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Abstract — For an abelian variety A over a number field k we discuss the maximal
divisibile subgroup of H1(k,A) and its intersection with the subgroup X(A/k). The
results are most complete for elliptic curves over Q.
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1. Introduction

1.1. The Bashmakov problem. Let A/k be an abelian variety over an algebraic number field
k with algebraic closure kalg. Bashmakov [Ba64, Ba72], studied the question of whether elements
of the Tate–Shafarevich group

X(A/k)

become divisible in the Weil–Châtelet group H1(k,A) = H1(k,A(kalg)), i.e., lie in the subgroup

div(H1(k,A))

of divisible elements. This question was initially asked by Cassels in the case of elliptic curves
(see [Ca62] Problem 1.3) because an affirmative answer would prove that the kernel of the
Cassels’ pairing equals the maximal divisible subgroup of the Tate-Shafarevich group.

Bashmakov [Ba64] also investigates whether X(A/k) can meet the maximal divisible sub-
group of H1(k,A),

Div(H1(k,A)),

in a nontrivial way, see also [HS09] §4. Bashmakov’s results are recalled in Section §4. In other
words, the Cassels–Bashmakov problem considers the filtration

H1(k,A) ⊇ div(H1(k,A)) ⊇ Div(H1(k,A)) ⊇ 0 (1.1)

and intersects it with X(A/k). Observe that div(H1(k,A)) is generally strictly larger than the
maximal divisible subgroup Div(H1(k,A)), see Section §1.4.2 and Section §8.

In this article we focus on Bashmakov’s question on the intersection of the Tate-Shafarevich
group and the maximal divisible subgroup of the Weil-Châtelet group. We address Cassels’
original question in a separate article [ÇS12].
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Our motivation for studying the Cassels–Bashmakov problem is twofold. The group X(A/k)
conjecturally has no divisible elements, and this is known for elliptic curves over Q of analytic
rank ≤ 1. The study of X(A/k) in the bigger group H1(k,A) may shed some light on the
structure of X(A/k) itself in the general case.

Secondly, the Bashmakov problem arises naturally in anabelian geometry when one wants to
get hold on the index of a hyperbolic curve and therefore passes to the abelianization in form of
the universal Albanese torsor. The connection1 more precisely is as follows. LetW be a principal
homogeneous space of A over k, with a geometric point w̄ of the base change W = W ×k kalg.
Let Galk = Gal(kalg/k) be the absolute Galois group k. A section of the fundamental exact
sequence

1→ π1(W, w̄)→ π1(W, w̄)→ Galk → 1,

yields that the corresponding class [W ] ∈ H1(k,A) lies in the maximal divisible subgroup, see
[HS09] and also [Sx12] Remark 176(3). If, in addition, local points exist onW , then [W ] belongs
to X(A/k) and the existence of a global k-rational point follows from a negative answer to the
Bashmakov problem for A/k, see again [HS09] §4 and also [Sx12] §13.

1.2. Summary of results. In view of the conjectured finiteness of X(A/k) the triviality of
the p-primary part of

Div(H1(k,A)) ∩X(A/k).

should be guaranteed for large primes p depending on A/k. Our aim therefore is to identify con-
ditions on a prime number p which imply the triviality of the p-primary part of the intersection
of the Tate-Shafarevich group with the maximal divisible subgroup of the Weil-Châtelet group
without relying on the triviality of X(A/k)p.

When we can answer the Bashmakov problem in the negative, i.e., when we can prove that
Div(H1(k,A)) intersects X(A/k) trivially, our method actually shows more. In order to present
the results, we define the locally divisible H1 as the kernel

H1
div(k,A) = ker

(
H1(k,A)→

⊕
v

H1(kv, A)/ div
(

H1(kv, A)
))
.

Since div(−) is a functor, we find

div(H1(k,A)) ⊆ H1
div(k,A).

Focusing on the p-part and using local Tate duality H1(kv, A) = Hom(At(kv),Q/Z) we find for
v - p that div(H1(kv, A)p∞) = 0 and therefore an exact sequence

0→X(A/k)p∞ → H1
div(k,A)p∞ →

⊕
v|p

div
(

H1(kv, A)p∞
) ∼= (Qp/Zp)dim(A)·[k:Q]. (1.2)

Concerning the relative position of X(A/k) and Div(H1(k,A)) our main result is for an
elliptic curve E/Q under the assumption of trivial analytic rank (see Sect. §7.2). The following
theorem is a summary of the results in this direction (part (4) follows essentially from [HS09]
Cor 4.2.).

Theorem A. Let E/Q be an elliptic curve.
(1) If E/Q has trivial algebraic rank, then Div(H1(Q, E)) contains a copy of Q/Z.
(2) If E/Q has trivial analytic rank, then Div(H1(Q, E)) = Q/Z and, for odd primes p of

good reduction such that the GalQ-representation on the p-torsion Ep is irreducible, we
find

X(E/Q)p∞ ⊕Div
(

H1(Q, E)
)
p∞

= H1
div(Q, E)p∞ .

(3) If E/Q has positive algebraic rank, then Div(H1(Q, E)) = Div(X(E/Q)).
(4) If E/Q has analytic rank 1, then Div(H1(Q, E)) = 0.

1The authors acknowledge the influence of work of Harari and Szamuely for bringing the results of Bashmakov
to their attention and for informing the first author about their value from the point of view of anabelian geometry.
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Remark 1. Observe that the GalQ-representation on Ep is irreducible for all

p 6= 2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163

and for all p > 7 if E is semistable (see [Ma78]).

With respect to the filtration (1.1) we deduce that even if Div(H1(Q, E)) is non-trivial, it can
be strictly smaller than div(H1(Q, E)). Moreover, it turns out that an old example of Selmer
provides an example where the Tate–Shafarevich group intersects the maximal divisible group
nontrivially, see Section §8 for the following.

Theorem B. The Tate-Shafarevich group X(E/Q) can intersect Div(H1(Q, E)) non-trivially
for an elliptic curve E/Q of trivial analytic rank. In particular, the Selmer curve

3X3 + 4Y 3 + 5Z3 = 0

represents a nontrivial class in

X(E/Q) ∩Div(H1(Q, E))

with E the Jacobian of the Selmer curve.

1.3. Plan of the paper. In Section §2 and Section §3 we discuss background from Galois
cohomology and étale cohomology. The material of Section §3 is only used in Section §4, where
we discuss Bashmakov’s work, and in Section §8, where we prove Theorem B. Theorem A is
proven in Section §7 based on the computation of a generalized Selmer group done in Section §6
which in turn depends on some group theory in GL2(F`) that is discussed in Section 5.

Acknowledgments. The authors would like to thank Dorian Goldfeld, David Harari, Ken
Ribet and Tamás Szamuely for several useful discussions. The first author is also grateful to her
advisor, Andrew Wiles, for introducing her to this method of thinking about the p-divisibility of
the Tate-Shafarevich group. Finally, we would also like to thank the referees for several helpful
suggestions.

1.4. Notation. We fix some notation which will be in use throughout the text.

1.4.1. On number fields. In the sequel, we let k be an algebraic number field, i.e., a finite
extension of Q. The completion of k at a place v is kv. For a finite Galk-module M the field
extension k(M)/k is the fixed field of kalg under ker(Galk → Aut(M)).

We set X = Spec(ok) with the ring of integers ok in k. The finite places of k will be identified
with the closed points of X. An abelian variety A/k with good reduction over a nonempty open
U ⊂ X extends to an abelian scheme over U that we denote by A/U by abuse of notation.

1.4.2. On abelian groups. Let M be an abelian group. The n-torsion subgroup is denoted by by
Mn, and Mp∞ denotes the p-primary torsion

⋃
nMpn . The subgroup

div(M) =
⋂
n≥1

nM

of divisible elements of M contains the maximal divisible subgroup

Div(M)

of M , which equals
⋃

im(ϕ) for all ϕ : Q → M . For matters of clarity we will distinguish
between "a is divisible by p", meaning there is a′ with a = pa′, and "a is p-divisible", which
means that for every n ≥ 1 there is a′ with a = pna′. For a discussion of div(M) and Div(M)
see Jannsen [Ja88] §4. In particular note that in general div(M) is strictly larger than Div(M),
as in the following example:

M =
(⊕

n

1

2n
Z/Z

)
/ ker

(
sum :

⊕
n

1

2
Z/Z→ 1

2
Z/Z

)
where div(M) = 1

2Z/Z and Div(M) = 0.
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2. Preliminaries and reminder on global Galois cohomology

2.1. Tate–Shafarevich and Selmer groups. Let k be an algebraic number field. For a
discrete Galk-module M we set

Xi(k,M) = ker
(

Hi(k,M)
resv−−→

∏
v

Hi(kv,M)
)

with the restriction maps resv induced by the embedding k ↪→ kv, and the product ranges over
all places v of k. The Tate–Shafarevich group X(A/k) for an abelian variety A over k is defined2

as X1(k,A) = X1(k,A(kalg)), and in particular it is a torsion group. This implies that the
Bashmakov problem can be considered one prime at a time. We will now concentrate on the
p-primary part of the Bashmakov problem, i.e., analyzing the intersection of X(A/k)p∞ and
the maximal divisible subgroup of the Weil-Châtelet group.

Let p be a prime number. The pn-torsion Selmer group of A is defined as

H1
Sel(k,Apn) = ker

(
H1(k,Apn)→

∏
v

H1(kv, A)
)

with v ranging over all places of k. A quick diagram chase with the cohomology sequence of the
Kummer sequence

0→ Apn → A
pn·−−→ A→ 0

over k and all the localisations kv yields the fundamental short exact sequence

0→ A(k)/pnA(k)
δkum−−−→ H1

Sel(k,Apn)→X(A/k)pn → 0. (2.1)

It is known that H1
Sel(k,Apn) is a finite group.

2.2. Generalized Selmer groups. The Selmer group H1
Sel(k,Apn) is a global H1 with local

Selmer-conditions at every place. A generalized Selmer group H1
L(k,M) for a discrete finitely

generated Galk-module M occurs by imposing local conditions Lv ⊂ H1(kv,M) as follows

H1
L(k,M) = ker

(
H1(k,M)→

∏
v

H1(kv,M)/Lv
)
,

such that the local conditions Lv agree for almost all v with the unramified local cohomology

H1
nr(kv,M) = inf

(
H1(κ(v),M Iv)

)
= ker

(
H1(kv,M)→ H1(Iv,M)

)
.

Here κ(v) is the residue field at v and Iv ⊂ Galkv is the inertia subgroup. We do not bother
to define H1

nr for infinite places v since there are only finitely many of them. For a textbook
reference we refer to [NSW08] (8.7.8).

Observe that in the case when M = Apn , it is known that the image of the boundary map
δkum of the Kummer sequence

Selv = δkum
(
A(kv)/p

nA(kv)
)
⊂ H1(kv, Apn)

coincides with H1
nr(kv, Apn) at places of good reduction with residue characteristic distinct from

p (see [Mi86] Theorem 2.6). Hence for M = Apn with Lv = Selv we find back our original
definition of the Selmer group.

Let L = (Lv) be local conditions for the Galk-module M , and let Q be a finite set of places
of k. Then we set LQ (resp. LQ) for the local conditions L but free at Q (resp. L but trivial
at Q) which agree with L at all places v /∈ Q and with LQ,v = H1(kv,M) (resp. LQv = 0) for all
v ∈ Q. We shall mainly be working with the following generalized Selmer groups. Let Q be a
finite set of finite places. The Selmer group free at Q is defined as

H1
SelQ

(k,Apn) = ker
(

H1(k,Apn)→
∏
v 6∈Q

H1(kv, Apn)/Selv

)
2The traditional definition of X(A/k) is indeed equivalent due to the subtle equality

H1(kv, A) = H1(kv, A(kalg
v )) = H1(kv, A(kalg)).
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and the Selmer group trivial at Q is defined as

H1
SelQ

(k,Apn) = ker
(

H1(k,Apn)→
∏
v 6∈Q

H1(kv, Apn)/Selv ×
∏
v∈Q

H1(kv, Apn)
)
.

In the case when Q is the set of primes of k dividing p, we use H1
Selp(k,Apn) (resp. H1

Selp(k,Apn))
to denote the Selmer groups H1

SelQ
(k,Apn) (resp. H1

SelQ
(k,Apn)). Obviously we have inclusions

H1
SelQ

(k,Apn) ⊆ H1
Sel(k,Apn) ⊆ H1

SelQ
(k,Apn).

2.3. Dual conditions and Euler characteristic formula. Let L = (Lv) be a collection of
local conditions for a discrete finitely generated Galk-module M . The dual local conditions
L∗ = (L∗v) are defined as the orthogonal complements L∗v = L⊥v with respect to the local Tate-
duality pairing. Hence L∗ is a collection of local conditions for the dual Galk-module

MD = Hom(M,Q/Z(1)).

We know that
H1

nr(kv,M) = H1
nr(kv,M

D)⊥

for almost all v, see [Mi86] Theorem 2.6, and consequently, if H1
L(k,M) is a generalized Selmer

group then so is H1
L∗(k,M

D). IfM = Apn for an abelian variety A/k, so thatMD = Atpn , where
At is the dual abelian variety, then the Selmer condition is self-dual: Sel∗ = Sel.

In order to relate sizes of these generalized Selmer groups, one adapts the Tate–Poitou exact
sequence as in the proof of [NSW08] Theorem (8.7.9). We denote by (−)∨ the Pontrjagin dual
Hom(−,Q/Z) and get the exact sequence

0→ H2(kS/k,M
D)∨∏

v∈S H0(kv,M)
→ H1

L(k,M)→
∏
v∈S

Lv → H1(kS/k,M
D)∨ → H1

L∗(k,M
D)∨ → 0 (2.2)

where S is a finite set of primes of k which includes all the archimedean primes, all primes
that ramify in the extension k(M)/k, all the primes for which Lv 6= H1

nr(kv,M), as well as all
the primes dividing the order of M . Here, as usual, the field kS is the maximal extension of k
unramified outside S.

For two sets of local conditions L0 ⊆ L, meaning L0,v ⊆ Lv for all v, we use the natural map
of (2.2) for L0 to the sequence for L with the same set S adapted to both local conditions,

0 // H
2(kS/k,M

D)∨∏
v∈S H0(kv ,M)

// H1
L0

(k,M) //
� _

��

∏
v∈S L0,v� _

��

// H1(kS/k,M
D)∨ // H1

L∗0
(k,MD)∨

����

// 0

0 // H
2(kS/k,M

D)∨∏
v∈S H0(kv ,M)

// H1
L(k,M) //

∏
v∈S Lv // H1(kS/k,M

D)∨ // H1
L∗(k,M

D)∨ // 0.

A diagram chase leads to

0 // H1
L0

(k,M)

H2(kS/k,MD)∨
//

� _

��

∏
v∈S L0,v
� _

��

// ker
(

H1(kS/k,M
D)∨ → H1

L∗0
(k,MD)∨

)
� _

��

// 0

0 // H1
L(k,M)

H2(kS/k,MD)∨
//
∏
v∈S Lv // ker

(
H1(kS/k,M

D)∨ → H1
L∗(k,M

D)∨
)

// 0.

Applying the snake lemma twice we find thus a short exact sequence

0→ H1
L(k,M)

H1
L0

(k,M)
→
∏
v

Lv/L0,v →

(
H1

L∗0
(k,MD)

H1
L∗(k,M

D)

)∨
→ 0 (2.3)

where we can afford to take the product over all places v since L0,v = Lv for v /∈ S by assumption.
We will apply (2.3) in the following special case which will help estimating sizes of generalized
Selmer groups later.
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Proposition 2. Let M be a finite self-dual Galk-module and let L = L∗ be a system of local
conditions for M that is self dual with respect to the identification M ∼= MD. Let Q be a finite
set of places. Then we have the numerical Euler-Poincaré characteristic formula

|H1
LQ

(k,M)|
|H1

LQ(k,M)|
=
∏
v∈Q
|Lv|.

Proof. We count for L ⊆ LQ by H1
L(k,M) = H1

L∗(k,M
D) and by (2.3)

|H1
LQ

(k,M)|
|H1

LQ(k,M)|
=
|H1

LQ
(k,M)|

|H1
L(k,M)|

· |H
1
L∗(k,M

D)|
|H1

L∗Q
(k,MD)|

=
∏
v∈Q
|H1(kv,M)/Lv| =

∏
v∈Q
|Lv|,

where the last equality is due to

|H1(kv,M)/Lv| = |Hom(L∗v,Q/Z)| = |L∗v| = |Lv|
because of the self duality of L. �

3. Translation between Galois cohomology and étale cohomology

3.1. Compactly supported étale cohomology. In this section we shall not be concerned
with the effect of real places by assuming there are none, or that we deal with p 6= 2. Other-
wise, there are expositions of the necessary modifications after Artin–Verdier by introducing the
Woods-Hole site, see for example [Zi78].

Set X = Spec(ok) for the ring of integers ok of an algebraic number field k. Let j : U ⊂ X be
a dense Zariski open. Then compactly supported cohomology of a constructible torsion sheaf F
on the small étale site Uét is defined as

Hi
c(U,F ) = Hi(X, j!F ).

Restriction induces the natural "forget support" map Hi
c(U,F )→ Hi(U,F ).

3.2. Étale cohomology and the relation to generalized Selmer groups. Let M be a
locally constant constructible sheaf on Uét with generic fiber the finite Galk-module M . Part of
the localisation sequence for an open V ⊂ U reads⊕

v∈U\V

H1
v(U,M )→ H1(U,M )→ H1(V,M )→

⊕
v∈U\V

H2
v(U,M ). (3.1)

As H1
v(U,M ) = 0 for locally constant sheaves M , we find that

H1(U,M ) ↪→ H1(k,M) = lim−→
V

H1(V,M )

is injective. Let L = (Lv) be a collection of local conditions for M . We define the étale
cohomology with local conditions as

H1
L(U,M ) = ker

(
H1(U,M )→

∏
v

H1(kv,M)/Lv
)
, (3.2)

which agrees with H1(U,M )∩H1
L(k,M) inside H1(k,M). In particular, we have étale cohomology

H1
Sel(U,Apn) with Selmer condition for a Zariski open U ⊂ X with good reduction of A over U

and a prime number p invertible on U .

Proposition 3. If Lv = H1
nr(kv,M) for all v ∈ U then

H1
L(U,M ) = H1

L(k,M). (3.3)

If in addition Lv = H1(kv,M) for all v 6∈ U , then

H1(U,M ) = H1
L(k,M),

whereas if in addition Lv = 0 for all v 6∈ U , then
im
(

H1
c(U,M )→ H1(U,M )

)
= H1

L(k,M).
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Proof. By definition of H1
L(U,M ) it suffices to show that H1

L(k,M) ⊂ H1(U,M ). Any class
α ∈ H1(k,M) lies in H1(V,M ) for small enough open V ⊂ U . The claim follows from (3.1)
because the image of an α ∈ H1

L(k,M) vanishes in

H2
v(U,M ) = H1(kv,M)/H1

nr(kv,M).

The additional claims follow from (3.3), the definition (3.2), and the exact sequence⊕
v∈X\U

Hi−1(kv,M)→ Hi
c(U,M )→ Hi(U,M )

resv−−→
⊕

v∈X\U

Hi(kv,M) (3.4)

for i ≥ 0. These exact sequences arise from the localisation sequence for U ⊂ X and the sheaf
j!M because by excision Hi+1

v (X, j!M ) = Hi(kv,M). �

Corollary 4. Let A/k be an abelian variety with good reduction over U and let p be a rational
prime invertible on U . With Q equal to the set of finite places v 6∈ U we have

H1
SelQ

(k,Apn) = H1(U,Apn) (3.5)

H1
SelQ

(k,Apn) = im
(

H1
c(U,Apn)→ H1(U,Apn)

)
(3.6)

Proof. By assumption for v ∈ U we have Selv = H1
nr(kv, Apn), so the corollary follows from

Proposition 3. �

Corollary 5. Let U ⊂ X be a Zariski open where the abelian variety A/k has good reduction
and p is invertible. By abuse of notation we also denote by A → U the smooth model of A/k.
Then for an open V ⊂ U the restriction map H1(U,A)→ H1(V,A) is injective and

X(A/k)p∞ ⊆ H1
div(k,A)p∞ ⊆ H1(U,A) ⊆ H1(k,A) = lim−→

V⊂U
H1(V,A).

Proof. An element of H1(U,A) is represented by a principal homogeneous spaceW under A over
U , which is trivial if and only W (U) is nonempty. The valuative criterion of properness yields
W (U) = W (V ) which proves the claim on injectivity.

Now H1
div(k,A)pn consists of classes that are trivial outside all v | p, see (1.2), hence is

contained in the image of

H1
Selp(U,Apn) = H1

Selp(k,Apn)→ H1(k,A)

which maps to H1(U,A). �

4. Review of Bashmakov’s results: when the pro-p fundamental group is free

In [Ba64] Bashmakov proves that

X(A/k)p∞ ⊆ Div(H1(k,A))

for abelian varieties A/k with very special properties. First, the number field k is required to
satisfy the following conditions:

(i) k contains the pth roots of unity ζp,
(ii) there is a unique p | (p) in k/Q,
(iii) and the class number of k is prime to p.

It is a well known result of Shafarevich [Sh63], that conditions (i)–(iii) imply that the complement

V = Spec(ok) \ {p}

has a free pro-p group as its maximal pro-p quotient π1(V )pro−p of its fundamental group, see
[NSW08] Cor 10.7.14. Moreover, the abelian variety A/k has to satisfy:

(iv) A/k has good reduction above V ,
(v) the action of Galk on Ap factors over a p-group.
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In [Ba64], Bashmakov does not require condition (v), although his argument at the very end
does depend on it. Namely, under these assumptions we compute by [Zi78] Proposition 3.3.1

H2(V,Apn) = H2(π1(V ), Apn).

Due to (v) and a theorem of Neumann [Ne75], see [NSW08] Cor 10.4.8, we find that

H2(π1(V ), Apn) = H2(π1(V )pro−p, Apn) = 0 (4.1)

which vanishes in view of the freeness of π1(V )pro−p recalled above.

Proposition 6. Let p be a regular prime number. Let k be a subfield of Q(ζp) and let A/k be an
abelian variety with good reduction away from the prime above p. If GalQ(ζp) acts via a p-group
on Ap, then H1

div(k,A)p∞ agrees with the p-part of Div(H1(k,A)).

Proof. We set U = Spec(ok[1/p]) and write by abuse of notation A/U for the smooth model of
A/k over U . By Corollary 5 we have the second and third inclusion in

Div(H1(k,A))p∞ ⊆ H1
div(k,A)p∞ ⊆ H1(U,A)p∞ ⊆ H1(k,A)p∞ .

Thus, and since H1(U,A)p∞ is a finitely cogenerated abelian torsion group, we find

Div(H1(k,A))p∞ = Div(H1(U,A)p∞) = div(H1(U,A)p∞).

It therefore suffices to show that every element of H1(U,A)p∞ is p-divisible in H1(U,A)p∞ . The
Kummer exact sequence

0→ Apr → A
pr·−−→ A→ 0

on Uét yields a short exact sequence

H1(U,A)
pr·−−→ H1(U,A)

δr−→ H2(U,Apr)

and the task left is showing δr = 0. Since Q(ζp)/k is of order prime to p, restriction via the
finite étale

V = Spec(Z[ζp, 1/p])→ U

is injective by the corestriction argument and we have by (4.1)

H2(U,Apn) ↪→ H2(V,Apn) = H2(π1(V )pro−p, Apn) = 0,

completing the proof. �

Example 7. Examples of abelian varieties above k = Q(ζp) with respect to a regular prime p
and which satisfy the constraints imposed by Bashmakov (including condition (v)) are given by
the Jacobian of the Fermat curve Xp + Y p = 1, see for example [AI82].

However, the natural second family of examples to consider, namely the Jacobian of the
modular curve X0(p) for p = 11 or p ≥ 17, fail condition (v). Indeed3, no prime m of the
Hecke algebra T above p is Eisenstein (those divide p− 1) and the corresponding representation
ρm : GalQ → GL2(T/m) is irreducible by Mazur [Ma78]. Thus ρm is surjective due to [Ri97].

5. Finite subgroups of GL2

The purpose of this section is to provide the necessary statements from finite group theory.

Lemma 8. Let W be a finite dimensional Fp-vector space, and let G ⊂ GL(W ) be a subgroup
which intersects the center F∗p ∼= Z ⊂ GL(W ) nontrivially. Then the following holds.

(1) W and the adjoint representation End(W ) have no common irreducible factor.
(2) H1(G,W ) = 0.

3We thank K. Ribet for information on the Galois representation of the modular Jacobian.
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Proof. (1) The group H = G ∩ Z of homotheties in G acts trivially on every irreducible factor
of End(W ) and faithfully on every irreducible factor of W . Hence none of them can occur in
both W and End(W ).

(2) The inflation/restriction sequence for H EG reads

0→ H1(G/H,WH)→ H1(G,W )→ H1(H,W )G/H .

Since H was assumed nontrivial and is necessarily of order prime to p, both WH and H1(H,W )
vanish, and consequently also H1(G,W ) = 0. �

In the 2-dimensional case we have a further criterion.

Theorem 9. Let V be a vector space over Fp of dimension 2 with p ≥ 3, and let G ⊆ GL(V )
be a subgroup such that the G-module V is irreducible. Then the following holds:

(1) H1(G,V ) = 0,
and if, moroeover, G is not conjugate to a subgroup of S3 ⊆ GL(V ) with respect to a 2-
dimensional irreducible representation of S3, then:

(2) V and End(V ) have no common irreducible factor as G-modules.

Proof. We first recall the classification of subgroups of GL2(Fp), see §2 of [Se72]. Let G be the
image of G under the natural map GL2(Fp)→ PGL2(Fp). Then one of the following holds.

(a) p | #G and G is contained in a Borel B ⊂ GL2(Fp).
(b) p | #G and G contains SL2(Fp).
(c) p - #G and G is contained in a normalizer of a split torus.
(d) p - #G and G is contained in a normalizer of a non-split torus.
(e) p - #G and G is isomorphic to A4, S4, or A5.

The case p | #G. As by assumption G is not contained in a Borel, we conclude by the above
list that G contains SL(V ). Now since p ≥ 3, the group G necessarily meets the center of GL(V )
nontrivially, so that we conclude by Lemma 8.

The case p - #G. In this case H1(G,V ) = 0 holds trivially, so we are done with assertion (1).
If G belongs to case (e) of the above list, then Lemma 10 below shows that the intersection with
the center of GL(V ) is nontrivial and we conclude by Lemma 8.

It remains to discuss the case that p - #G and G is contained in the normalizer N = C o
Z/2Z of a torus C ⊂ GL(V ) such that V is an irreducible G-module. In order to understand
the G-action on End(V ) we identify V = Fp[α] with a separable quadratic Fp-algebra with
Aut(Fp[α]/Fp) = Z/2Z generated by F ∈ End(V ) such that

N = Fp[α]∗ o 〈F 〉 ⊂ GL(V ).

We find an isomorphism
Fp[α]⊕ Fp[α] · F ∼−→ End(V )

a+ b · F 7→ x 7→ ax+ bF (x)

as N -modules, where N acts on the first summand V1 = Fp[α] through the quotient

Fp[α]∗ o 〈F 〉� 〈F 〉 = Aut(Fp[α]/Fp) ⊂ GL(V ),

and, by a straight forward calculation left to the reader, on V2 = Fp[α] · F through the endo-
morphism

Fp[α]∗ o 〈F 〉 → Fp[α]∗ o 〈F 〉
which maps F to F and λ ∈ Fp[α]∗ to λ/F (λ), followed by the tautological action on V = Fp[α]
identified with Fp[α] · F by formally multiplying with F . As p - #G the representation theory
of G in Fp-vector spaces is semissimple and assertion (2) can only fail if V is isomorphic to V1
or V2.

Let H = G ∩ C be the intersection with the torus, hence a subgroup in G of index ≤ 2.
Because V is not a reducible G-module and p ≥ 3 we have #G ≥ 3 and therefore H 6= 1. As H
acts trivial on V1 we have V 6∼= V1 as G-modules. It remains to exclude V ∼= V2 as G-modules.

The representation V ⊗ Fp2 regarded as an H-module decomposes as a sum of characters
χ1 ⊕ χ2 of H. The representation V · F ⊂ End(V ) decomposes after scalar extension to Fp2 as
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H-module as χ1χ
−1
2 ⊕ χ2χ

−1
1 . Comparing the two, we find either χ1 = 1 = χ2, whence H = 1

contradicting the irreduciblity of V as a G-module. Or, χ1 = χ2
2 6= 1 and χ2 = χ2

1 6= 1 which
means χ1 and χ2 are of order 3 and determine each other. In this case H ∼= Z/3Z and acts on V
noncentrally and without a common fixed vector. In any case, split or non-split, the subgroup
H ⊂ C is normal but not central in N . Hence either H = G and G can be embedded in a
subgroup S3 ⊆ GL(V ), or H EG of index 2 and G ∼= S3 itself. In any case, these subgroups G
are excluded by assumption. This completes the proof of Theorem 9. �

Lemma 10. Let G be a subgroup of GL2(Fp) such that p - #G and in the notation above G is
isomorphic to A4, S4, or A5, i.e., in case (e) of the above list. Then G meets the center Z of
GL2(Fp) nontrivially.

Proof. It suffices to discuss G = A4. If G ∩ Z = 1, then we have a copy A4 ⊆ GL2(Fp) and
p > 2. The 2-Sylow subgroup V4 ∼= Z/2Z×Z/2Z of A4 has a completely reducible representation
theory already rationally over Fp as we may produce enough projectors already over Fp. Hence
V4 is contained in a split torus C = F∗p × F∗p and must agree with the 2-torsion of C. Thus V4
already contains the central element −1, a contradiction. �

6. By induction to the structure of generalized Selmer groups

6.1. The Selmer splitting field. Let A/k be an abelian variety. We set

H1
Sel(k(Ap)/k,Ap)

for the intersection of H1(k(Ap)/k,Ap) under inflation with H1
Sel(k,Ap) in H1(k,Ap). Then we

have the following commutative diagram with exact rows

0 // H1
Sel(k(Ap)/k,Ap)

⊆
inf // H1

Sel(k,Ap)
res //

⊆

HomGal(k(Ap)/k)(Galabk(Ap)
⊗Fp, Ap)

0 // H1(k(Ap)/k,Ap)
inf // H1(k,Ap)

res // H1(k(Ap), Ap)
Gal(k(Ap)/k)

The exactness of the top row follows from the exactness of the bottom row. The restriction map
defines a canonical continuous Galk-equivariant pairing

H1
Sel(k,Ap)×

(
Galabk(Ap)

⊗Fp
)
→ Ap.

Let Galabk(Ap)
⊗Fp �M be the continuous finite quotient by the right kernel of the pairing. Then

the restriction map factors as

H1
Sel(k,Ap)→ HomGal(k(Ap)/k)(M,Ap) ⊂ HomGal(k(Ap)/k)(Galabk(Ap)

⊗Fp, Ap).

The quotient M corresponds to a finite Galois extension L/k(Ap), the Selmer splitting field
of A with respect to the prime p, more precisely M = Gal(L/k(Ap)). Since M is a quotient
as Gal(k(Ap)/k)-module, the field L is in fact Galois over k and Gal(k(Ap)/k) acts on M by
conjugation after lifting under the quotient map Gal(L/k)� Gal(k(Ap)/k).

Lemma 11. Let A/k be an abelian variety, and let L be the Selmer splitting field with respect
to p. Then the following holds.

(1) The following sequence is exact:

0→ H1
Sel(k(Ap)/k,Ap)→ H1

Sel(k,Ap)→ HomGal(k(Ap)/k)(Gal(L/k(Ap)), Ap) (6.1)

(2) Every irreducible Gal(k(Ap)/k)-module subquotient of Gal(L/k(Ap)) is isomorphic to an
irreducible subquotient of Ap.

Proof. (1) is obvious by the definition of L. For (2) we note that the defining pairing yields an
injective map

Gal(L/k(Ap)) = M ↪→ Hom(H1
Sel(k,Ap), Ap)

∼= Ap ⊕ . . .⊕Ap (6.2)

of Gal(k(Ap)/k)-modules, where H1
Sel(k,Ap) carries trivial action. �
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6.2. The structure of some generalized Selmer groups. The following theorem will be
ultimately applied to elliptic curves that are automatically principally polarized.

Theorem 12. Let A/k be a principally polarized abelian variety, and let p be a prime number,
such that

(i) Ap(k) = 0,
(ii) H1(k(Ap)/k,Ap) = 0.

Let Q be a finite set of finite primes of k not dividing p, and fix n ∈ N such that

(iii) A has good reduction at v for all v ∈ Q;
(iv) the set of Frobenius elements Frobw ∈ Gal(L/k(Ap)) where L is the Selmer splitting field

of A/k with respect to p and w denotes a prime of k(Ap) dividing v, when v ranges over
Q, generates Gal(L/k(Ap)) as a Gal(k(Ap)/k)-module;

(v) Apn(kv) is a free Z/pnZ-module for all v ∈ Q.
Then for all m ≤ n we have that

(1) H1
SelQ

(k,Apm) = 0,
(2) H1

SelQ
(k,Apm) ∼=

∏
v∈QApm(kv) under a non-canonical group isomorphism.

Proof. Step 1: We first treat (1) for m = 1. We set k1 = k(Ap), and k1,w for the completion of
k(Ap) in w. Localization at v respectively w yields a commutative diagram

H1
Sel(k,Ap)

resk1/k //

��

HomGal(k1/k)(Gal(L/k1), Ap)

evw
��

H1
nr(kv, Ap)

resk1,w/kv // H1
nr(k1,w, Ap) = Ap

with the evaluation map evw mapping a morphism ϕ : Gal(L/k1) → Ap to its value ϕ(Frobw)
at the Frobenius element of w. Assumption (iv), the sequence (6.1), and assumption (ii) imply

H1
SelQ

(k,Ap) ⊆ H1
Sel(k(Ap)/k,Ap) ⊆ H1(k(Ap)/k,Ap) = 0.

Step 2: We now show (1) by induction on m terminating in n. As an abbreviation we set

Lm,v = SelQv ⊆ H1(kv, Apm)

for the Selmer condition trivial at Q for Apm-coefficients. Then the following diagram is com-
mutative and the rows are exact

Lm−1,v //

��

Lm,v //

��

L1,v

��

// 0

0 // H1(kv, Apm−1)/δkum
(
Ap(kv)

)
// H1(kv, Apm)

pm−1· // H1(kv, Ap)

(6.3)
The snake lemma applied to (6.3) yields that in the commutative diagram

Ap(k)

��

δkum // H1(k,Apm−1)

��

// H1(k,Apm) //

��

H1(k,Ap)

��∏
v Ap(kv)

δkum //
∏
v

H1(kv ,Apm−1 )

Lm−1,v

//
∏
v
H1(kv ,Apm )

Lm,v

//
∏
v
H1(kv ,Ap)

L1,v

(6.4)

the bottom row is exact. The map δkum in the bottom row is the zero map: by assumption
(v) when v ∈ Q, then Apm(kv)/Apm−1(kv) → Ap(kv) is surjective for m ≤ n, or, in general for
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v /∈ Q, by comparing the boundary maps for the diagram

0 // Apm−1 // Apm
� _

��

pm−1· // Ap
� _

��

// 0

0 // Apm−1 // A
pm−1· // A // 0

(It is the limitation of assumption (v) that forces the induction terminate at n). Again the snake
lemma applied to (6.4) yields exactness of

H1
SelQ

(k,Apm−1)→ H1
SelQ

(k,Apm)→ H1
SelQ

(k,Ap)

so that with Step 1 we deduce (1) by induction on m.
Step 3: By (i) we have

H1(k,Apm) = H1(k,Apn)pm ,

and it follows then from the definition that

H1
SelQ

(k,Apm) = H1
SelQ

(k,Apn)pm .

is also the exact pm-torsion.
Step 4: Since A is principally polarized, the coefficients Apm are self dual and the Selmer

condition is self dual with respect to the identification Apm = ADpm .
With the Euler-Poincaré characteristic formula of Proposition 2 and (1) we compute

|H1
SelQ

(k,Apm)| =
|H1

SelQ
(k,Apm)|

|H1
SelQ

(k,Apm)|
=
∏
v∈Q
|A(kv)/p

mA(kv)| =
∏
v∈Q
|Apm(kv)|.

The last equation |A(kv)/p
mA(kv)| = |Apm(kv)| follows because by Mattuck–Tate the p-primary

part of A(kv) is finite since v - p for all v ∈ Q.
Step 5: In order to show (2) it suffices to treat the case of H1

SelQ
(k,Apn). By Steps 3 and 4

we conclude that H1
SelQ

(k,Apn) has the same number of pm-torsion elements for every m ≤ n as∏
v∈Q

Apn(kv),

so that both groups are noncanonically isomorphic. This proves (2). �

6.3. The case of elliptic curves. Based on the group theory of GL2 in Section 5 we can show
existence for auxiliary sets of primes Q in Theorem 12 in the special case of elliptic curves.

Proposition 13. Let E/k be an elliptic curve and let p be an odd prime number such that Ep
is an irreducible Galk-module and Gal(k(Ep)/k) ⊆ GL(Ep) is not contained in a conjugate of
S3 ⊆ GL(Ep). Fix an n ∈ N. Then

(1) Ep(k) = 0,
(2) and H1(k(Ep)/k,Ep) = 0.

Moreover, we can find a finite set of primes Q not dividing p such that
(3) E has good reduction at v for all v ∈ Q;
(4) the primes v ∈ Q are completely split in k(Epn)/k;
(5) the set of Frobw ∈ Gal(L/k(Ep)) where L is the Selmer splitting field of E/k with

respect to p and w denotes a prime of k(Ep) dividing v as v varies though Q, generates
Gal(L/k(Ep)) as a Gal(k(Ep)/k)-module.

In particular, for all m ≤ n we have
(6) H1

SelQ
(k,Epm) ∼= (Z/pmZ)2·#Q.
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Proof. The subgroup Ep(k) ⊆ Ep(kalg) is a Galk-submodule and thus in view of the irreducibility
assumption either all or nothing. In case of trivial Galk-action, the module Ep is not irreducible,
so that we conclude (1). Assertion (2) follows from Theorem 9 (1).

We will now construct the set Q of auxiliary primes. First we prove that L and k(Epn)
are linearly disjoint over k(Ep). Indeed, let K = L ∩ k(Epn) be their intersection and set
M = Gal(K/k(Ep)) for the abelian Galois group over k(Ep). Then, since K/k is Galois, the
projection

Gal(L/k(Ep))�M

is a surjection of Gal(k(Ep)/k)-modules. It follows from Lemma 11 that M has a composition
series as Gal(k(Ep)/k)-module consisting of irreducible subquotients of Ep. On the other hand,
the group Gal(k(Epn)/k(Ep)) is a subgroup of

N = ker
(

GL(Epn)→ GL(Ep)
)
.

The group N is solvable with abelian subquotients

Nm = ker
(

GL(Epm)→ GL(Epm−1)
)

that are canonically Gal(k(Ep)/k)-modules by conjugation with lifts and as such isomorphic
to the adjoint representation of Gal(k(Ep)/k) on End(Ep). Since, by Theorem 9 (2), Ep and
End(Ep) have no common irreducible Gal(k(Ep)/k)-subquotient, we deduce that M = 0 and
K = k(Ep), which means that L and k(Epn) are linearly disjoint over k(Ep).

The Chebotarev density theorem enables us to choose a finite set Q of finite places v - p in
the locus of good reduction of E/k, so that the Frobenius elements Frobv for v ∈ Q satisfy

(i) the image of Frobv in Gal(k(Epn)/k) is trivial,
(ii) the images of Frobv for v ∈ Q generate Gal(L/k(Ep)).

The linear disjointness of L and k(Epn) over k(Ep) implies that (i) and (ii) do not contradict
each other. This shows (3)–(5).

In order to prove (6) we apply Theorem 12 with the set Q constructed above. Indeed, elliptic
curves are principally polarized and (4) implies that Epn(kv) ∼= Z/pnZ× Z/pnZ. �

7. Intersection with the maximal divisible subgroup

We are ultimately interested in understanding the intersection of X(A/k) with the maximal
divisible subgroup of the Weil–Châtelet group Div

(
H1(k,A)

)
. We proceed by analyzing one

prime at a time.

7.1. Using the Euler characteristic formula. Recall from (1.2) that Div
(

H1(k,A)p∞
)
is

locally trivial at all primes v which do not divide p. This implies that the image of H1
Selp(k,Ap∞)

in H1(k,A) contains Div
(

H1(k,A)p∞
)
, and together with the analysis in Section §2.3 gives us

a way of exploring the intersection of X(A/k)p∞ with Div
(

H1(k,A)p∞
)
. We will follow this

path first for a general abelian variety and then in the case of elliptic curves.

Lemma 14. Let A/k be an abelian variety, and let p be a rational prime. If H1
Sel(k,A

t
pn) equals

H1
Selp(k,Atpn) for almost all n then Div

(
H1(k,A)p∞

)
6= 0 but its intersection with X(A/k)p∞

agrees with Div
(
X(A/k)p∞

)
.

Remark 15. The assumption H1
Sel(k,A

t
pn) = H1

Selp(k,Atpn) for almost all n implies by (2.1) that

At(k) ⊆
⋂
n≥1

pnAt(kv)

where v | p is a place of k. Therefore At and, being isogenous, also A have trivial algebraic rank.

Proof of Lemma 14. Consider the sequence (2.3) for M = Apn , L = Selp and L0 = Sel. Then,
since L∗ = Selp, our assumption H1

Sel(k,A
t
pn) = H1

Selp(k,Atpn) for n � 0 leads to the exact
sequence

0→ H1
Sel(k,Apn)→ H1

Selp(k,Apn)→
∏
p|p

H1(kp, A)pn → 0. (7.1)
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Local Tate duality implies that we have the following group isomorphism∏
p|p

H1(kp, A)pn ' (Z/pnZ)d ⊕
∏
p|p

A(kp)p∞/p
n (7.2)

where d = [k : Q] · dim(A) and the order of
∏

p|pA(kp)p∞/p
n is independent of n for n� 0. In

the limit for n→∞ the exact sequence (7.1) becomes the exact sequence

0→ H1
Sel(k,Ap∞)→ H1

Selp(k,Ap∞)→
∏
p|p

H1(kp, A)p∞ → 0, (7.3)

and local Tate duality implies an isomorphism∏
p|p

H1(kp, A)p∞ =
∏
p|p

Hom
(
A(kp),Qp/Zp

) ∼= (Qp/Zp)d ⊕
∏
p|p

A(kp)p∞

Let Dn ' (Z/pnZ)d be the intersection of the maximal divisible subgroup

D = Div
(∏

p|p

H1(kp, A)p∞
)
' (Qp/Zp)d

with the pn-torsion subgroup
∏

p|p H1(kp, A)pn . Since (7.1) is an exact sequence of finite length
Z/pnZ-modules, the set Sn of partial splittings sn : Dn → H1

Selp(k,Ap∞) is finite and non-
empty. Restriction defines a map Sn+1 → Sn, and a well-known compactness argument shows
that lim←−n Sn is non-empty. An element s of the projective limit is nothing but a partial splitting
s : D → H1

Selp(k,Ap∞) of (7.3). We conclude that the sequence

0→ Div
(

H1
Sel(k,Ap∞)

)
→ Div

(
H1

Selp(k,Ap∞)
)
→ Div

(∏
p|p

H1(kp, A)p∞
)
→ 0. (7.4)

is split exact. Moreover, if we map to H1(k,A)p∞ , in view of the discussion at the beginning of
this section we find an exact sequence

0→X(A/k)p∞ → im
(

H1
Selp(k,Ap∞)→ H1(k,A)p∞

)
→
∏
p|p

H1(kp, A)p∞ → 0,

and again exploiting the partial splitting s we find that

0→ Div
(
X(A/k)p∞

)
→ Div

(
H1(k,A)p∞

)
→ Div

(∏
p|p

H1(kp, A)p∞
)
→ 0

is also split exact. It follows that Div
(

H1(k,A)p∞
)
is nontrivial of corank at least

d = [k : Q] · dim(A)

and that indeed the intersection of X(A/k)p∞ ∩Div
(

H1(k,A)p∞
)
lies in Div

(
X(A/k)

)
. �

The corank of a p-primary torsion group M = (Qp/Zp)n ×M0 with finite M0, is the well-
defined number n = corankZp(M).

Proposition 16. Let A/k be an abelian variety with algebraic rank r < d = dim(A) · [k : Q].
Then Div(H1(k,A)) contains a copy of (Q/Z)d−r.

Proof. We can focus on the p-primary part for a prime number p and have to compute the
corank of Div(H1(k,A)p∞). We set sp = corankZp(H1

Selp(k,Ap∞)), s = corankZp(H1
Sel(k,Ap∞)),

and sp = corankZp(H1
Selp(k,Ap∞)). These coranks are constant on isogeny classes, in particular

they are the same for the dual At. Analyzing the asymptotic cardinality for n� 0 in (2.3) with
M = Apn , L = Selp and L0 = Sel, we obtain

sp − sp = (sp − s) + (s− sp) = d.

The exact sequence

0→ A(k)⊗Qp/Zp → H1
Selp(k,Ap∞)→ ker

(
H1(k,A)p∞ →

∏
v-p

H1(kv, A)
)
→ 0 (7.5)
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splits since A(k)⊗Qp/Zp is a divisible group. Therefore (7.5) remains exact upon applying the
functor Div(−). Using the exact sequence

0→ A(k)⊗Qp/Zp → Div
(

H1
Selp(k,Ap∞)

)
→ Div

(
H1(k,A)p∞

)
→ 0

we find
corankZp

(
Div

(
H1(k,A)p∞

))
= sp − r = d+ sp − r (7.6)

which is ≥ d− r and proves the proposition. �

7.2. Results for elliptic curves over Q.

Proposition 17. Let E/Q be an elliptic curve of trivial algebraic rank. Then we have:
(1) Div

(
H1(Q, E)

)
contains a copy of Q/Z and in particular is nontrivial.

(2) If X(E/Q) is finite, then Div
(

H1(Q, E)
) ∼= Q/Z and

X(E/Q) + Div
(

H1(Q, E)
)

= H1
div(Q, E).

Proof. (1) This is a special case of Proposition 16.
(2) Fusing together the exact sequences (1.2) for all p we obtain

0→X(E/Q)→ H1
div(Q, E)→ Q/Z→ 0

which is exact since X(E/Q) was assumed finite and there is a copy of Q/Z in H1
div(Q, E) by

(1). The result follows at once. �

Theorem 18. Let E/Q be an elliptic curve of trivial analytic rank. Then we have:
(1) The intersection X(E/Q)p∞ with Div

(
H1(Q, E)p∞

)
is trivial for all odd primes p of

good reduction such that the GalQ-representation on Ep is irreducible.
(2) Div

(
H1(Q, E)

) ∼= Q/Z and the sum

X(E/Q)p∞ ⊕Div
(

H1(Q, E)
)
p∞

= H1
div(Q, E)p∞

is direct for all p as in (1).

Remark 19. We refer to the example in Section §8 for an elliptic curve E/Q of trivial analytic
rank with non-trivial 3-torsion in X(E/Q) ∩Div(H1(Q, E)).

Proof of Theorem 18. Since the analytic rank of E/Q is trivial we know that X(E/Q) is finite
(see [Ko90]), and hence (2) follows from (1) and Proposition 17. We now prove (1) in several
steps.

Step 1: We choose a quadratic imaginary extension K = Q(
√
−d) such that

(i) K is distinct from the field of complex multiplication of E in case E has CM,
(ii) K/Q is linearly disjoint from Q(Ep)/Q,
(iii) d ≥ 5,
(iv) E/K has analytic rank 1,
(v) all the primes dividing the conductor of E/Q split,
(vi) p is inert in K/Q.

Friedberg, and Hoffstein have shown that such an extension exists (see [FH95] Theorem B(2)).
Step 2: We fix n ∈ N large enough so that
(i) pn−1X(E/K)p∞ = 0,
(ii) pn does not divide the basic Heegner point defined over K.

This is possible since we know that X(E/K) is finite, and due to the nontriviality of this
Heegner point, since the analytic rank of E/K is 1.

Step 3: Since we have chosen Q(Ep) and K to be linearly disjoint over Q the restriction yields
an isomorphism

G = Gal(K(Ep)/K)
∼−→ Gal(Q(Ep)/Q).

Hence the assumption that Ep is an irreducible GalQ-module, implies that it is also irreducible
as a GalK-module. Moreover, we have an isomorphism

Gal(K(Ep)/Q) = G× 〈σ〉,
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where
〈σ〉 = Gal(K(Ep)/Q(Ep))

∼−→ Gal(K/Q).

Step 4: The image Gal(K(Ep)/K) ⊆ GL(Ep) is not contained in a subgroup S3 ⊆ GL(Ep),
because p = 2 was excluded, if p = 3 then any 2-dimensional S3-representation is reducible, and
for p ≥ 5 we have

|det(Gal(K(Ep)/K))| = |det(Gal(Q(Ep)/Q))| = [Q(µp) : Q] = p− 1 > 2 = | det(S3)|.
Step 5: Let L be the Selmer splitting field of E over K with respect to p, see Section 6.1.

Because E is defined over Q and L is characteristic for the base change of E to K, we deduce
that L is Galois over Q. As in the proof of Proposition 13 we conclude from Step 3 and 4 that
L and K(Epn) are linearly disjoint over K(Ep). It follows from

L ∩Q(Epn) = K(Ep) ∩Q(Epn) = Q(Ep)

that the natural map to the fibre product

Gal(LK(Epn)/Q)
∼−→ Gal(L/Q)×Gal(Q(Ep)/Q) Gal(Q(Epn)/Q) (7.7)

is an isomorphism (here LK(Epn) denotes the compositum of L and K(Epn)).
Step 6: Let τ ∈ Gal(LK(Epn)/Q) denote a complex conjugation. The restriction of τ in

Gal(K(Ep)/Q) = G× 〈σ〉 ⊆ GL(Ep)× 〈σ〉
after a suitable choice of basis for Ep reads(

1
−1

)
· σ. (7.8)

We have to understand M = Gal(L/K(Ep)) as a G-module, more precisely as a G × 〈σ〉-
module. Recall from (6.2) that naturally, and thus even as G×〈σ〉-modules, we have an inclusion

M ↪→ Hom(H1
Sel(K,Ep), Ep).

Here the product acts through projection to 〈σ〉 on H1
Sel(K,Ep) and through projection to G on

Ep. Let χK/Q be the quadratic character associated to the extension K/Q. It follows (p is odd)
that as G× 〈σ〉-module

M ∼= (Ep)
a ⊕ (Ep ⊗ χK/Q)b (7.9)

for some a, b ∈ N, because Ep (and thus Ep ⊗ χK/Q) is irreducible and a submodule of a direct
sum of simple modules is isomorphic to the direct sum over a subset of those summands.

Since p is assumed to be odd, M splits as a direct sum

M = M+ ⊕M−

of its eigenspaces under τ . We claim thatM+ generatesM as aG-module. By the decomposition
(7.9) it suffices to prove this claim for the G× 〈σ〉-modules Ep and Ep ⊗ χK/Q. Due to (7.8) in
both cases τ acts via a matrix conjugate to(

1
−1

)
and the corressponding +-eigenspaces are nontrivial, so that these generate as a G-module by
the irreducibility of Ep (and thus Ep ⊗ χK/Q) as a G-module.

Step 7: Let S ⊆M = Gal(L/K(Ep)) be a generating set ofM . We pick a finite set of rational
primes Q of Q by choosing for every h ∈ S, using the Chebotarev density theorem, a rational
prime ` unramified in LK(Epn)/Q and coprime to the conductor of E/Q such that

(i) Frob` = τh ∈ Gal(L/Q), and
(ii) Frob` = τ ∈ Gal(Q(Epn)/Q).

These requirements are free of contradictions by the structure assertion (7.7).
This set of auxiliary primes Q satisfies the following properties:
(i) E has good reduction at ` ∈ Q,
(ii) ` ∈ Q is inert in K/Q,
(iii) |E(Kλ)pn | = p2n for every ` ∈ Q (with λ the unique prime of K above ` by (ii)),
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(iv) the set of Frobenius elements Frobw ∈ Gal(L/K(Ep)) where w denotes a prime of K(Ep)
dividing `, when ` ranges over Q, generates Gal(L/K(Ep)) as a Gal(K(Ep)/K)-module.

Indeed, properties (i)–(iii) are obvious and property (iv) holds by Step 6 because the τ -eigenspace
M+ is generated by elements of the form

Frobw = (Frob`)
2 = (τh)2 = τ(h) · h

where h ∈ S. Here again, p 6= 2 is used.
We can then apply Theorem 12 with the auxiliary set Q by now viewing Q as a set of primes

of K (since there is a unique prime λ of K above each ` ∈ Q). It follows that

H1
SelQ

(K,Epn) ' (Z/pnZ)2t

where t = #Q.
Step 8: We now argue as in Theorem 1.1.7 of [ÇW08]. Since by Step 1 (ii) we still have

Ep(K) = 0 and by Step 1 (iv) E(K) contains a non-torsion Heegner point we have

E(K)/pnE(K) ∼= Z/pnZ

and the exact sequence

0→ E(K)/pnE(K)→ H1
Sel(K,Epn)→X(E/K)pn → 0

splits. By the elementary divisor theorem for H1
Sel(K,Epn) ⊆ H1

SelQ
(K,Epn) and Step 7, and by

the large enough choice of n in Step 2(i) we find m1 ≤ . . . ≤ m2t−1 < n such that

H1
Sel(K,Epn) ∼= E(K)/pnE(K)⊕ Z/pm1Z⊕ . . .⊕ Z/pm2t−1Z.

Again by the choice of n we know

H1
Sel(K,Epn) ⊃ Z/pm1Z⊕ . . .⊕ Z/pm2t−1Z ∼−→X(E/K)pn = X(E/K)p∞ ,

meaning that we can construct X(E/K)p∞ by constructing 2t− 1 independent ramified classes
in H1

Sel(K,Epn) ⊆ H1
SelQ

(K,Epn).

Step 9: Our choice of primes ` ∈ Q in Step 7 allows us to construct Kolyvagin classes

{c`1 , . . . , c`t , c`1`2 , . . . , c`1`t} ⊆ H1
SelQ

(K,Epn),

where Q = {`1, . . . `t}. The assumption (ii) of Step 2 allows us to refine our choice of primes Q
in Step 7, as in section §1.4 of [ÇW08], so that

• c`1 is ramified at `1, and
• c`i and c`1`i are ramified at `i for every i ≥ 2.

Finally, since the analytic rank of E/Q is trivial we know that the complex conjugation τ fixes
c`i and τc`1`i = −c`1`i . This implies that we have constructed 2t−1 independent ramified classes
and that H1

Sel(Q, Epn) is contained in the subgroup of H1(K,Epn) generated by {c`1 , . . . , c`t}.
The assumption that p is inert in K/Q implies that p splits completely in K[`i]/K, where K[`i]
denotes the ring class field of conductor `i. Consequently, the classes {c`1 , . . . , c`t} are trivial at
p and hence

H1
Sel(Q, Epn) ↪→ H1

Selp(K,Epn).

Since p is odd and K/Q is a quadratic extension it follows that

H1
Sel(Q, Epn) = H1

Selp(Q, Epn).

Then, using Lemma 14, we see that the intersection X(E/Q)p∞ with Div
(

H1(Q, E)p∞
)
is a

subgroup of Div
(
X(E/Q)p∞

)
which is trivial since X(E/Q) is finite. �

Corollary 20. There are infinitely many elliptic curves E/Q of trivial analytic rank such that
the intersection of the Tate-Shafarevich group X(E/Q) and Div

(
H1(Q, E)

)
is a 2 N-power

torsion group, where N is the conductor of E/Q
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Proof. Recall that a Serre elliptic curve is an elliptic curve E/Q such that the image of the
product over all p of the p-adic representations associated to the elliptic curve

ρE : GalQ →
∏
p

GL(Ep∞) ∼= GL2(Ẑ)

has index 2 (the minimal possible index as noticed by Serre, see [Se79] Proposition 22).
Jones [Jo10] and Zywina [Zy10] consider the set of elliptic curves Ea,b in the form

Y 2 = X3 + aX + b

such that a and b are integers of Q that lie in the box defined by h(a, b) < x (where h denotes a
height on such pairs). They show that the ratio of the cardinality of the subset of Serre elliptic
curves by the total number of curves in the box h(a, b) < x approaches 1 as x goes to infinity.

Clearly, for a Serre elliptic curve the GalQ-representation Ep is irreducible for all primes p.
Hence in this sense for ’most’ elliptic curves E/Q, the GalQ-representation Ep is irreducible for
every prime p ≥ 2.

Friedberg and Hoffstein (see [FH95] Theorem B (1)) show that for every elliptic curve E/Q
there are infinitely many quadratic twists E′/Q of trivial analytic rank. Observe that if Ep is
irreducible then so is E′p. Hence we have infinitely many elliptic curves E′ of trivial analytic
rank, irreducible E′p for every prime p. It then follows that the p-primary part of X(E/Q) and
Div

(
H1(Q, E)

)
intersect trivially for every odd prime p of good reduction and the corollary

follows. �

Proposition 21. Let E/Q be an elliptic curve of non-trivial algebraic rank. Then

Div
(

H1(Q, E)
)

= Div
(
X(E/Q)

)
.

Proof. It suffices to argue for the p-primary part for every prime number p. Using (2.3) for
M = Epn , L = Selp and L0 = Sel together with local Tate duality, we see that

|H1
Selp(Q, Epn)|
|H1

Sel(Q, Epn)|
= |H1(Qp, E)pn | ·

|H1
Selp(Q, Epn)|
|H1

Sel(Q, Epn)|

≤ |E(Qp)/p
nE(Qp)|

| im
(
E(Q)/pnE(Q)→ E(Qp)/pnE(Qp)

)
|

= |E(Qp)/(p
nE(Qp) + E(Q))|

which is bounded independently of n since the algebraic rank of E/Q is non-trivial. In view
of the discussion at the beginning of this section it then follows that Div

(
H1(Q, E)p∞

)
⊆

Div
(
X(E/Q)

)
p∞

. The other inclusion is clear. �

Proposition 21 above can also be deduced from [Ba72] Theorem 7 and can essentially be found
in [HS09] Corollary 4.2. It has the following consequence.

Corollary 22. Let E/Q be an elliptic curve of analytic rank 1. Then Div
(

H1(Q, E)
)
is trivial.

Proof. Kolyvagin [Ko90] has shown that X(E/Q) is finite for all elliptic curves E/Q of analytic
rank 1 and that the algebraic rank is equal to 1 as well. Hence by Proposition 21 we find
Div

(
H1(Q, E)p∞

)
⊆ Div

(
X(E/k)

)
p∞

= 0 for all primes p. �

8. An example: the Jacobian of the Selmer curve

We are now discussing in detail the plane cubic

S = {3X3 + 4Y 3 + 5Z3 = 0}
describing Selmer’s curve of genus 1 that violates the Hasse principle. Its Jacobian E = Pic0S is
an elliptic curve over Q of analytic rank 0 given by the homogeneous equation

X3 + Y 3 + 60Z3 = 0 (8.1)

with [1 : −1 : 0] as its origin. The curve E has Mordell-Weil group E(Q) = 0, see [Ca91] §18
Lemma 2, and 3-torsion in an exact sequence

0→ µ3 → E3 → Z/3Z→ 0, (8.2)
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which splits over a field k/Q if and only if 60 is a cube in k. Note that (8.2) shows that with
respect to the prime p = 3 we are in the S3-case excluded in Proposition 13 (on top of E3 not
being irreducible).

The curve S, as a principal homogeneous space under E describes a nontrivial 3-torsion
element of X(E/Q), see [Ma93] I §4 and §9. Mazur and Rubin determine

X(E/Q) ∼= Z/3Z× Z/3Z

unconditionally, see [Ma93] Theorem 1 and §9, and give a list of the isomorphism classes as
genus 1 curves of the principal homogeneous spaces4 under E representing nontrivial elements
of X(E/Q) as, besides S,

S′ = {X3 + 5Y 3 + 12Z3 = 0},
S′′ = {X3 + 4Y 3 + 15Z3 = 0}, (8.3)

S′′′ = {X3 + 3Y 3 + 20Z3 = 0}.
Kummer theory and the vanishing E(Q) = 0 yield isomorphisms

H1
Sel(Q, E3)

∼−→ H1
Sel(Q, E3n)

∼−→X(E/Q).

The E3-torsor associated to an element of X(E/Q) is given by the zero set of XY Z = 0 in the
description given by (8.1) and (8.3). The Selmer group trivial at 3 can now be determined via
the defining exact sequence

0→ H1
Sel3

(Q, E3)→ H1
Sel(Q, E3)→ H1(Q3, E3)

since we only need to check whether XY Z = 0 on S, S′, S′′ or S′′′ has a Q3-point. This is true
for S and false for S′, S′′, S′′′ as can be deduced from Q∗3/(Q∗3)3 = 〈2, 3〉 with 10 being a cube in
Q∗3. We conclude that

X(E/Q) ⊃ 〈[S]〉 = H1
Sel3

(Q, E3) = H1
Sel3

(Q, E3n) ∼= Z/3Z.

Since E(Q3) has no 3-torsion, we find by local Tate duality

H1(Q3, E)3∞ = Hom(E(Q3),Q3/Z3) = Q3/Z3,

so that counting in (2.3) for M = E3n , L = Sel3 and L0 = Sel, leads to

|H1
Sel3(Q, E3n)| = 3n+1. (8.4)

The map H1
Sel3

(Q, E3n)→ H1(Q, E) is injective with image the 3n-torsion of the subgroup

H1
div(Q, E)3∞ = ker

(
H1(Q, E)→

∏
v 6=3

H1(Qv, E)
)
,

and hence
H1

Sel3(Q, E3∞) = H1
div(Q, E)3∞ ∼= Z/3Z×Q3/Z3.

Here we have used the elementary fact that for a finitely cogenerated torsion group M the
knowledge of the orders of n-torsion Mn for all n uniquely determines the structure as an
abstract group: the sizes are given by (8.4), while

H1
Sel3(Q, E3n) =

(
H1

Sel3(Q, E3∞)
)
3n

shows that we have indeed counted the exact 3n-torsion of a finitely cogenerated torsion group.
It follows that X(E/Q) meets the maximal divisible group of H1(Q, E) nontrivially, namely

X(E/Q) ∩Div(H1(Q, E)) = X(E/Q) ∩Div(H1
div(Q, E)) ∼= Z/3Z,

which shows the limitation of Theorem 18 towards p = 3: the prime p = 3 happens to be a
prime of additive bad reduction for E/Q and E3 is a reducible GalQ-module.

We proceed to determine, which of the principal homogeneous spaces S, S′, S′′ or S′′′ generates
the intersection X(E/Q)∩Div(H1(Q, E)), thereby preparing the answer to [Sx11] Question 49
given in Remark 25 below and completing the proof of Theorem B of the introduction.

4The element W ∈X(E/Q) is isomorphic to −W as a curve of genus 1.
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Proposition 23. The intersection X(E/Q) ∩ Div(H1(Q, E)) is generated by the class of the
Selmer curve S.

Proof. The Jacobian E of the Selmer curve has good reduction outside {2, 3, 5}. We set

U = Spec(Z[1/30])

and consider E by abuse of notation as the relative elliptic curve E/U . Since for v = 2, 5 neither
a cube root of 60 nor ζ3 is contained in Qv, we have E3(Qv) = 0 and thus by local Tate-duality

H1(Qv, E3) = H1(Qv, E9) = 0

for v = 2, 5. We conclude by Corollary 4 and (3.4) that

H1(U,E3) = H1
Sel3

(Q, E3) = X(E/Q) ∼= Z/3Z× Z/3Z,
H1

c(U,E3) = H1
Sel3

(Q, E3) = 〈[S]〉 ∼= Z/3Z,
H1(U,E9) = H1

Sel3
(Q, E9) ∼= Z/3Z× Z/9Z.

In order to decide which element of X(E/Q) generates the intersection with Div(H1(Q, E)),
it suffices to check which classes are divisible by 3 in H1(U,E9) which is the 9-torsion of

H1(U,E3∞) = H1
Sel3(Q, E3∞) = Z/3Z×Q3/Z3.

This is controlled by a Bockstein map as we will explain now. The long exact cohomology
sequence for

0→ E3 → E9 → E3 → 0 (8.5)

reads
0→ H1(U,E3)→ H1(U,E9)

”3·”−−→ H1(U,E3)
β−→ H2(U,E3)→ 0

where the Bockstein map β : H1(U,E3) → H2(U,E3) is surjective by counting and Artin–
Verdier duality

H2(U,E3) = Hom(H1
c(U,E3),Q/Z) ∼= Z/3Z

induced by the Weil pairing e : E3 ⊗ E3 → µ3, see [Zi78] Theorem 3.2 and [Zi78] Lemma 3.2.2.
We introduce the Weil–Bockstein pairing

〈−,−〉WB : H1(U,E3)×H1
c(U,E3)→ Z/3Z

〈a, b〉WB = e∗
(
β(a) ∪ b

)
.

With the "forget support map"

f i : Hi
c(U,E3)→ Hi(U,E3)

and the class of the Selmer curve s ∈ H1
c(U,E3) the claim of the proposition is equivalent to

β(f1(s)) = 0 which boils down to the vanishing of

〈f1(s), s〉WB.

Applying compactly supported cohomology to (8.5) we find the compact Bockstein

βc : H1
c(U,E3)→ H2

c(U,E3)

which is adjoint to β with respect to Artin–Verdier duality sponsored by the Weil pairing.
Moreover, the forget support maps f1 and f2 are also adjoints. We can thus compute

〈f1(s), s〉WB = e∗
(
f1(s)) ∪ βc(s)

)
= e∗

(
s ∪ f2(βc(s))

)
= e∗

(
s ∪ β(f1(s))

)
= −〈f1(s), s〉WB

due to anti-symmetry of the Weil-pairing, so that indeed 〈f1(s), s〉WB = 0. �

Remark 24. The proof of Proposition 23 given above can be used to identify the pairing 〈−,−〉WB

with the restriction of the Cassels–Tate pairing on X(E/Q) in the form of the "Weil–pairing
definition" of Poonen and Stoll [PS99] §12.2.
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Remark 25. Proposition 23 answers [Sx11] Question 49. The Selmer curve S/Q provides an
explicit example for a smooth projective curve with no rational point over Q, but rational points
everywhere locally, and nevertheless split fundamental group extension

1→ π1(S, s̄)→ π1(S, s̄)→ Galk → 1

due to [Sx12] Corollary 177. The splitting obviously does not come from a rational point, see
[Sx12] §13 for the context of the section conjecture of anabelian geometry.

Remark 26. We will show in a subsequent paper [ÇS12], when we discuss the divisibility ques-
tion in the sense of Cassels, that X(E/Q), and consequently H1

div(Q, E)3∞ , is contained in
div(H1(Q, E)). Therefore the Jacobian of the Selmer curve gives a concrete example where the
filtration (1.1) of the introduction has all its steps nontrivial.
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