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Abstract —For every p ≥ 2 we show that each finite p-group with an unmixed Beauville
structure is part of a surjective infinite projective system of finite p-groups with compati-
ble unmixed Beauville structures. This leads to the new notion of an unmixed topological
Beauville structure on pro-finite groups. We further construct for p ≥ 5 a new explicit
infinite series of non-abelian p-groups that allow unmixed Beauville structures.
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1. Introduction

The datum of an unmixed Beauville structure on a finite group G encodes two finite branched
G-covers C → P1 and D → P1 with ramification only above 0, 1 and∞, such that the diagonal G
action on C×D is fixed point free. The quotient X = (C×D)/G belongs to an interesting class
of (rigid) algebraic surfaces, the systematic study of which was initiated by Catanese [7]. These
surfaces that are isogeneous to a product of smooth curves are now known as Beauville surfaces
if pg = 0, and those have been classified by Catanese, Bauer and Grunewald [5] and Frapporti
[11]. In general, surfaces that are isogeneous to a product of smooth curves play a rôle in the
geography of complex surfaces of general type. They provide lower bounds for the complexity of
the set of connected components for the moduli spaces of such surfaces with prescribed Chern
numbers.

Our main result will be the construction of new series of finite p-groups with unmixed Beauville
structures. These examples will form projective systems (Gi, ϕij) indexed by a directed set I,
typically I = N with the natural archimedian ordering. The projection maps ϕij : Gj → Gi will
be surjective and map the chosen Beauville structure for Gj to the one for Gi.

Compatible Beauville structures in a projective system lead to a projective system of finite
covers of the corresponding Beauville surfaces with the tower being unramified if and only if the
signature does not change in the tower.

Definition 1. An (unmixed) Beauville structure on a finite group G consists of an ordered
pair of triples (x, y, z) and (a, b, c) of group elements such that

(1) xyz = 1 = abc,
(2) G is generated by {x, y, z} and by {a, b, c},
(3) no non-trivial power of an element of {x, y, z} is conjugate to a power of an element of
{a, b, c}.

The signature of the Beauville structure is the tuple of orders of the elements x, y, z, a, b, c and
the Beauville structure is balanced if these orders are constant. The individual triples (x, y, z)
and (a, b, c) are refered to as half of a Beauville structure.
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A natural question asks which finite groups do have a Beauville structure? Beauville’s original
example showed that (Z/5Z)2 has a Beauville structure. This was later generalized by Catanese
to (Z/nZ)2 with n coprime to 6.

Other important classes of groups are simple groups and p-groups. Existence of Beauville
structures was shown for every non-abelian finite simple group (except A5) by Malle and Gu-
ralnick [13] and independently Fairbairn, Magaard and Parker [10]. Much less is known about
non-abelian p-groups: some examples of Beauville structures on p-groups of the order up to p7
were constructed by Barker, Boston and Fairbairn [1], and with p = 2 by Barker, Boston, Peyer-
imhoff and the second author [2], and generalized for an infinite family in [3] by the same authors.
For a more detailed survey on Beauville surfaces and groups we refer to [6] and especially to
Jones [12, §7] for Beauville structures on p-groups.

In this paper we show that infinite families of p-groups with Beauville structures exist in
abundance.

Theorem 2. Every finite p-group with an unmixed Beauville structure is part of an infinite
projective system of finite p-groups with compatible unmixed Beauville structures. One may
further insist that the signature of the first half remains constant thoughout the projective system.

The following corollary answers Problem 4.8 posed by Fairbairn in [8] in the affirmative (the
proposed Beauville structures are explicit as p-quotients of the respective triangle groups).

Corollary 3. For any prime number p ≥ 2 there are infinitely many p-groups with unmixed
Beauville structures.

Proof. By Theorem 2 it suffices to find a single p-group with a Beauville structure. For p ≥ 5
the simplest examples are the abelian groups Z/pnZ × Z/pnZ as recalled in Theorem 10 (and
in this case the corollary is well known). For p = 2 and p = 3 we refer to [8, Theorem 4.5] for
examples of p-groups with a Beauville structure. �

While the construction of the projective system in Theorem 2 is not explicit, the second con-
struction for Theorem 4 exploits the structure of a metabelian uniform p-group and is completely
explicit.

Theorem 4. Let p be a prime, n,m ∈ N and λ ∈ (Z/pmZ)× with λp
n ≡ 1 mod pm. The

semidirect product
Z/pmZ oλ Z/pnZ

with action Z/pnZ → Aut(Z/pmZ) = (Z/pmZ)× sending 1 7→ λ admits an unmixed Beauville
structure if and only if p ≥ 5 and n = m.

All Beauville structures are balanced of constant signature pn.

The special case λ = 1 + p of Theorem 4 is contained in (and inspiration came from) [1,
Lemma 10]. An extension to λ = 1 + pr with 1 ≤ r ≤ n = m is contained in Jones [12, §7].
Theorem 2 will be proven in Section §2, while Section §3 contains the proof of Theorem 4.

2. Projective systems of Beauville structures

Versions of the following lifting result have also been observed for example in [1, Lemma 17] ,
or [9, Lemma 4.2]. The special case of p-groups considered here allows us to exploit the Frattini
property to ensure the generating property.

2.1. Triangle group lifting. We start with an observation for general finite groups.

Proposition 5. Let G̃ � G be a quotient map of finite groups such that G admits a Beauville
structure given by the tuples (x, y, z) and (a, b, c). Assume that (x, y, z) lifts to a triple (x̃, ỹ, z̃)

in G̃ with x̃ỹz̃ = 1, generating G̃ and preserving the orders of the respective elements.
If (a, b, c) lifts to a generating triple (ã, b̃, c̃) in G̃ with product 1 (not necessarily preserving

the orders), then G̃ admits a Beauville structure given by the tuples (x̃, ỹ, z̃) and (ã, b̃, c̃).
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Proof. If (x̃, ỹ, z̃) and (ã, b̃, c̃) do not form a Beauville structure, then without loss of generality
there is n,m ∈ N and g ∈ G̃ such that 1 6= x̃n = g(ãm)g−1. Projecting to G and using that
(x, y, z) and (a, b, c) is a Beauville structure, we find xn = 1 in G. But since x̃ and x have the
same orders, we deduce x̃n = 1, a contradiction. �

We now specialise Proposition 5 to p-groups. The defining property of the Frattini subgroup
allows to weaken the assumptions. We recall that the Frattini subgroup of a finite group G
is the group

Φ(G) =
⋂

H<G, maximal

H.

For a p-group G the Frattini subgroup is the kernel of the quotient map to the maximal elemen-
tary abelian p-quotient

Φ(G) = Gp · [G,G] = ker(G� Gab/pGab).

A set of elements generates G if and only if their images in G/Φ(G) form a set of generators.

Proposition 6. Let G̃� G be a quotient map of finite p-groups such that G admits a Beauville
structure given by the tuples (x, y, z) and (a, b, c).

Assume that (x, y, z) lifts to a triple (x̃, ỹ, z̃) in G̃ with x̃ỹz̃ = 1, generating G̃ and preserving
the orders of the respective elements. Then the Beauville structure lifts to a Beauville structure
(x̃, ỹ, z̃) and (ã, b̃, c̃) of G̃ with ã, b̃ arbitrary lifts of a, b to G̃ and c̃ = (ãb̃)−1.

Proof. Since G admits a Beauville structure, the group is not cyclic and hence G/Φ(G) is an
Fp-vector space of dimension 2. The same holds for G̃, hence the map G̃/Φ(G̃) � G/Φ(G) is
an isomorphism. By the Frattini property, the generating sets for G are lifts of generating sets
of G/Φ(G), thus lifts of generators for G also necessarily generate G̃: the triple (ã, b̃, c̃) also
generates G̃. Now the proof follows from Proposition 5. �

The (strict) triangle group of signature pm, pn, pr is the group

∆m,n,r = 〈X,Y, Z|XY Z = 1, Xpm = Y pn = Zp
r

= 1〉
that we consider as a group with distinguished generators X, Y and Z.

Remark 7. We refer to lifting of Beauville structures as in Proposition 6 as triangle group
liftings since we view both G and G̃ via the datum of (x̃, ỹ, z̃) as quotients of a triangle group

∆m,n,r � G̃� G.

with ord(x) = pm, ord(y) = pn and ord(z) = pr.

Recall that a pro-finite power of an element g in a pro-finite group G is any element of the
pro-cyclic subgroup topologically generated by g in G.

Definition 8. An (unmixed topological) Beauville structure on a pro-finite group G con-
sists of an ordered pair of triples (x, y, z) and (a, b, c) of group elements such that

(1) xyz = 1 = abc,
(2) G is topologically generated by {x, y, z} and by {a, b, c},
(3) no non-trivial (pro-finite) power of an element of {x, y, z} is conjugate to a (pro-finite)

power of an element of {a, b, c}.

If G = lim←−iGi is a description as a surjective projective system of finite groups, then a com-
patible system of Beauville structures on the Gi will describe a topological Beauville structure
on G. The converse is not true in general: the image in Gi of a topological Beauville structure
(X,Y, Z) and (A,B,C) on G may fail to be a Beauville structure. If the orders of X, Y and Z
in G are finite, then

M0
X,Y,Z :=

⋃
n∈N, g∈G

g{Xn, Y n, Zn}g−1 \ {1}

and alsoMA,B,C = 〈A〉∪〈B〉∪〈C〉, the union of the subgroups generated topologically by A, B,
and C respectively, form compact subsets of G. Hence, the sets M0

X,Y,Z and MA,B,C are disjoint
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in G if and only if there is a finite quotient G� Gi such that the images there are disjoint. Then
for all finer indices j → i the images of (X,Y, Z) and (A,B,C) in Gj form indeed a compatible
system of Beauville structures.

Let (∆m,n,r)
∧p be the pro-p completion of ∆m,n,r.

Corollary 9. Let (x, y, z) and (a, b, c) be a Beauville structure on a finite p-group G with orders
ord(x) = pm, ord(y) = pn and ord(z) = pr. Then there is a Beauville structure on (∆m,n,r)

∧p of
the form (X,Y, Z) and (A,B,C) such that the triples (x, y, z) and (a, b, c) are their image via a
unique surjection (∆m,n,r)

∧p � G

Proof. The assignment X,Y, Z 7→ x, y, z determines uniquely a surjection

(∆m,n,r)
∧p � G.

We write (∆m,n,r)
∧p = lim←−i ∆i as a projective limit of finite groups and index system (N, <).

We assume ∆0 = G. Let (xi, yi, zi) be the image of (X,Y, Z).
Now set B0 = {(x, y, z) and (a, b, c)} for the set containing only the initial Beauville structure.

By Proposition 6 the set Bi+1 of Beauville structures on ∆i+1 of the form (xi+1, yi+1, zi+1) and
(a′, b′, c′) lifting a Beauville structure in Bi is non-empty and anyway finite. The sets Bi form
a projective system and a standard compactness argument shows that lim←−i Bi is non-empty as
well. Moreover, the inductive construction of the Bi shows that lim←−i Bi → B0 is surjective. Any
element in lim←−i Bi is described by two tuples in (∆m,n,r)

∧p, namely the standard generators
(X,Y, Z) = lim←−i(xi, yi, zi) and some (A,B,C) that form a topological Beauville structure in
(∆m,n,r)

∧p mapping to the given one on for G = ∆0 as claimed. �

Proof of Theorem 2. The topological Beauville structure of Corollary 9 was constructed as a
compatible family of Beauville structures on the projective system of the ∆i, and moreover so
that the signature of the first half of the Beauville structure stays constant.

It remains to show that (∆m,n,r)
∧p is infinite. But we work under the assumption that there

is a p-group G with a Beauville structure where the orders of the first half are pm, pn and pr,
hence the corresponding quotient π : ∆m,n,r � G is smooth, i.e., ker(π) is the fundamental
group of a compact Riemann surface of genus g with

2g − 2 = #G ·
(
1− 1

pn
− 1

pm
− 1

pr
)

by the Riemann-Hurwitz formula. By Proposition 3.2 of [4] the signature (pn, pm, pr) is hyper-
bolic (for Theorem 2 it suffices that the signature is different from (2, 2, 2n) when G is easily
seen to be a dihedral group and thus not admitting a Beauville structure). It follows that g ≥ 2
and ker(π) is a non-abelian surface group. Therefore its pro-p completion ker(π)∧p is infinite
and therefore also (∆m,n,r)

∧p is infinite. This completes the proof of Theorem 2. �

2.2. Some Beauville structures on p-groups. The use of Theorem 2 is limited to the extent
that the construction is not explicit (although quite flexible), and also subject to knowing p-
groups with Beauville structures to start with. For completeness here are some examples.

Theorem 10 (Bauer, Catanese, Grunewald [4] Thm. 3.4). An abelian
group G admits a Beauville structure if and only if G ' Z/nZ× Z/nZ and (6, n) = 1.

The following non-abelian examples of balanced signature p generalize examples from Barker,
Boston and Fairbairn [1].

Proposition 11. Let p ≥ 5 be a prime number. A p-group G that can be embedded in GLp(Fp)
admits a Beauville structure if and only if dimFp G/Φ(G) = 2, that is, if and only if G is
generated by 2 elements but is not cyclic.

Proof. If G admits a Beauville structure, then G is not cyclic and G/Φ(G) is of dimension
2. For the converse direction we consider the Jordan normal form of g ∈ G that has Jordan
blocks of length at most p, hence all nontrivial elements in G are of order p. Therefore we can
lift a Beauville structure along G � G/Φ(G) ∼= Z/pZ × Z/pZ by triangle group lifting as in
Proposition 6. The Frattini quotient admits a Beauville structure by [4, Theorem 3.4] as recalled
above. �
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3. An example of a uniform group with a Beauville structure

By Zp we denote the p-adic integers. For an element λ ∈ (Z/pmZ)× of order dividing pn we
consider the semi-direct product

G = Z/pmZ oλ Z/pnZ
with action Z/pnZ → Aut(Z/pmZ) sending 1 7→ λ. We choose a lift denoted also by λ ∈ Z×p
and consider the analoguous pro-finite semi-direct product

Γ = Zp oλ Zp.

Lemma 12. The subsets Γr := prZp oλ p
rZp ⊆ Γ (where pr acts by λpr) form an exhaustive

sequence of normal subgroups. More precisely, the following holds.
(1) If p is odd, or if p = 2 and λ ≡ 1 mod 4, then Γr = Γp

r is the set of pr-th powers for all
r ≥ 0. Moreover, the map γ 7→ Ps(γ) := γp

s induces for all r, s ≥ 0 a group isomorphism

Ps : Γr/Γr+1
∼−→ Γr+s/Γr+s+1

of groups isomorphic to Z/pZ× Z/pZ.
(2) If p = 2 and λ ≡ −1 mod 4, then for r ≥ 1 we have Γ2r ⊆ Γr = Γ2r−1

1 . Moreover, the
map γ 7→ Ps(γ) := γp

s induces for all s ≥ 0 and r ≥ 1 a group isomorphism

Ps : Γr/Γr+1
∼−→ Γr+s/Γr+s+1

of groups isomorphic to Z/pZ× Z/pZ.

Proof. Since λ has p-primary order, we must have λ ≡ 1 modulo p. It follows by induction that
λp

r ≡ 1 modulo pr+1. This shows that Γr is indeed a normal subgroup, namely the kernel of
the natural map Γ � Z/prZ oλ Z/prZ.

Let µ ∈ Zp be such that λ ≡ 1 + µp modulo p2 and so λx ≡ 1 + pµx modulo p2. The p-th
power map Γ→ Γ is then the p-adic analytic map

(a, x) 7→ p · (a, x) = (a · (1 + λx + λ2x + . . .+ λ(p−1)x), px) = (pa · ελ(x), px)

where ελ(x) is a p-adic analytic function ελ : Zp → Zp computed as

ελ(x) =
1

p
·
p−1∑
i=0

λix ≡ 1 + µx

(
p

2

)
≡
{

1 if p > 2
1 + µx if p = 2

mod p.

If p is odd, or if p = 2 and 2 | µx, then ελ(x) takes values in 1 +pZp. Now both assertions follow
at once. �

Proof of Theorem 4. We first assume that λ ≡ 1 mod 4 if p = 2.
We make use of the quotient map Γ � G sending (a, x) to (a, x) that exists by the assumptions

on λ. Let r = min{n,m} and assume first that n 6= m. Then the image Gr ⊆ G of

Γr → Γ→ G

is a non-trivial cyclic subgroup. Any generating system (g1, . . . , gs) of G maps to a generating
system of G/Φ(G). By lifting to Γ/Γ1 � G/Φ(G) we control that the powers gp

r

i ∈ Gr generate
Gr, hence at least one of them is non-trivial. It follows that no two generating systems of G
can have disjoint sets of non-trivial powers. This shows that in order for G to admit a Beauville
structure we must have n = m.

From now on we assume that n = m. Let (x, y, z) be a generating triple in G with xyz = 1.
Then image triple (x̄, ȳ, z̄) in G/Φ(G) = Γ/Γ1 generates this 2-dimensional Fp vector space,
hence all three elements are nontrivial. Since by Lemma 12 then also their pn−1-th powers are
non-trivial, we deduce that all three have order pn. This proves that any potential Beauville
structure must be balanced of constant signature pn.

Moreover, let (x, y, z) and (a, b, c) be a Beauville structure on G, we see that the pn−1-th
powers of these elements must yield a Beauville structure on Γn−1/Γn ' Z/pZ×Z/pZ. In view
of Theorem 10 there cannot be a Beauville structure if p < 5. It remains to construct a Beauville
structure if p ≥ 5, and to exclude the case p = 2 and λ ≡ −1 mod 4.



6 JAKOB STIX AND ALINA VDOVINA

We assume now that p = 2 and λ ≡ −1 mod 4, and we assume that G has a Beauville
structure (x, y, z) and (a, b, c). Note that in this case we do not yet know that n = m. Then the
Frattini quotient G/Φ(G) must be of order 4 with both (x, y, z) and (a, b, c) mapping bijectively
to the nontrivial elements. We set Gr for the image of the map Γr → G, and may assume
without loss of generality that x = a · δ with δ ∈ G1.

More generally, if g, h ∈ Gr differ by ε = h−1g ∈ Gr+1, then

g2 = (hε)2 = h2(h−1εhε−1)ε2

and so g2, h2 ∈ Gr+1 differ by (h−1εhε−1)ε2 ∈ Gr+2, because Gr/Gr+1 is central in G/Gr+1.
By induction we find

x2
r−1 ≡ a2r−1

mod Gr

which contradicts the properties of a Beauville structure for s = max{n,m}, when Gs = 0, if at
least one of the elements x, y, z, a, b, c has order 2s.

Working modulo 4 and using λ ≡ −1 mod 4, we see that squares are either (2, 0) or (0, 2)
modulo G2, and among the elements x, y, z both possibilities occur. By induction for any g ∈ G
we have, if g2 ≡ (2, 0) that g2r−1 ≡ (2r−1, 0) mod Gr, or if g2 ≡ (0, 2) that g2r−1 ≡ (0, 2r−1)
mod Gr. This shows that at least one element of every generating set has order 2s with s =
max{n,m}. This excludes the case p = 2 from allowing Beauville structures.

Let now p ≥ 5 and (x, y, z) and (a, b, c) be triples with product equal to one that map to a
Beauville structure on G/Φ(G), in particular to generating triples of G/Φ(G). Then both triples
(x, y, z) and (a, b, c) generate G and it remains to show that there are no non-trivial conjugate
powers. We argue by contradiction and assume without loss of generality that

0 6= xk = galg−1

with k, l ∈ N and g ∈ G. Let r be maximal such that xk ∈ Γr/Γn ⊆ G. By Lemma 12 it follows
that pr is the precise power dividing both k and l. Let k = prk0 and l = prl0. Exploiting the
isomorphism

Pr : G/Φ(G) = Γ/Γ1
∼−→ Γr/Γr+1

of raising to the pr-th power of Lemma 12 we obtain the equality

Pr(x
k0) ≡ xk ≡ galg−1 ≡ gPr(al0)g−1 ≡ Pr(gal0g−1) mod Γr+1

of nontrivial elements in Γr/Γr+1 by the choice of r. Since Pr is an isomorphism, we conclude

0 6= xk0 = gal0g−1 ∈ G/Φ(G).

This contradicts our initial choice that (x, y, z) and (a, b, c) were a lift of a Beauville structure
on G/Φ(G). This completes the proof. �

Remark 13. (1) The proof of Theorem 4 given above shows more. Every Beauville structure
maps to a Beauville structure of G/Φ(G). And, conversely, any lift of a Beauville structure of
the Frattini quotient yields a Beauville structure on G.

(2) The groups Z/pnZ oλ Z/pnZ are classified for p 6= 2 up to isomorphism as follows. The
group order is p2n, hence p and n are unique. The group is abelian if λ ≡ 1 mod pn and
otherwise the maximal abelian quotient

Zp/(pn, λ− 1)Zp × Z/pnZ
has order pn+s where 0 < s = vp(λ− 1) < n is the p-adic valuation of any lift of λ− 1 to Zp. It
follows that n > r = n− s > 0 is an invariant of the group in the non-abelian case, namely the
order of λ ∈ Aut(Z/pnZ).

The tuple (p, n, r) is a complete set of invariants, since for λ′ leading to the same invariants
there is an automorphism ϕ of Z/pnZ such that

(id, ϕ) : Z/pnZ oλ Z/pnZ
∼−→ Z/pnZ oλ′ Z/pnZ

yields an isomorphism.
This classification shows that we have described plenty of Beauville structures on a family of

non-abelian p-groups parametrized by integers n > r > 0.



Series of p-groups with Beauville structure 7

References

[1] Barker, N., Boston, N., Fairbairn, B., A note on Beauville p-groups, Exp. Math. 21 (2012), no. 3, 298–306.
[2] Barker, N., Boston, N., Peyerimhoff, N., Vdovina, A., New examples of Beauville surfaces, Monatsh. Math.

166 (2012), no. 3-4, 319–327.
[3] Barker, N., Boston, N., Peyerimhoff, N., Vdovina, A., An Infinite Family of 2-Groups with Mixed Beauville

Structures, Int. Math. Res. Notices, 2015(11) (2015), 3598–3618.
[4] Bauer, I., Catanese, F., Grunewald, F., Beauville surfaces without real structures, in: Geometric methods in

algebra and number theory, Bogomolov, F., Tschinkel, Y. (editors), Progr. Math. 235, Birkhäuser Boston,
2005, 1–42.

[5] Bauer, I.C., Catanese, F., Grunewald, F., The classification of surfaces with pg = q = 0 isogenous to a
product of curves, Pure Appl. Math. Q., Special Issue: In honor of Fedor Bogomolov, 4 (2008), no. 2,
547–586.

[6] Bauer, I., Garion, S., Vdovina, A., (editors), Beauville surfaces and groups, Proceedings of a conference in
Newcastle, 2012.

[7] Catanese, F., Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math.
122 (2000), 1–44.

[8] Fairbairn, B., Recent work on Beauville surfaces, structures and groups, to appear in: Proceedings of Groups
St Andrews 2013, arXiv:[mathGR]1405.7547v1.

[9] Fuertes, Y., Jones, G.A., Beauville surfaces and finite groups, J. Algebra 340 (2011), 13–27.
[10] Fairbairn, B., Magaard, K., Parker, Ch., Generation of finite quasisimple groups with an application to

groups acting on Beauville surfaces, Proc. Lond. Math. Soc. (3) 107 (2013), no. 4, 744–798.
[11] Frapporti, D. Mixed quasi-é surfaces, new surfaces of general type with pg = 0 and their fundamental group,

Collect. Math. 64 (2013), no. 3, 293–311.
[12] Jones, G. A., Beauville surfaces and groups: a survey, in: Rigidity and Symmetry, R. Connelly, A. Ivić Weiss,

W. Whiteley (editors), Fields Institute Communications, Vol. 70, 2014, viii + 374 p.
[13] Guralnick, R., Malle, G., Simple groups admit Beauville structures, J. Lond. Math. Soc. (2) 85 (2012), no.

3, 694–721.

Jakob Stix, Institut für Mathematik, Johann Wolfgang Goethe–Universität Frankfurt, Ro-
bert-Mayer-Straße 6–8, 60325 Frankfurt am Main, Germany

E-mail address: stix@math.uni-frankfurt.de

Alina Vdovina, School of Mathematics and Statistics, Newcastle University, Newcastle upon
Tyne, NE1 7RU, UK

E-mail address: alina.vdovina@ncl.ac.uk

http://arxiv.org/abs/1405.7547v1

	1. Introduction
	2. Projective systems of Beauville structures
	2.1. Triangle group lifting
	2.2. Some Beauville structures on p-groups

	3. An example of a uniform group with a Beauville structure
	References

