Correction to:

Trading degree for dimension in the section conjecture: The non-abelian Shapiro Lemma

JAKOB STIX

I am grateful to Florian Herzig who noticed and communicated to me the following bugs in Proposition 8 of [Sti10], including appropriate corrections.

- The proof of the surjectivity part contains an inaccuracy. The formula for $b_{s, t}$ contains values a_{y} for $y \in Y$, which are not defined. These are set to 1 which simplifies the formula for $b_{s, t}$.
- Similarly, the proof of the injectivity part contains an inaccuracy. The definition of the function $f(s)$ must be changed.
Below, we give an approriately modified and expanded proof. For notation we refer to [Sti10].
Proposition 8. The Shapiro map $\operatorname{sh}^{1}: \mathrm{H}^{1}\left(G, \operatorname{ind}_{H}^{G}(N)\right) \rightarrow \mathrm{H}^{1}(H, N)$ is bijective.
New proof. A 1-cocycle $s \mapsto b_{s}$ for G with values in $\operatorname{ind}_{H}^{G}(N)$ is given by $b_{s, t}=b_{s}(t) \in N$ for all $s, t \in G$ such that
(i) $\quad b_{s, h t}=\vartheta(h)\left(b_{s, t}\right)$ for all $s, t \in G$ and $h \in H$, and
(ii) $b_{s t, g}=b_{s, g} b_{t, g s}$ for all $s, t, g \in G$.

The map sh^{1} on the level of cocycles maps b to $h \mapsto b_{h, 1}$.
Surjectivity. We choose a set of representatives $Y \subset G$ for $H \backslash G$ with $1 \in Y$ and obtain maps $\gamma: G \rightarrow H$ and $y: G \rightarrow Y$ such that $g=\gamma_{g} y_{g}$ for all $g \in G$. In particular, $\left.\gamma\right|_{H}$ is the identity. Let $a: H \rightarrow N$ be a 1 -cocycle, in particular $a_{1}=1$. We set

$$
b_{s, t}:=\left(a_{\gamma_{t}}\right)^{-1} a_{\gamma_{t s}}
$$

and the following routine calculation shows that b is a 1 -cochain with values in $\operatorname{ind}_{H}^{G}(N)$

$$
\begin{aligned}
b_{s, h t} & =\left(a_{\gamma_{h t}}\right)^{-1} a_{\gamma_{h t s}} \\
& =\left(a_{h \gamma_{t}}\right)^{-1} a_{h \gamma t s} \\
& =\left(a_{h} \vartheta(h)\left(a_{\gamma_{t}}\right)\right)^{-1}\left(a_{h} \vartheta(h)\left(a_{\gamma_{t s}}\right)\right) \\
& =\vartheta(h)\left(\left(a_{\gamma_{t}}\right)^{-1} a_{\gamma_{t s}}\right)=\vartheta(h)\left(b_{s, t}\right)
\end{aligned}
$$

and a 1-cocyle

$$
\begin{aligned}
b_{s, g} b_{t, g s} & =\left(a_{\gamma_{g}}\right)^{-1} a_{\gamma_{g s}}\left(a_{\gamma_{g s}}\right)^{-1} a_{\gamma_{g s t}} \\
& =\left(a_{\gamma_{g}}\right)^{-1} a_{\gamma_{g s t}}=b_{s t, g}
\end{aligned}
$$

maping to a

$$
\operatorname{sh}^{1}(b)=\left(h \mapsto b_{h, 1}=\left(a_{\gamma_{1}}\right)^{-1} a_{\gamma_{h}}=\left(a_{1}\right)^{-1} a_{h}=a_{h}\right)=a .
$$

Injectivity. Let b, b^{\prime} be cocycles with $\operatorname{sh}^{1}(b) \sim \operatorname{sh}^{1}\left(b^{\prime}\right)$ which means that there is a $c \in N$ such that for all $s \in H$

$$
b_{s, 1}^{\prime}=c b_{s, 1}(\vartheta(s)(c))^{-1} .
$$

We define $f \in \operatorname{ind}_{H}^{G}(N)$ by

$$
f(s):=\left(b_{s, 1}^{\prime}\right)^{-1} c b_{s, 1}
$$

for all $s \in G$. Indeed, for $h \in H$ and $s \in G$ we compute using the cocycle equation

$$
\begin{aligned}
f(h s) & =\left(b_{h s, 1}^{\prime}\right)^{-1} c b_{h s, 1} \\
& =\left(b_{h, 1}^{\prime} b_{s, h}^{\prime}\right)^{-1} c\left(b_{h, 1} b_{s, h}\right) \\
& =\left(b_{s, h}^{\prime}\right)^{-1}\left(\left(b_{h, 1}^{\prime}\right)^{-1} c b_{h, 1}\right)\left(b_{s, h}\right) \\
& =\left(b_{s, h}^{\prime}\right)^{-1}(\vartheta(h)(c))\left(b_{s, h}\right) \\
& =\vartheta(h)\left(\left(b_{s, 1}^{\prime}\right)^{-1} c b_{s, 1}\right)=\vartheta(h)(f(s))
\end{aligned}
$$

as claimed. For all $s, t \in G$, a routine calculation based on the cocycle equation yields

$$
\begin{aligned}
f(t) b_{s, t} f(t s)^{-1} & =\left(b_{t, 1}^{\prime}\right)^{-1} c b_{t, 1} b_{s, t}\left(\left(b_{t s, 1}^{\prime}\right)^{-1} c b_{t s, 1}\right)^{-1} \\
& =\left(b_{t, 1}^{\prime}\right)^{-1} c b_{t s, 1}\left(\left(b_{t s, 1}^{\prime}\right)^{-1} c b_{t s, 1}\right)^{-1} \\
& =\left(b_{t, 1}^{\prime}\right)^{-1} b_{t s, 1}^{\prime}=b_{s, t}^{\prime}
\end{aligned}
$$

which translates into $b \sim b^{\prime}$.

References

[Sti10] Stix, J., Trading degree for dimension in the section conjecture: The non-abelian Shapiro Lemma, Mathematical Journal of Okayama University 52 (2010), 29-43.

Jakob Stix, MATCH - Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany

E-mail address: stix@mathi.uni-heidelberg.de
URL: http://www.mathi.uni-heidelberg.de/~stix/

