontributes no

ommon real tangents.

We rule out the possibility of a ommon ubi fator, showing that if C

1

fators

as x � x

0

and a ubi, then the ubi still determines S

1

. The vetor (�Æ;�1; Æx

0

)

T

is perpendiular to the plane through (x

0

; Æx

0

; 1)

T

and `

2

, so the enter of S

1

will be

(x

0

; Æx

0

; 1)

T

+ �(�Æ;�1; Æx

0

)

T

for some non-zero � 2 R. Thus r

2

= �

2

(1 + Æ

2

+ Æ

2

x

2

0

).

Substituting this into (5.1) and dividing by (x� x

0

) we obtain the equation of the ubi:

0 = Æ

2

xz

2

+ Æ(Æ

2

�1)�xz + (1+Æ

2

(1��

2

) + Æ�(1+Æ

2

)x

0

)x

+ Æ(�(1+Æ

2

)� Æx

0

)z

2

+ Æ(Æ

2

�1)�x

0

z + 4Æ�+ (Æ

2

�

2

� Æ

2

� 1)x

0

:

(5.2)

Given only this urve, we an resale its equation so that the oeÆient of xz

2

is Æ

2

, then

if Æ 6= �1, we an uniquely determine �, x

0

and therefore S

1

, too, from the oeÆients of

xz and x.
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The uniqueness is still true if Æ = �1. Assume that Æ = 1. Then (5.2) redues to

xz

2

+ (2�� x

0

)z

2

+ (2� �

2

+ 2�x

0

)x + 4�+ (�

2

� 2)x

0

= 0 :

Set � := 2�� x

0

, � := 2� �

2

+ 2�x

0

, and  := 4�+ (�

2

� 2)x

0

. We an solve for � and

x

0

in terms of � and �,

� =

��

p

�

2

+ 3� � 6

3

; x

0

=

�� � 2

p

�

2

+ 3� � 6

3

:

(We take the same sign of the square root in both ases). If we substitute these values

into the formula for , we see that the two possible values of  oinide if and only if

�

2

+ 3� � 6 = 0, in whih ase there is only one solution for � and x

0

, so �, �, and 

always determine � and x

0

and hene S

1

uniquely. The ase Æ = �1 is similar.

We now are left only with the ases when C

1

and C

2

ontain a ommon fator of the

form x � x

0

or xz + sx + tz + u. Suppose the ommon fator is x � x

0

. Then any line

through p := (x

0

; Æx

0

; 1)

T

and a point of `

2

is tangent to S

1

. This is only possible if the

sphere S

1

is tangent to the plane through p and `

2

at the point p. We onlude that if C

1

and C

2

have the ommon fator x � x

0

, then the spheres S

1

and S

2

are tangent to eah

other at the point p = (x

0

; Æx

0

; 1)

T

lying on `

1

and `

2

lies in the ommon tangent plane

to the spheres at the point p. This is ase (1) of Theorem 16.

Suppose now that C

1

and C

2

have a ommon irreduible fator xz+sx+ tz+u. We an

solve the equation xz+sx+ tz+u = 0 uniquely for z in terms of x for general values of x,

or for x in terms of z for general values of z, this gives rise to an isomorphism � between

the projetivizations of `

1

and `

2

. The lines onneting q and �(q) as q runs through the

points of `

1

sweep out a hyperboloid of one sheet. The lines `

1

and `

2

are ontained in one

ruling, and the lines meeting both of them and tangent to S

1

are the lines in the other

ruling.

Lemma 19. Let H � R

3

be a hyperboloid of one sheet. If all lines in one of its rulings

are tangent to a sphere S, then H is a hyperboloid of revolution, the enter of the sphere

S is on the axis of rotation and S is tangent to H.

Proof. We an hoose Cartesian oordinates suh that H has equation x

2

=�

2

+ y

2

=�

2

�

z

2

=

2

= 1 for some positive real numbers �, �, . Let the sphere have enter (A;B;C)

T

and radius R. The set of points of the form (�; ��; �)

T

, (��;���; �)

T

, (���; �; �)

T

and (��;��; �)

T

as � runs through R form four lines in one of the rulings. Sine the

two rulings are symmetri, we only need to deal with one of them.

The sphere S is tangent to a line if and only if the distane of the line from the enter

of S is R. The ondition that (A;B;C)

T

must be at the same distane from the �rst two

lines gives the equation

�(�

2

+ 

2

)A + �BC = 0 ;

the equality of distanes from the other two lines gives

�(�

2

+ 

2

)B � �AC = 0 :

Sine �; �;  > 0, the ommon solutions of these equations have A = B = 0. Using

this information, the equality of the distanes from the �rst and third lines gives � = �,
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or C = �

p

(�

2

+ 

2

)(�

2

+ 

2

)=. To eliminate this seond possibility, onsider two more

lines in the same ruling, the points of the form

�

�

1� �

p

2

; �

1 + �

p

2

; �

�

T

and

�

�

1 + �

p

2

; �

�1 + �

p

2

; �

�

T

as � runs through R. The equality of distanes from these two lines together with A =

B = 0 gives � = � or C = 0.

Therefore the only ase when (A;B;C)

T

an be at the same distane from all lines in

one ruling of H is when � = �, i.e., H is a hyperboloid of revolution about the z-axis,

and (A;B;C)

T

lies on the z-axis. In this ase, it is obvious that (A;B;C)

T

is at the same

distane from all the lines ontained in H, and these lines are tangent to S if and only if

S is tangent to H.

By this lemma, the hyperboloid swept out by the lines meeting `

1

and `

2

and tangent to

S

1

is a hyperboloid of revolution with the enter of S

1

on the axis of rotation. Furthermore,

`

1

and `

2

are lines in one the rulings of the hyperboloid, therefore they are images of

eah other under suitable rotation about the axis, the images of `

1

sweep out the whole

hyperboloid, and `

1

, `

2

are both tangent to S

1

. Applying the lemma to S

2

shows that the

enter of S

2

is also on the axis of rotation and `

1

, `

2

are both tangent to S

2

. We annot

have S

1

and S

2

onentri, therefore the axis of rotation is the line through their enters.

This is exatly ase (2) of Theorem 16, and we have ompleted its proof.

5.2. Lines in projetive spae. We give the omplete geometri haraterization of

on�gurations in real projetive spae where the line `

2

lies in the plane at in�nity.

Theorem 20. Let S

1

and S

2

be two distint spheres and let `

1

lie in R

3

with `

2

a line at

in�nity skew to `

1

. There are in�nitely many lines that meet `

1

and `

2

and are tangent to

S

1

and S

2

in exatly the following ases.

(1) The spheres S

1

and S

2

are tangent to eah other at a point p whih lies on `

1

, and

`

2

is the line at in�nity in the ommon tangent plane to the spheres at the point p.

The penil of lines through p that lie in this tangent plane are exatly the ommon

transversals to `

1

and `

2

that are also tangent to S

1

and S

2

.

(2) Any line meeting `

1

and `

2

is perpendiular to `

1

and S

1

and S

2

are related to eah

other by multipliation by �1 in the diretions perpendiular to `

1

. Thus when `

1

is

not tangent to the spheres, we are in exatly the situation of Remark 15 of Setion 4

as shown in Figures 1(a) and 2(a).

Proof. Let � be any plane passing through a point of `

1

and ontaining `

2

. Then ommon

transversals to `

1

and `

2

are lines meeting `

1

that are parallel to �. Choose a Cartesian

oordinate system in R

3

suh that `

1

is the x-axis. Suppose that S

1

has enter (a; b; )

T

and radius r. Let u = (u

1

; u

2

; 0)

T

and v = (v

1

; 0; v

3

)

T

be vetors with u

2

6= 0 and v

3

6= 0

parallel to �. Suh vetors exist as `

1

and `

2

are skew. A ommon transversal to `

1

and `

2

is determined by the intersetion point (x; 0; 0)

T

with `

1

and a diretion vetor

orresponding to the intersetion point with `

2

, whih an be written as u+ zv for some

z 2 R, unless it is parallel to v. Sine S

1

has at most two tangent lines whih meet `

1
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that are parallel to v, so by omitting these we are not losing an in�nite family of ommon

transversals/tangents.

The transversals that are tangent to S

1

are parametrized by a urve C

1

in the xz-plane

with equation

0 = v

2

3

x

2

z

2

+ u

2

2

x

2

+ 2v

3

(v

1

� av

3

)xz

2

+ 2(bu

2

v

1

+ u

1

v

3

)xz

+2u

2

(bu

1

�au

2

)x+ ((b

2

+ 

2

�r

2

)v

2

1

�2av

1

v

3

+ (a

2

+ b

2

�r

2

)v

2

3

)z

2

(5.3)

+2((b

2

+ 

2

� r

2

)u

1

v

1

� au

1

v

3

� bu

2

(av

1

+ v

3

))z

+((b

2

+ 

2

� r

2

)u

2

1

� 2abu

1

u

2

+ (a

2

+ 

2

� r

2

)u

2

2

)

The transversals tangent to S

2

are parametrized by a similar urve C

2

. There are in�nitely

many lines that meet `

1

and `

2

and are tangent to S

1

and S

2

if and only if C

1

and C

2

have a ommon non-empty real omponent.

It is easy to see from the oeÆients of xz

2

, xz and x and the onstant term that if

u

1

6= 0 or v

1

6= 0, then C

1

determines a, b,  and r

2

and therefore S

1

uniquely, so if

C

1

is irreduible and u

1

6= 0 or v

1

6= 0, then there annot be in�nitely many ommon

transversals that are tangent to S

1

and S

2

.

Assume now that u

1

= v

1

= 0, this is equivalent to the plane � being perpendiular to

`

1

. From the oeÆient of x we an determine a, and then from the oeÆients of z

2

, z,

and the onstant term we an alulate the quantities � = 

2

�r

2

, � = b, and  = b

2

�r

2

.

The equation (�+ r

2

)( + r

2

)� �

2

= 0 is a quadrati equation for r

2

with solutions

r

2

=

1

2

�

�� �  �

p

(�� )

2

+ 4�

2

�

:

Only the larger root is feasible, even when both are positive, sine both � + r

2

= 

2

and

 + r

2

= b

2

must be non-negative. Hene r

2

, and thus b

2

and 

2

are uniquely determined.

The values of b

2

, b, and 

2

determine two possible pairs (b; ) whih are negatives of

eah other. This is exatly ase (2) of the theorem. In fat, this ase is illustrated by

Figures 1(a) and 2(b).

Let us now onsider the ases when C

1

is reduible. As in the proof of Theorem 16, we

need only onsider ubis and fators of the form xz + sx+ tz + u, x� x

0

, and z � z

0

.

Assume that C

1

has a omponent with equation xz + sx+ tz + u. As desribed in the

proof of Theorem 16, this establishes an isomorphism between the projetivizations of `

1

and `

2

. The lines onneting the orresponding points of the projetivizations of `

1

and

`

2

sweep out a hyperboli paraboloid. However, the lines in one ruling of the hyperboli

paraboloid annot all be tangent to a sphere, therefore this ase annot our.

Likewise, the fator z�z

0

annot appear, sine it would mean that all the lines through

a point of `

1

parallel to a ertain diretion are tangent to S

1

, whih is learly impossible.

Consider the ase where the equation of C

1

has a fator of x � x

0

. As we saw in the

proof of Theorem 16, `

1

meets the sphere S

1

at the point p := (x

0

; 0; 0)

T

, and `

2

lies in

the tangent plane to S

1

at p, and so this tangent plane is parallel to �.

If x� x

0

is a fator of C

2

, too, then C

2

passes through p and its tangent plane there is

also parallel to �, so we have ase (1) of the theorem.
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To �nish the proof we investigate what happens if the ommon omponent of C

1

and

C

2

is the ubi obtained from C

1

after removing the line x� x

0

= 0.

The enter of S

1

has oordinates (x

0

+ �u

2

v

3

;��u

1

v

3

;��u

2

v

1

)

T

for some � 2 R, sine

S

1

passes through (x

0

; 0; 0)

T

and its tangent plane there is parallel to �, and we have

r

2

= �

2

(u

2

1

v

2

3

+ u

2

2

v

2

1

+ u

2

2

v

2

3

). Substituting this into (5.3) we obtain the equation of the

remaining ubi,

v

2

3

xz

2

+ u

2

2

x� v

3

(x

0

v

3

+ 2�u

2

(v

2

1

+ v

2

3

))z

2

�4�u

1

u

2

v

1

v

3

z � u

2

(x

0

u

2

+ 2�v

3

(u

2

1

+ u

2

2

)) = 0:

If u

1

6= 0 or v

1

6= 0 then from the oeÆients of this urve we an determine x

0

and �,

hene S

1

uniquely, so C

1

and C

2

annot have a ommon ubi omponent. If u

1

= v

1

= 0

then the above equation fatorizes as

(x� (2�u

2

v

3

+ x

0

))(v

2

3

z

2

+ u

2

2

) = 0;

so if C

2

ontains the urve de�ned by this equation, then the line x� (2�u

2

v

3

+x

0

) = 0 is

a ommon omponent of both C

1

and C

2

, whih is a ase we have already dealt with.

Appendix A. Calulations from Setion 3

We desribe the omputation of Setion 3 in muh more detail, giving a ommentary

on the Singular �le that aomplishes the omputation and displaying its output. The

input and output are displayed in typewriter font on separate lines and the output begins

with the Singular omment haraters (//).

The library primde.lib ontains the funtion sat for saturating ideals, and the option

redSB fores Singular to work with redued Gr�obner (standard) bases.

LIB "primde.lib";

option(redSB);

We initialize our ring.

ring R = 0, (s,t, a,b,,d,e,f,g,h,k,l), (dp(2), dp(10));

The underlying oeÆient �eld has harateristi 0 (so it is Q ) and variables s; t; a; : : : ; k; l,

with a produt term order hosen to simplify our analysis of the projetion to C

2

, the

spae of parameters.

We onsider the ideal generated by (3.5)

ideal I = el-g^2, ek-gf, ak-d, ah-^2;

and by the 2� 2 minors of the oeÆient matrix (3.6).

matrix M[2℄[5℄ = s , 1-s , -2 , 1-t , t ,

al-d^2, 2*(bl-dg), 2*(2bk-g-df), 2*(bh-f), eh-f^2;

I = I + minor(M,2);

We hek the dimension and degree (multipliity) of the variety V(I), �rst omputing a

Gr�obner basis for I.

I = std(I); dim(I), mult(I);

// 6 8
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Singular gives the dimension of V(I) in aÆne spae C

12

. Sine I is homogeneous in the

variables a; b; : : : ; h; k; l, we onsider V(I) to be a subvariety of P

9

� C

2

. Its dimension

is one less than that of the orresponding aÆne variety. Thus V(I) has dimension 5 and

degree 8.

In Setion 3, we identi�ed three spurious omponents of V(I) whih we remove. The

�rst and largest is the ideal of rank 1 quadris, given by the 2 � 2-minors of the 4 � 4-

symmetri matrix (3.3).

matrix Q[4℄[4℄ = a , b ,  , d ,

b , e , f , g ,

 , f , h , k ,

d , g , k , l ;

ideal E1 = std(minor(Q,2));

We remove this spurious omponent by omputing the quotient ideal (I : E

1

).

I = std(quotient(I,E1)); dim(I), mult(I);

// 5 20

The other two spurious omponents desribe rank 2 quadris whih are unions of two

planes with intersetion line `

1

or `

2

.

ideal E2 = g, f, e, d, , b, a; // intersetion line l1

ideal E3 = l, k, h, g, f, d, ; // intersetion line l2

The orresponding omponents are not redued; rather than take ideal quotients, we

saturate the ideal I with respet to these spurious ideals. The Singular ommand sat

for saturation returns a pair whose �rst omponent is a Gr�obner basis of the saturation

and the seond is the saturation exponent. Here, both saturations have exponent 4. We

saturate I with respet to E

2

,

I = sat(I,E2)[1℄; dim(I), mult(I);

// 5 10

and then with respet to E

3

.

ideal J = sat(I,E3)[1℄; dim(J), mult(J);

// 4 120

Thus we now have a variety V(J) of dimension 3 in P

9

� C

2

. We hek that it projets

onto the spae C

2

of parameters by eliminating the variables a; b; : : : ; h; k; l from J .

eliminate(J, abdefghkl);

// _[1℄=0

Sine we obtain the zero ideal, the image of V(J) is Zariski dense in C

2

[2, Chapter 4, x4℄.

However, the projetion P

9

� C

2

� C

2

is a losed map, so the image of V(J) is C

2

. Thus,

for every smooth (2; 2)-urve C de�ned by (2.5), there is a quadri whose transversal

tangents are desribed by the urve C.

We now apply the fatorization Gr�obner basis algorithm fastd to J . The seond

argument of fastd is the list of non-zero onstraints whih are given by Theorem 7.

ideal L = s, t, t-1, s-1, s-t;

list F = fastd(J,L);
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Singular omputes seven fators

size(F);

// 7

Sine J and the seven fators F

1

; : : : ; F

7

are radial ideals, this fatorization an be veri�ed

by heking that that the following ideals V

1

and V

2

oinide. (This part of the alulation

is arhived on the web page aompanying this artile.)

int i;

ideal FF = 1;

for (i = 1; i <= 7; i++) { FF = interset(FF,F[i℄); }

ideal V1, V2;

V1 = std(sat(sat(sat(sat(sat(FF,t)[1℄,s)[1℄,t-1)[1℄,s-1)[1℄,s-t)[1℄);

V2 = std(sat(sat(sat(sat(sat(J ,t)[1℄,s)[1℄,t-1)[1℄,s-1)[1℄,s-t)[1℄);

Note, in partiular, that for any given expliit values of s; t satisfying the nonzero

onditions, the parametri fatorization (in s; t) produed by fastd an be speialized

to an expliit fatorization.

We examine the ideals in the list F , working over the ring with parameters.

ring S = (0,s,t), (a,b,,d,e,f,g,h,k,l), lp; short = 0;

First, the ideal J has dimension 1 and degree 24 over this ring, as laimed.

ideal JS = std(imap(R,J)); dim(JS), mult(JS);

// 2 24

The �rst ideal in the list F has dimension 0.

setring R; FR = F[1℄; setring S;

FS = std(imap(R,FR)); dim(FS), mult(FS);

// 1 4

This ideal is a spurious omponent from the fatorization. It is ontained in the spurious

ideal E

2

.

FS[5℄, FS[6℄, FS[7℄, FS[8℄, FS[9℄, FS[10℄, FS[11℄;

// g f e d  b a

The other six omponents eah have dimension 1 and degree 4, and eah ontains a

homogeneous quadrati polynomial in the variables x and y.

for (i = 2; i <= 7; i++) {

setring R; FR = F[i℄; setring S;

FS = std(imap(R,FR)); dim(FS), mult(FS);

FS[1℄;

print("--------------------------------");

}

// 2 4

// (-s^2+2*s-1)*k^2+(2*s-2)*k*l+(s*t-1)*l^2

// --------------------------------

// 2 4

// (s-1)*k^2-2*k*l-l^2
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// --------------------------------

// 2 4

// (s^2-2*s+1)*k^2+(-2*s+2)*k*l+(-t+1)*l^2

// --------------------------------

// 2 4

// (s^2-2*s+1)*k^2+(-2*s+2)*k*l+(-t+1)*l^2

// --------------------------------

// 2 4

// (s-1)*k^2-2*k*l-l^2

// --------------------------------

// 2 4

// (-s^2+2*s-1)*k^2+(2*s-2)*k*l+(s*t-1)*l^2

// --------------------------------

The whole omputation takes 7 minutes CPU time on an 800 Mhz Pentium III proessor,

and 3 minutes of that time are spent on the fastd operation.

Eah of these homogeneous quadrati polynomials fators over Q (

p

s;

p

t), and indues

a fatorization of the orresponding ideal. We desribe this fatorization|whih is arried

out by hand|in detail for the seond omponent F

2

. We start from the Gr�obner basis of

the ideal F

2

omputed in the program above,

(s� 1)k

2

� 2kl � l

2

; (s� 1)h+ (2t� 2)k + (t� 1)l; f l � gk;

el � g

2

; d+ f + g; ; 2b+ e; a;

(s� 1)fk � 2gk � gl; (s� 1)f

2

� 2fg � g

2

; ek � fg :

(A.1)

Over Q (

p

s;

p

t), the �rst polynomial fators into

�

(

p

s+ 1)k + l

� �

(

p

s� 1)k � l

�

:

We onsider the �rst fator; the seond one an be treated similarly. Substituting l =

�(

p

s+ 1)k into the generator fl � gk, that one fators into

�k

�

(

p

s+ 1)f + g

�

:

Sine any zero of F

2

with k = 0 would imply a =  = d = f = g = h = k = l = 0 and thus

be ontained in V(E

3

), we an divide by k and obtain a linear polynomial. Altogether,

the �rst two rows of (A.1) beome a set of seven independent linear polynomials and

one quadrati polynomial el � g

2

. For any pair (s; t) satisfying (2.6) they de�ne a plane

oni. We leave it to the reader to verify that the three polynomials in the third row are

ontained in the ideal generated by the �rst two rows, after the substitution.

In order to show that for none of the parameters s, t satisfying (2.6) the map ' vanishes

identially on this oni, onsider the following point p = (a; b; ; d; e; d; f; g; h; k; l) on it:

�

0; �(

p

s+ 1)(s� 1); 0; �2

p

s(s� 1); 2(

p

s+ 1)(s� 1); �2(s� 1);

2(

p

s+ 1)(s� 1); 4(t� 1)� 2(t� 1)(

p

s+ 1); �2(s� 1); 2(

p

s+ 1)(s� 1)

2

�

:

The oeÆient of w

2

z

2

in '(C) is

�4s(

p

s� 1)

2

(

p

s+ 1)

2

;
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so '(C) does not not vanish identially.

In order to show that for all parameters s, t satisfying (2.6) the 12 onis are distint,

onsider the quadrati polynomials in k and l in the Singular output above. In the

fatorization over Q (

p

s;

p

t), the ideal of eah of the 12 onis ontains a generator whih

is linear in k and l and independent of a; : : : ; h. To show the distintness of two onis,

we distinguish two ases.

If these linear homogeneous polynomials are distint (over Q (s; t)), then it an be

heked that for every given pair (s; t) they de�ne subspaes whose restritions to (k; l) 6=

(0; 0) are disjoint.

In ase that the linear homogeneous polynomials oinide then it an be expliitly

heked that both onis are distint. For example, both F

2

and F

5

ontain the fator

(

p

s + 1)k + l in the �rst polynomial. As seen above, the orresponding oni of F

2

is

ontained in the subspae a =  = 0. Similarly, the orresponding oni of F

5

is ontained

in e = g = 0. Assuming that the two onis are equal for some pair (s; t), the equations

of the ideals an be used to show further a = b =  = � � � = h = 0. However, due to the

saturation with the exess omponent E

2

this is not possible, and hene the two onis

are distint.

The same alulations for the other omponents are arhived at the web page of this

paper, http://www.math.umass.edu/~sottile/pages/2l2s.html and its mirrors main-

tained by the other authors.
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