Galois sections and p-adic period mappings

L. ALEXANDER BETTS AND JAKOB STIX

Abstract Let K be a number field not containing a CM subfield. For any smooth projective
curve Y/K of genus > 2, we prove that the image of the “Selmer” part of Grothendieck’s
section set inside the K,-rational points Y (K, ) is finite for every finite place v. This gives an
unconditional verification of a prediction of Grothendieck’s section conjecture. In the process
of proving our main result, we also refine and extend the method of Lawrence and Venkatesh,
with potential consequences for explicit computations.
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1. INTRODUCTION

Let K be a number field and Y/K a smooth projective (geometrically connected) curve of genus > 2.
Associated to Y one has the fundamental exact sequence
1= 78 (V) = 78(Y) = G — 1 (1.1)
on étale fundamental groups (at appropriate basepoints), where G is the absolute Galois group of K.
Every K-rational point y € Y(K) gives rise to a m¢*(Yz)-conjugacy class of splittings of (1.1), and
Grothendieck’s Section Congjecture predicts that every splitting of (1.1) arises in this way for a unique y.
In conjunction with the Mordell Conjecture, the Section Conjecture predicts that the set Sec(Y/K)
of conjugacy classes of splittings of (1.1) should be finite, but this remains unknown outside a handful of
particular examples where it can be shown that (1.1) has no splittings at all [HS09, LLSS, Stil0, Still].
Our aim in this paper is to prove a partial finiteness result for splittings of (1.1), unconditionally and
for an arbitrary curve Y, provided that K contains no CM subfield. In order to state our main result,
we introduce a subset of Sec(Y/K) of local-to-global nature.

Definition 1.1. A section s of (1.1), when restricted to a decomposition group G, at a place u of K,
yields a splitting of the local fundamental exact sequence

1 7' (Yg,) = 78" (Yi,) = Gu — 1.
We say that s is Selmer just when s|g, is the section arising from a K, -rational point y, € Y (K,,) for
each place u. We write Sec®® (Y/K) for the set of Selmer sections, and for a finite place u we write

loc, : Sec™(Y/K) — Y (K.,)
for the map taking a Selmer section s to the unique K,-point y,, giving rise to the restricted section s|¢g,, .
Our main theorem is as follows.
Theorem A. Let K be a number field containing no CM subfield, and let Y/K be a smooth projective
curve of genus > 2. Then for every finite place v of K, the image of the localisation map
loc, : Sec®(Y/K) — Y (K,)
is finite.
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Theorem A can be rephrased in terms of the finite descent obstruction. Recall that the set of modified
adelic points Y'(Ak)e of Y is the product of the finite adelic points [[,,., Y (K,) with the connected
components of the infinite adelic points [],,, mo(Y (Ky)), see [Sto07, §2]. The finite descent locus

Y(Ag)S CY(Ak)e

is a subset of the modified adelic points, which contains the K-rational points Y (K) and is conjecturally
equal to them [Sto07, Conjecture 9.1]. The relationship between the finite descent locus and the Selmer
section set is that YV (Ag)E= is exactly the image of Sec®(Y/K) under the total localisation map
loc: Sec®(Y/K) — Y (Ak)e (whose vth component is the map loc, above) [HS12, Theorem 11]. Hence
Theorem A implies the following shadow of the expected finiteness of Y (A )i—cov

Theorem B. Let K be a number field containing no CM subfield, and let Y/K be a smooth pro-
jective curve of genus > 2. Then for every finite place v of K, the projection of the finite descent
locus Y (A )5 on Y (K,) is finite.

The history of Grothendieck’s Section Conjecture is inextricably bound up with that of the Mordell
Conjecture, as it was Grothendieck’s original hope that a proof of the Section Conjecture would lead to a
new arithmetic-homotopical proof of the Mordell Conjecture. This paper rather reverses the relationship
between these two conjectures, in that our concern is to adapt techniques used to prove the Mordell
Conjecture to study the otherwise mysterious section set. In this way, Theorem A demonstrates that
the theory of the étale fundamental group is strong enough to support Mordell-like finiteness theorems,
giving a non-trivial finiteness constraint on the section set that applies to every curve Y, at least over
base fields containing no CM subfield.

1.1. Method of proof. The method we use in the proof of Theorem A is an adaptation of the method
developed by Brian Lawrence and Akshay Venkatesh in their recent new proof of the Mordell Conjecture
[LV20], albeit with some significant modifications necessary for our application. Let us describe our
argument in broad strokes, remarking on the differences from [LV20] as they arise.

We will take an explicitly obstruction-theoretic perspective on the strategy of [LV20]. Consider an
abelian-by-finite family over Y, meaning a sequence

XY 5Y

where Y/ — Y is a finite étale covering and X — Yf is a polarised abelian scheme. If y € Y/(K) is a
K-rational point, then the étale cohomology groups Hy, (X < Q,) of the geometric fibre X, y T are Galois

representations carrying extra structures: HZ, (X 7 Qp) is an algebra and HL (X .7 Qp) is a symplectic

Hgt (X VI Qp)-module in the category of Gk-representations. This allows us to cut out an obstruction
locus as follows.

Definition 1.2 (recalled as Definition 6.2). Let S be a finite set of places of K, and p a prime number.
A pair (A,V) of a (commutative) algebra A and a symplectic A-module V' in the category of Q,-linear
G i-representations is called S-good just when:

e A is unramified outside S;
e V is unramified, pure and integral of weight 1 outside S' (see Definition 2.1); and
e V is de Rham at all places over p, with Hodge—Tate weights in {0, 1}.

Let X — Y’ — Y be an abelian-by-finite family, and let S be a finite set of places of K containing all
places dividing poo and all places of bad reduction for X — Y. Let v be a finite place of K, lying over
the rational prime p. We define the Lawrence—Venkatesh locus

Y(KU)I)J(\,/S - Y(Ku)

to be the set of points y, € Y (K,) for which there exists an S-good pair (A, V) together with G,-
equivariant isomorphisms

H (X, %.,Q) = Alg, and Hg(X, % .,Q,)=V]g,

compatible with algebra and symplectic module structures.
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In [LV20, Definition 7.3], Lawrence and Venkatesh construct an abelian-by-finite family
X, =Y, =Y

called the Kodaira—Parshin family, where the parameter ¢ is an odd prime number. Our proof of
Theorem A consists of proving two statements.

(1) For any abelian-by-finite family X — Y’ — Y, any suitable set S and any finite place v | p of K,
the image of the localisation map loc, : Sec(Y/K)S' — Y (K,) is contained in Y(KH)I)‘(YS.
(2) For every self-conjugate finite place v of K, there exists an odd prime ¢ such that Y(KU)I;(\;S is

finite for all suitable S.

In the second point, self-conjugacy is a technical condition on the place v, slightly weaker than the
condition of friendliness in [LV20, Definition 2.7]; see Definition 2.17. If K has no CM subfield then
every finite place is self-conjugate, so points (1) and (2) together imply Theorem A.

Remark 1.3. Although not explicitly couched in obstruction-theoretic language, [LV20] essentially’ proves
the following two statements.
(1°) For any abelian-by-finite family X — Y’ — Y, any suitable set S and any finite place v | p of K,
we have Y(K) C Y(Kq,)I;XS.
(2°) There exists a finite place v | p of K and an odd prime ¢ such that Y(KU)];(\g
suitable S.

In particular, (1) (whose proof is easy) and (2°) together are enough to prove Theorem A for one place v.
In fact, with some careful bookkeeping, one can upgrade this to a proof of Theorem A for 100% of places v
when K has no CM subfield, see Remark 6.23(I). On the other hand, there are always some places v
which the original methods of [LV20] do not cover, e.g. any v which is ramified over Q, which divides 2,
or which is of bad reduction for Y. It is extending the methods of [LV20] to cover also these places which
takes most of the work in this paper.

s is finite for all

Remark 1.4. We also remark that the argument in [LV20] actually constrains a slightly larger obstruction
locus to the one described in Definition 1.2, namely the locus Y(Kv)%(\f; C Y (K,) defined by omitting the

word “symplectic” throughout Definition 1.2. We always have the containment Y(KU)I;(YS C Y(KU)I)}Y;,
so the Lawrence—Venkatesh method as we formulate it here imposes stronger conditions on K-rational
points (and Selmer sections).

This extra efficiency is relevant if one wants to use the Lawrence—Venkatesh method to compute Y (K)
in practice. It seems likely that the main contributor to the running time of any implementation of the
method is going to be the relative dimension of X — Y”’, and our formulation here typically requires
abelian-by-finite families of smaller relative dimension than in [LV20]. For example, if Y is a curve
of genus 3 over Q, then the original argument of [LV20] can only prove finiteness of Y (Q) using the
Kodaira—Parshin family X, — Y for ¢ > 23 (relative dimension > 55), whereas our formulation proves
finiteness already when ¢ = 11 (relative dimension 25). This is surely still out of the range of practical
computation, but indicates that systematically keeping track of symplectic pairings is likely to reduce
the complexity of any explicit Lawrence—Venkatesh computations.

For a detailed comparison of which pairs (v,q) we prove finiteness of Y(Kv)lj(\; g for, compared with
the original arguments of [LV20], see Remark 6.23.

1.1.1. Assigning representations to sections. Of the two halves of our proof of Theorem A, the proof of
(1) is relatively easy. The relative étale cohomology Riﬂ'ét*Qp of the abelian-by-finite family 7: X — Y
is a Qp-local system on Y for the étale topology, so corresponds to a continuous representation Vi
of w§*(Y). Given a section s: Gx — 7$'(Y), one can restrict the representations V* along s to obtain
G k-representations V!, where A, := V0 is an algebra and V, := V! is a symplectic A,-module. When the
section s is Selmer, one checks that the pair (A, V;) is S-good and witnesses that loc,(s) € Y (K,)Y's-
This argument will be spelled out carefully in §7.

Remark 1.5. This construction is really quite general, and shows that any wv-adic obstruction to K-
rational points coming from a Q,-local system on Y in fact constrains the image of the localisation

IStrictly speaking, the argument in [LV20] is not quite sufficient to prove (2°), since the analysis in [LV20, §3.4] is only
valid for residue discs centred on K-rational points yo € Y (K). However, it is easy to adapt this part of the argument to
cover the case when yg € Y (Ky) is merely K,-rational, as we shall do in §5.
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map loc, : Sec®(Y/K) — Y (K,). The consequences of this observation in the case of the Chabauty—
Kim method are being worked out in work of the first author, Theresa Kumpitsch and Martin Liidtke.

1.1.2. Period maps. Tt is the proof of (2) which is much more difficult, and takes up the majority of this
paper. The principal extra difficulty compared with [LV20] is that we need to prove a finiteness result
for all self-conjugate v, rather than just for some v. This means that we are not free to assume, for
example, that v is a place of good reduction for X, — Yq’ —-Y.

As in [LV20], the strategy relies on the machinery of period maps. If X — Y’ — Y is an abelian-by-
finite family and v is a finite place of K, then one has a period map

Dyy: Uyy — Hyg
where Uy, C Y2" is a small admissible neighbourhood of y in the rigid analytification of Yk, and H,,
is the Lagrangian Grassmannian parametrising Lagrangian H9y (X, /K, )-submodules of Hi (X, /K, ).
The map ®,, is constructed by parallel transporting the Hodge filtrations on the de Rham cohomology
groups Hjr (X, /K,) along the Gauf-Manin connection (see Definition 3.1 and §4.2).

The point of these period maps is that they control the variation of the local Galois representation
associated to the point y € Uy, (K,), namely

Hét (Xy,fv ) Qp),
where p is the rational prime below v. More precisely, they control the associated filtered discrete
(¢, N, G,)-module?
Dpu ( Hét (Xy7f,,, ) Qp)) :

This goes as follows. To a Lagrangian submodule ® € #,,(kK,), one can associate a filtered discrete
(¢, N, G,)-module M'(®), whose underlying (o, N, G, )-module is D (Hg, (X,, %, Qp)), but whose fil-
tration is the filtration on Dyg (Hg, (X, 7=,/ Kv)) = Hir(X,,/K,) given by F! = ® rather than the usual
Hodge filtration. This makes M'(®) into a symplectic module over M := D, (HY, (X,, %, Qp)) in the
category of filtered (¢, N, G,)-modules. The main technical result we need is that there are isomorphisms

DpH(Hgt(Xy,?anp)) =~ M° and DpH(Hét(Xy,?v’Qp)) =~ M! ((I)yo (y))

of filtered (¢, N, Gy)-modules for every y € Uy, (K,), compatible with algebra and symplectic module
structures. We find it elucidates matters to represent this diagrammatically, as the commutativity of the
diagram

Y(Ky) D Uy (Ky) — 2 Hy (K,)

l l(M‘lMl(—)) (1.2)
70SP (Repi(G)) ——2— 7SP(MF(i0, N, G,)) -

where moSP denotes the set of isomorphism classes of pairs of an algebra A and symplectic A-module V'
in a suitable category.

Remark 1.6. In [LV20], it was sufficient to consider only the case that the abelian-by-finite family
X — Y’ — Y has good reduction (in the strong sense of [LV20, Definition 5.1]), in which case the
above setup simplifies significantly. One may take U,, to be the residue disc of yy, and may work with
filtered ¢-modules instead of filtered discrete (¢, N, G,)-modules. The commutativity of (1.2) is then
a consequence of standard facts about crystalline cohomology in families. However, outside the good
reduction case, it is significantly more complicated to show commutativity of (1.2); the approach we
explain in §3 uses relative p-adic Hodge theory as developed by Scholze [Sch13], combined with the
potential horizontal semistability theorem of Shimizu [Shi20]. It is possible that one could also prove
commutativity of (1.2) using Hyodo—Kato cohomology and alterations, but we do not know how to do
this.

We can use the diagram (1.2) to isolate a subset of #,, (K,) corresponding to the Lawrence—Venkatesh
locus as follows.

2This is also denoted Dpst in some sources. In this paper, we will reserve Dpst(V) to denote the (non-filtered) discrete
(¢, N, Gy)-module attached to a de Rham representation V', and write Dp(V) when we want to regard this as a filtered
object via comparison with Dgg (V). The subscript pH stands for “p-adic Hodge”. See §2.2.2 for precise definitions.



Galois sections and p-adic period mappings 5

Definition 1.7. We define HyO(Kv)%XS C H,,(K,) to be the set of all Lagrangian Hig(X,,/K,)-
submodules ® < H}y (X,,/K,) for which there exists an S-good pair (A4, V) together with isomorphisms

M°=D,u(Alg,) and M'(®) = Dyu(Vl]g,)
of filtered discrete (¢, N, G,)-modules compatible with algebra and symplectic module structures.

It follows from commutativity of (1.2) that the image of U, (K, )NY (K,)5 s under the period map @,
is contained in H,,(K,)Ys. So the Lawrence-Venkatesh locus Y(Kv)x,s Wlll be finite as soon as the
following conditions hold for all yo € Y (K, ):

i) the period map ®,,: Uy, — Hyo has Zariski-dense image; and
ii) Hy,(Ky)Kg is not Zariski-dense in H,,.
Indeed, the conjunction of these two conditions implies that Uy, (K,) NY (K,)¥ s is contained in the

vanishing locus of a non-zero coherent sheaf of ideals on U,,, so is finite for all yy. Since Y (K,) can be
covered by finitely many U, (K,) by compactness, we are done.

We now discuss the proofs of (i) and (ii).

1.1.3. Full monodromy. Proving (i) for an abelian-by-finite family X — Y’ — Y reduces to a similar
property for complex-analytic period maps, and eventually follows from a purely topological property
of X - Y’ — Y known as full monodromy. In any case, full monodromy for Kodaira—Parshin families
was already verified in [LV20], so we need say no more on this point here.

1.1.4. The principal trichotomy. It is (ii) which is the delicate condition. As an illustration of the ap-
proach, let us consider the set Y (K,)% X555 defined as in Definition 1.2, but with the additional require-
ment that V' is semisimple as a representation of Gx. We also write H,, (K i X.5,ss for the corresponding
subset of H,, (K,) as in Definition 1.7. The key theoretical input is a lemma of Faltings, which implies
that there are only finitely many S-good pairs (A, V') of prescribed dimensions, up to isomorphism. If we
write H/Q,, for the Q,-algebraic group of (non-filtered) symplectic (¢, N, G,)-module automorphisms
of DpSt(Hét (X yo,?v’QP))’ see Definition 2.13, then there is a natural action of H on the Weil restric-

tion Resg v Hy,, whose orbits are exactly the fibres of the right-hand vertical map in (1.2). So Faltings’
p

Lemma implies that H,,(K,)5 s is contained in a finite number of H(Q,)-orbits, and hence is not
Zariski-dense in ‘H,, as soon as the inequality

dim@p H < dimKU Hyo

holds. This condition is relatively easy to arrange in practice, since both dimensions can be controlled
rather precisely. So if one could arrange that X — Y’ — Y had full monodromy and the above inequality
held for every yo € Y (K, ), then one would have proved finiteness of ¥ (K,)5'g ..

What is less clear a priori is how to adapt this approach to also cover non-semisimple S-good pairs,
and overcoming this is the key insight of [LV20]. Lawrence and Venkatesh proved that when the place v
is chosen appropriately (“friendly” in their terminology), then being S-good imposes strong restrictions
on the isomorphism class of a pair (A,V): weaker than being semisimple, but still strong enough to
make some version of the above argument work. The property of friendly places v which enables this
is that the average HodgeTate weight at v of a Gx-representation V is determined by its weight as a
global Galois representation. So if (A, V) is an S-good pair and v is friendly, then one obtains numerical
constraints on the Hodge—Tate weights of any subrepresentation of V', which ultimately restricts the ways
in which V can fail to be semisimple.

We will formalise this argument in this paper as what we call the principal trichotomy for S-good
pairs, which says that when v is self-conjugate, any S-good pair must satisfy one of three rather technical
properties, the first of which is a weak simplicity condition and the other two of which govern the possible
failures of simplicity. The precise statement is as follows.

Proposition 1.8 (The Principal Trichotomy (=Proposition 6.7)). Let (A, V) be a pair of an algebra A
and symplectic A-module V in the category of G -representations which is S-good for some S, and
where V' has constant rank 2d > 0 as an A-module. Let ¥ = Homaig(q,)(A4,Q,) be the finite G-
set of Qp-algebra homomorphisms A — Q,. For ¢ € X, we write Gy < Gk for its stabiliser in G
and Gy, = Gy NG, for its stabiliser in G, .

Suppose that v is self-conjugate. Then at least one of the following occurs:
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a) there is a ¢ € X such that [G, : Gy,] > 4 and Q, @4,y V has no non-zero isotropic Gy-
subrepresentation; or

b) there is a ¢ € ¥ such that [Gy : Gu,] > 4 and Q, ®a,y Vg, has a non-zero isotropic G, -
subrepresentation W whose average Hodge—Tate weight is > 1/2; or

c) the number of v € ¥ satisfying [Gy : G, | < 4 is > Wll dimg, (A).

The principal trichotomy gives a decomposition (not necessarily disjoint)
Hyo (K’U)I)J(\,/S = Hyo (KU)?,/S,(EL) U Hyo (KU)%(\,/(b) U Hyu (KU)I)}Y(C)

according to which of the conditions (a), (b) or (c) is satisfied for the pair (A, V'), and the proof of (ii)
then amounts to showing that, for suitably chosen X, each of these three sets is not Zariski-dense
in Hyo (KU)E(VS

Using a similar argument to that sketched for Y(.K'U)I;X&SS above, we show that H,, (Kv)lf(\,[s,(a) is
never Zariski-dense in H,, for any X, and a more explicit version of the same argument shows the same
for H,, (KU)ISX(b). For H,, (KU)I;X( o) the strategy is different: one shows that for suitably chosen ¢, the

set Hyo(Kv)I)}\g’(c) is actually empty. Put all together, this shows that when v is self-conjugate and ¢ is
chosen suitably, then

Hyo (K0)X 5 = Hyo (Ko)S 5.0 UHyo (KK 1)

is not Zariski-dense in #,,, completing the proof of (ii) for the Kodaira—Parshin family with these
parameters g. Since the Kodaira—Parshin family always has full monodromy, this finishes the proof of
Theorem A.

Remark 1.9. The principal trichotomy is not stated explicitly in [LV20], but a trichotomy of sorts
appears implicitly in the structure of their proof. Roughly speaking, pairs of type (a) correspond to
those points dealt with in [LV20, Lemma 6.2], pairs of type (b) correspond to those dealt with in [LV20,
Lemma 6.1], and pairs of type (c) correspond to those dealt with in the proof of [LV20, Theorem 5.4|.
This correspondence is not quite exact: we have adjusted the division slightly from [LV20] to make full
use of the symplectic structure.

1.2. Overview of sections. The structure of the paper is as follows. We begin in Section 2 by recalling
some basics on Galois representations and p-adic Hodge theory a la Fontaine. The key points in this
section are the dimension bounds on automorphism groups of (¢, N, G,)-modules (Proposition 2.16),
as well as the definition of self-conjugate places (Definition 2.17) and the consequences for numerics of
Hodge-Tate weights (Corollary 2.21). In Section 3 we recall the construction of v-adic period maps for
smooth proper families X — Y, and prove that these v-adic period maps control the variation of local
Galois representations. This section presents the most significant departure from [LV20] since we need
this machinery for a general smooth proper family, not just one with good reduction. Thus, rather than
using crystalline cohomology as a bridge between étale and de Rham cohomology, we are forced instead
to use analytic techniques and relative p-adic Hodge theory.

Section 4 recalls the definition of abelian-by-finite families, and describes the symplectic module
structure on the cohomology of their fibres. It also introduces the Lagrangian Grassmannian H,, above,
and uses the results of Section 3 to justify commutativity of the diagram (1.2). Section 5 then gives the
proof of (i), closely paralleling the discussion in [LV20, §3.4] except that the centre yo € Y (K,) of the
disc Uy, need not be K-rational.

The main part of the argument comes in Section 6, which proves the principal trichotomy (Proposi-
tion 6.7), and then uses this to address (ii) along the lines sketched above. The proof of (2) is assembled
at the end of this section.

Section 7 then tackles part (1), following the construction outlined in §1.1.1 above. This section is
largely independent of the rest of the paper, so may be read first if the reader wishes.

Acknowledgements. We are grateful to Owen Gwilliam, Kiran Kedlaya, Minhyong Kim, Mark Kisin,
Dmitri Pavlov, Koji Shimizu, Xavier Xarles, and Aled Walker for helpful discussions about various parts
of this paper. We particularly thank Peter Scholze for taking the time to explain to us many technical
aspects of the relative p-adic Hodge theory developed in [Sch13].
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2. PRELIMINARIES: GALOIS REPRESENTATIONS AND (¢, N, G,)-MODULES

We collect in this section several results on local and global Q,-linear Galois representations which
will be used in the sequel. This is essentially a rephrasing of the material in [LV20, §2], except that we
treat a few subjects, namely (¢, N, G,)-modules and self-conjugate places, in greater generality. This is
so that we can avoid good reduction hypotheses when we set up the machinery of Lawrence—Venkatesh,
which will be important in our proof of the main theorem. The reader may wish to skip this section on
a first reading, referring back to it as needed.

Throughout this section, and indeed the whole paper, we fix a number field K and an algebraic
closure K of K; we write G = Gal(K|K) for the absolute Galois group of K. For each place u of K,
we also fix an algebraic closure K, of the completion K, of K at v and a K-embedding K — K,,
allowing us to view the absolute Galois group G,, = Gal(K,|K,) as a decomposition group G, C G.
We write 0, for the ring of integers of K, write k, for the residue field, and set g, := #k,.

We also fix a prime number p—all representations are to be Qp-linear—and reserve the letter v for
a p-adic place of K. We sometimes permit ourselves to write K, for a finite extension of Q,, not
necessarily arising as the completion of a specific number field K. The absolute Galois group of a finite
extension L,,/K, contained in K, is denoted G, < G,.

2.1. Global Galois representations, purity, and the symplectic Faltings’ Lemma.

Definition 2.1 (Purity). Recall that a g-Weil number of weight n is an algebraic number « such that
for all complex embeddings ¢ the absolute value of « is |t(a)| = ¢"/2.

Let u be a place of the number field K not dividing poo. We say that an unramified representation V'
of G, is pure of weight n € 7Z just when the eigenvalues of the geometric Frobenius are g,-Weil numbers
of weight n, where g, is the size of the residue field of K,. We say moreover that V is integral just when
the monic characteristic polynomial of the geometric Frobenius has coefficients in Z.

We say that a representation V of Gk is unramified and pure (resp. unramified, pure and integral)
at u just when its restriction to the decomposition group G, is.

Ezample 2.2. Let X/K be a smooth proper variety over the number field K. Then there is a finite set S
of places of K outside which X has good reduction, i.e. X is the generic fibre of a smooth proper Ok s-
scheme X. Enlarging S if necessary, we may assume that it contains all places dividing poo.

Then for all n > 0, the étale cohomology H§ (X7, Q,) is unramified, pure and integral of weight n at
all places outside S. Unramifiedness follows from smooth proper base change for étale cohomology, and
purity and integrality from Deligne’s proof of the Weil Conjectures [Del74, Théoréme 1.6].

It turns out that purity imposes strong restrictions on a Galois representation V. For example, it was
proved by Faltings [Fal83, Satz 5][LV20, Lemma 2.3] that for a given dimension d, weight n > 0 and finite
set S of places of K, there are only finitely many d-dimensional semisimple representations V' of G
which are unramified, pure and integral of weight n outside S. The tricky word here is “semisimple”
it is in general quite easy to produce Galois representations which are unramified, pure and integral
outside a finite set of primes (see Example 2.2), but it is very hard to show that these representations
are semisimple. Even in the case of an abelian variety A/K, semisimplicity of Hg (A, Q) is part of the
Tate Conjecture, and is only known thanks to work of Faltings [Fal83, Resultat (a)].

Instead of using Faltings’ Lemma [LV20, Lemma 2.3|, we will use a variant thereof for symplectic
representations. By a symplectic Galois representation we mean a triple (V, L, w) consisting of two Galois
representations V' and L, the latter being of dimension 1, and a Galois-equivariant perfect alternating
pairing w: A>V — L. We usually have L = Q,(—1), and we often abbreviate (V, L, w) to (V,w) or just V
for short. If we pick bases of V' and L for which w is the standard symplectic form on V = Q;‘?zd, then the
Galois action on V is given by a continuous group homomorphism p: Gx — GSpy,;(Q,), where GSpy,
is the subgroup of GLyg4 preserving the standard symplectic form up to scalar factors of similitude.

Definition 2.3 (GSp-irreducibility, [LV20, p905]). A non-zero symplectic representation (V, L,w) of Gk
is called GSp-irreducible just when V has no non-zero G g -stable isotropic subspace (subspace on which w
vanishes). This amounts to saying that the representation does not factor over a nontrivial parabolic
subgroup of the general symplectic group GSp.

Lemma 2.4 (Symplectic Faltings’ Lemma [LV20, Lemma 2.6]). Let S be a finite set of places of K
containing all places dividing poo, and let n > 0 and d > 0 be integers. Then there are, up to isomorphism,



8 L. ALEXANDER BETTS AND JAKOB STIX

only finitely many GSp-irreducible symplectic representations (V, L,w) of Gk where V has rank 2d and
is unramified, pure and integral of weight n outside S.

Remark 2.5. Our using Lemma 2.4 differs slightly from the argument in [LV20], which instead uses
Faltings’ Lemma [LV20, Lemma 2.3] in the original form.

2.2. Local Galois representations and (¢, N, G,)-modules. While the theory of global Galois rep-
resentations is very complicated, the theory of local Galois representations is much better understood,
thanks to the work of Fontaine as we now recall.

2.2.1. De Rham representations. Fontaine’s theory identifies a certain class of GG,-representations, called
the de Rham representations, which turns out to contain all representations coming from geometry.
Fontaine defines a certain K,-algebra Bgr = BdR(FU), called the ring of de Rham periods, which is
endowed with an action of the Galois group G, restricting to the tautological action on K,. For a
representation V' of GG,, one has the K,-vector space

Dar(V) := (Bar ®q, V)",
whose K,-dimension is at most dimg, (V). One says that V is de Rham just when equality holds:
dimg, (Dar (V)) = dimg, (V).
The de Rham representations form a full ®-subcategory®
Repg(Gy) C Repg (Gy)

closed under subobjects [Fon94b, Théoréme 3.8(ii)], and the assignment V' — Dggr(V) is ®-functorial in
de Rham representations V.

Moreover, the period ring Bgg is a complete discretely valued field and as such carries an exhaustive,
separated G,-stable filtration by fractional ideals of its valuation ring. This induces a K, -linear filtration
on Dgr (V) for every representation V. This is called the Hodge filtration and denoted F* = F*Dgr (V).
The Hodge filtration is ®-functorial in V for de Rham representations, see [Fon94b, §3.8].

2.2.2. (¢, N,G,)-modules. One of the most fundamental results in p-adic representation theory is that
the category of de Rham representations can be described in terms of explicit semilinear-algebraic objects
known as filtered discrete (¢, N, G,)-modules. We recall the definition from [Fon94b].

Definition 2.6 ([Fon94b, §4.2.1]). Let Q" denote the maximal unramified extension of Q, contained
in K,. A (¢, N,G,)-module is a Q)'-vector space D endowed with:

(i) a bijective semilinear crystalline Frobenius ¢ (acting as absolute Frobenius on scalars);

(ii) a Qp'-linear monodromy operator N; and

iii) a semilinear action of the Galois group G,, (with respect to the natural action of G, on C K,).

ili tion of the Galoi G, (with t to the natural action of G, on Q)" C K
These are required to satisfy:

(iv) Nop=p-poN;and

(v) both N and ¢ commute with the action of G,,.

The dimension of D is its dimension as Qp"-vector space, and D is said to be discrete just when the
point-stabilisers of the G,-action on D are open in G,,.

Definition 2.7 ([Fon94b, §4.3.2]). A filtered discrete (¢, N, G,)-module is a tuple D = (Dps, Dar, ¢BO)
consisting of
(i) a (¢, N,Gy)-module Dy,
(ii) a K,-vector space Dgr endowed with an exhaustive, separated, decreasing K,-linear filtration F*,
and
(iii) a K,-linear G,-equivariant comparison isomorphism

CBO: FU ®QET Dpst = ?v XK, Dygr .

3In this paper, a ®-category/®-functor/®-natural transformation means a symmetric monoidal category/functor/nat-
ural transformation.
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The comparison isomorphism cgo ensures that Dy is indeed discrete. The filtration F* is referred to as
the Hodge filtration on D. The collection of all filtered discrete (¢, N, G, )-modules forms a ®-category
M F(907 N7 GU)

with respect to the obvious morphisms and tensor products.
Ezample 2.8. The archetypal example of a filtered discrete (p, N, G,)-module comes from crystalline
cohomology. Suppose that X is a proper smooth &,-scheme, with special fibre Xy and generic fibre X.
Write K, o for the maximal unramified subfield of K, which is the same as the fraction field of the ring
W (k,) of Witt vectors of the residue field k,. One then has the crystalline cohomology

Héris(XO/Kv,O) =Ky QW (ky) Hiris(}:O/W(kv))

of the special fibre, which comes with a semilinear crystalline Frobenius ¢, and the de Rham cohomology
Hyp (X/K,) of the generic fibre, which comes with a Hodge filtration F*. The two are related by the
Berthelot—Ogus isomorphism [BO83, Theorem 2.4|

K, ®Kv,0 Héris(XO/Kv,O) = HER(X/KD) .
One thus obtains a filtered discrete (¢, N, G,,)-module by taking Dys = Q}F ®k, , H o (X0/ K, 0) with
induced ¢- and G,-action (and N = 0), taking Dar = Hig (X/K,), and taking cpo to be the isomorphism
obtained from the Berthelot—Ogus isomorphism above by base change to K,. More refined versions of
this construction yield examples of filtered discrete (¢, N, G,)-modules where N # 0 (arising from X

with bad semistable reduction), or where the action of G, is not just the natural action on Q)" ®x, , V
for some K, g-vector space V (arising from X with unstable reduction).

If V is a representation of G,, Fontaine defines
. Guw
Dyt (V) 1= limy (Byy g, V)",

where Byt is Fontaine’s ring of semistable periods [Fon94a, §3.1] and the colimit is taken over open
subgroups G, < G, [Fon94b, §5.6.4]. This is a Q}"-vector space of dimension at most dimg, (V') [Fon94b,
Théoréme 5.6.7(1)], and carries a natural action of G, with open point-stabilisers, namely the restriction
of the action on Bg; ®q, V. Moreover, the natural Frobenius and monodromy operator on By [Fon94a,
§3.2.1-§3.2.2] induce on Dgt (V) the structure of a discrete (p, N, G,)-module, functorially in V.

When V' is de Rham, a theorem of Berger implies that dimgu: Dps (V') = dimg, (V) [Ber02, Théoréme 0.7],

and so the natural G,-equivariant K ,-linear map
cpo: Ky ®qnr Dpst (V) — K, ®r, Dar(V)

induced from the inclusion® By, C Bgg is an isomorphism [Fon94b, Théoréme 5.6.7(ii)]. In this way, the
tuple
Dyit(V) == Dyt (V). Dar (V), o)
is a filtered discrete (¢, N, G, )-module whenever V' is de Rham.
One surprising aspect of Fontaine’s theory is that this construction suffices to capture all the intricacies
of the category of de Rham representations.

Theorem 2.9 ([Fon94b, Théoréme 5.6.7(v)|, [Ber02, Théoréme 0.7]). The assignment V +— Dpu(V)
gives a fully faithful @-functor

Dy : Repg (Gy) < MF(o, N, G,).
The following examples of filtered discrete (p, N, G, )-modules will appear throughout this paper.
Ezample 2.10. If X/K, is a variety, we adopt the shorthand
HE(X/Q") = Dpst (Hg (X, » Qp))
which is a discrete (¢, N, G, )-module. The étale-de Rham comparison isomorphism gives an isomorphism

car: Dar(Hg (X%, Qp)) = Hir(X/K,),

4Usually, one adopts the point of view that the embedding Bst — Bggr is non-canonical, depending on a choice of p-adic
logarithm. However, we shall adopt the point of view of [Shi20|, identifying Bst with its image under this embedding, which
is independent of the choice of p-adic logarithm.
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and we define the p-adic Hodge cohomology of X to be the filtered discrete (¢, N, G,)-module
oa(X/Ky) = (Hp o (X/Qp"), Hig (X/K,), car © ¢BO) -
This is, of course, isomorphic to
DpH(Hgt (XFNQP)) = (DPSt(Hgt (va,Qp)), DdR(H;t(X?U’Qp))7 CBO) :
The assignment X + Hyp(X/K,) is contravariant functorial in X by Proposition 3.19(2) later.

Remark 2.11. We will later have to be careful about exactly which comparison isomorphism cqr we use
in the definition of the p-adic Hodge cohomology; see Remark 3.4. This is why we have to refer to Propo-
sition 3.19(2) for functoriality of Hyy, rather than the more usual reference [Tsu02, Theorem (A1.1)].

2.2.3. Change of base field. If L,,/K, is a finite extension of K, contained in K, with absolute Galois
group G, then one also has the category MF(p, N, G,,) of filtered discrete (¢, N, G,,)-modules, using L,
as the base field in place of K,. One can pass between (¢, N, G,)- and (¢, N, G,,)-modules as follows.

If Dis a (¢, N,G,)-module then we obtain by restriction a (¢, N, Gy)-module D|g,,. And if D =
(Dpst; Dar, cBo) is a filtered discrete (¢, N, G,)-module, then we define a filtered discrete (¢, N, Gy, )-
module D|¢, by

D‘Gw = (Dpst‘GwaLw K, DdR7 CBO)

where cgo also denotes the composite isomorphism

K, ®qu Dpst|c,, CBTO> K, ®k, Dar = K, ®1,, (Lw @K, Dar) -

The assignment D — D|¢,, is a ®-functor in a natural way.

In the other direction, if D is a (¢, N, G,,)-module, we make the induction® Indgqu into a (¢, N, G,)-
module by giving it the induced Frobenius ¢ and monodromy N, and making it into a Q}"-vector space
with the twisted action

(A-¥)(g) = g(A) - ¥(g)
for A € Q)F, ¥ € Indng and g € G,. And if D = (Dps, Dar, cgo) is a filtered discrete (¢, N, Gy, )-
module, then we define
Indg® D := (Ind&® Dpst, Dar, cho)
where we consider Dgg as a K,-vector space, and where ¢ is the right-to-left composite in

_ J— Ind(c
K, @qu IndZ Dyt = d% (K, @gyr Dput) )

v
w

Indg;uu(Fv ®Lw DdR) = FU ®K'u DdR .

~

Explicitly, ¢ sends 1 ® ¢ to
Z(gi ®1) (e cpo(¥(g; ")) € Ko @k, Dar.,

7

where the sum is over left coset representatives (g;) for G, < G,, and e € L,, ®, L, is the idempotent
given by > x; ® y; where (x;) and (y;) are dual bases of L, with respect to the trace form. The

assignment D — Indg:’“D is a lax ®-functor in a natural way.
We remark that the induction functor Indgz(f) is right adjoint to the restriction functor (—)

Guw
in a natural way, and that the lax ®-structure on Indg;(—) is the one induced from the ®-structure

on (—)la,-
Ezample 2.12. If X is a variety over K,, then there is a canonical isomorphism
Hon (X1, /Lw) = Hou(X/Ky)la,, , (2.1)
of filtered discrete (¢, N, G,,)-modules induced by the isomorphisms
He’t((XLw)fwan) = He’t(X?vap) and HaR(XLw/Lw) = Ly Qk, H:le(X/Kv) :

(Here we write (—)f, = Spec(K ) Xspec(L,,) (—) to emphasise that the base-change is over L.,.) Similarly,
if X is a variety over L,,, viewed also as a variety over K, in the natural way, then there is a canonical
isomorphism
. ~ Gy 171®
Hpp(X/Ky) = Indg? Hpy(X/ L), (2.2)

5We follow the convention that the induction Indgfu W is the set Mapg, (Gv, W) of Gy-equivariant maps 1: G, — W,
with Gy-action given by (g - ¥)(h) = ¥ (hg).
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of filtered discrete (¢, N, G,)-modules induced by the isomorphisms
HE (X%, Q) = Ind@y HE (X7, ,Qp) and  Hi(X/K,) = Hig(X/Lu).

We remark that implicit in the assertion that (2.1) is an isomorphism of filtered discrete (¢, N, G,)-
modules is the fact that the comparison isomorphism cqgr is compatible with base-change, see Proposi-
tion 3.19(3) later. The corresponding compatibility in (2.2) follows formally from the same property and
the restriction-induction adjunction.

2.2.4. Automorphisms of (¢, N, G,)-modules. In our generalisation of the method of Lawrence—Venkatesh,
it will be important at one point to put upper bounds on the dimensions of automorphism groups of
(¢, N, G,)-modules. More precisely, we will want to bound the dimension of the automorphism group of a
symplectic (¢, N, G,)-module, by which we mean a triple (D, L, w) consisting of two (¢, N, G, )-modules D
and L, the latter having Q)'-dimension 1, and a Q)'-linear perfect pairing

2
w: D— L
/\@Zr
which is equivariant for the ¢-, N- and G,-actions.

Definition 2.13.

(1) Let D be a (o, N,G,)-module. An automorphism of D is a Q)-linear automorphism of D which
commutes with the actions of ¢, N and G,. More generally, if R is a Q,-algebra, an R-linear
automorphism of D is a R ®g, Q) -linear automorphism of R ®g, D which commutes with the
actions of 1 ® ¢, 1 ® N and the action of G, on D. We will see shortly that the functor

Aut(D): {Qp-algebras} — {groups}

sending a Qp-algebra R to the group of R-linear automorphisms of D is representable by an
affine algebraic group over Q,, which we also call Aut(D).

(2) If D = (D, L,w) is a symplectic (¢, N, G)-module, then we define Autgg,(D) to be the closed
algebraic subgroup of Aut(D) consisting of those automorphisms which preserve the pairing w
up to a scalar factor of similitude®.

By the scalars in Aut(D) (resp. Autgg,(D)), we mean those automorphisms which act on R ®q, D
by multiplication by some A € R*. The inclusion of the scalars thus defines a central cocharacter
Gy — Aut(D) (resp. G, — Autgg, (D)) defined over Q.

Remark 2.14. If D = (Dpst, Dar, cpo) is a filtered discrete (¢, N, Gy )-module, then the automorphism
group Aut(Dps) acts on Dyg. Given some ¢ € Aut(Dpgt)(R), the induced R®@pfv—linear automorphism
of R®q, K, Qqur Dpst = R®q, Ky @k, Dar is Gy-equivariant, so induces on taking G,-invariants an
R®q, K,-linear automorphism of R®q, Dyr, not necessarily preserving the filtration. This construction
yields an action

Aut(Dpst) — Resg; GL(Ddr),
which one can even show to be a closed embedding (though we don’t use this).
We will later use the following construction. Fix D = (Dps, Dar, ¢Bo) a filtered discrete (¢, N, G, )-

module and let G denote the flag variety parametrising K,-linear filtrations on Dgr with the same
dimension data as the given filtration F®. So there is an action of Aut(Dyg;) on Resg: G induced from

the action described in Remark 2.14. If ® € G(K,) is such a filtration on Dgr, we define a filtered
discrete (¢, N, Gy)-module M (®) by

M((I)> = (Dps‘m DdRa CBO) )

where the (¢, N, G,)-module structure on Dy is the given one, but the filtration on Dgg is given by ®
instead of its original filtration.

6Technically speaking, one should regard this factor of similitude as part of the data of a point of AutGSp(D). This
only makes a difference in the degenerate case D = 0, which we will never see.
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Lemma 2.15. In the above setup, let &1, Py € G(K,) be two filtrations on Dar. Then M (®1) and M (P2)
are isomorphic as filtered discrete (@, N, Gy,)-modules if and only if 1 and o lie in the same orbit under
the action of Aut(Dpst)(Qp).

In particular, the set of all ® such that M (®) lies in a fized isomorphism class lies in a Q,-subvariety
of Resgp“ G of dimension at most dimq, Aut(Dps).

Proof. An isomorphism M (®;) — M (®,) is determined by its pst component, which must be a
(¢, N, Gy)-module automorphism ¢ of Dpg. The condition that 9 is a filtered isomorphism is exactly
that ¢ takes ®; to ®5 under the action described in Remark 2.14, so we are done. (|

Now let us give the promised proof of representability of Aut(D) and Autgg,(D), and bound their
dimensions.

Proposition 2.16.

(1) Let D be a (¢, N,Gy)-module of Q) -dimension d. Then Aut(D) is a Qp-algebraic group of
Qp-dimension < d2.

(2) Let D = (D, L,w) be a symplectic (¢, N,Gy)-module of QpF-rank 2d. Then Autgg,(D) is a
Qp-algebraic group of Q,-dimension < d(2d + 1) + 1.

Proof. (1). Let End(D) denote the (possibly) non-commutative Q,-algebra of endomorphisms of D as a
(¢, N, G,)-module, so that Aut(D) is isomorphic to the functor

R~ (R®q, End(D))* .

To show that Aut(D) is a Qp-algebraic group, it suffices to show that dimg, End(D) < oo, for then
Aut(D) is its group-scheme of units (which is a closed algebraic subvariety of the affine space corre-
sponding to End(D) x End(D)). For this, we claim that the map

Q" ®qg, End(D) — Endgu: (D) (%)

is injective, where the right-hand side denotes the Q)'-linear endomorphisms of D (requiring no com-
patibility with the (¢, N, Gy)-action). So suppose that 91, ..., are Qp-linearly independent elements
of End(D) and that Ai,..., A, € Q) are such that ), \; ® 1; lies in the kernel of (). This says that
> Aiti = 0 as a Q)-linear endomorphism of D. Since each 1; commutes with the action of G, on D,
we thus have

> o(ari)gi =0

for all a € Q)" and all o € G,,. Taking a suitable linear combination of this identity then shows that
Z tngr/Qp (Oé)\,)wz =0

for all a € QpF, where tronr/q, denotes the normalised trace (so that it is the identity on Q,). By
Qp-linear independence of the 1; and non-degeneracy of the trace pairing, this implies that A\; = 0 for
all i. So ), A\; ® ¢; = 0 and hence (x) is injective.

Thus we have shown that End(D) is finite-dimensional, and so its group-scheme of units Aut(D) is
a Qp-algebraic group. To bound its dimension, we observe that (), being an injective morphism of
non-commutative Q" -algebras induces a closed immersion

on the Q)'-group-schemes of units. Since the right-hand side has Qj-dimension d?, we find that
dimg, Aut(D) < d* as desired.

(2). This follows from the first part. It is easy to check that preserving w up to a scalar factor of
similitude is a closed condition on Aut(D), so Autgg,(D) is a closed Qp-subgroup-scheme of Aut(D).
Moreover, the embedding (+x) takes Autg,(D)gur into GSpQgr(D), whence

dimg, (Autg, (D)) < dimgy: (GSpgy (D)) < d(2d +1) + 1. O
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2.3. Self-conjugate places and average Hodge—Tate weights. In order to make certain numerics
work in a key step of our generalisation of the Lawrence—Venkatesh method, it will be necessary for
us to restrict attention to places v of K which satisfy a particular technical assumption, which we call
self-conjugacy. This is a mild generalisation of the notion of a friendly place from [LV20, Definition 2.7].

Definition 2.17 (Self-conjugate places, cf. [LV20, Definition 2.7]). We say that two finite places v and v’
of K are conjugate just when their restrictions vy and v to every CM subfield E of K are conjugate
under the complex conjugation on E, i.e. v = Ug. We say that a finite place is self-conjugate if it is
conjugate to itself.

Remark 2.18.

(1) If K contains no CM subfield (e.g. K totally real or K of odd degree), then every finite place is
self-conjugate.

(2) If K contains a CM subfield, then it has a maximal CM subfield E, and a finite place v of K is
self-conjugate if and only if its restriction to F is invariant under the conjugation on E.

(3) The friendly places of [LV20, Definition 2.7] are exactly the self-conjugate places which are
unramified over Q.

The property of self-conjugate places v which is relevant in the Lawrence—Venkatesh argument is
that if V is a representation of Gx which is pure of some weight, then the average Hodge—Tate weight
of Vg, is determined by the weight of V. To prove this, one first deals with the case of 1-dimensional
representations.

Proposition 2.19 (cf. [LV20, Lemma 2.8]). Let x: Gx — Q) be a p-adic character such that:

(i) x is unramified and pure of weight n € Z outside a finite set S of places of K, and
(i) x is de Rham at all p-adic places of K.

For a p-adic place v, write r, for the Hodge-Tate weight” of x|g,. Then if v and v' are conjugate p-adic
places of K, then 1, + ry = n.
In particular, if v is self-conjugate, then n is even and r, = n/2.

Proof. We follow the proof of [LV20, Lemma 2.8|. Let n: Aj — Q, be the idele class character corre-
sponding to x by global class field theory®. We write n,: KX — Q, for the component of 7 at a place u
of K. The conditions on x translate into the following conditions on the 7,:

a) for all places u outside a finite set S (assumed to contain all places dividing poo) 1, () = {1},
and 1, (toy) is a g,~Weil number of weight —n, where w,, is a uniformiser of K, and g, is the
order of the residue field of K, ; and

b) for all p-adic places v, the component 7, agrees with the r,th power of the norm character N K.Qp
on an open subgroup of 0.

Of these, the second deserves some explanation. Being Hodge-Tate of weight r,, the restricted char-
acter x|g, agrees with the —r,th power of the cyclotomic character xcyc on an open subgroup of the
inertia group I, [Ser89, Theorem III.A5.2|. It follows from Lubin-Tate theory that the composite of xqyec
with the local Artin map € — I2P is equal to the inverse of the norm map 0 — Zy; for instance
this holds when K, = Q, by the explicit description on [Mil20, p40]|, and then holds in general by
norm-compatibility of local Artin maps. So 7, agrees with the r,th power of the norm character on an
open subgroup of 0.
Now let us write

me: (K 90 @)* = [[ K2 - Q

olp
K.1g,
the local characters 7, for v | p on an open neighbourhood of 1 € (K ® Q@,)*. From the first condition

above and the fact that  vanishes on K* C A%, we deduce the following regarding nglg :

for the product of the maps N : K — Q. So, by construction, nglg agrees with the product of

"The Hodge-Tate weights of a representation V of G,, are the integers r such that (Cp(r) ®q, V)Gv £ 0, where the G,
action on Cp(r) is the rth Tate twist of the natural action on C,.

8There are two opposite conventions for normalising the isomorphisms of class field theory, depending on whether the
local Artin maps K, — G2P send uniformisers to arithmetic or geometric Frobenii. We adopt the convention of [Mil20],
that a uniformiser corresponds to an arithmetic Frobenius.
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i) 73'8(ar) = 1 for all @ in a finite-index subgroup of % C (K ® Q,)*; and
ii) for « € Ok, a # 0, not divisible by any prime in S, we have that nalg(a) is algebraic over Q,
and |¢(n3'8(a))| = | Ngg(a)|™/? for every complex embedding ¢: Q, < C.

Now the character nglg above is algebraic, meaning that it is the map on QQ-points of a homomorphism

nzlg. (ResQ l_IResQ m.K, = Gm,q,

vl|p

of tori over Q. The fact that nglg vanishes on an open subgroup of & ensures that it factors over S K,Qp

where Sk is the Serre torus: the quotient of Resg G,k by the identity component of the Zariski-closure”

of OF.

We conclude using results of Serre on the structure of Si. Suppose firstly that K has no CM subfield.
Then the norm map Ng|g: Sk — Sg = G, is an isogeny [Ser89, II-34]. So, replacing x by a power
if necessary we may assume that nglg = N%@ is a power of the global norm character. Now on the one
hand, the fact that nglg is the product of the local norm characters means that r, = m for all p-adic
places v. On the other hand, condition (ii) above implies that m = n/2. Hence we have r, = n/2 for all
p-adic places v and we are done.

Suppose instead that K has a CM subfield, and write £ for the maximal CM subfield of K and E+
for the maximal totally real subfield of E. Then the norm map Ng|g: Sk — Sg is an isogeny, as is the

norm map Ng+|g: Sp+ — S@ = G by [Ser89, II-34]. So, replacing x by a power if necessary, we may

assume that n2'% factors as 73 0N for some character nj®: Spg, — (Gm @p, and that 73873 = N2 El0
is a power of the norm character, where 7]8 & denotes the composite of 770 & and the conjugation on FE.
On the one hand, the definition of nglg ensures that r, +r,, = m whenever v and v’ are conjugate p-adic

places of K. On the other hand, condition (ii) implies that m = n, so r, +r,» = n and we are done. [

Remark 2.20. The conditions of Proposition 2.19 impose very strong restrictions on the character y:
if v is self-conjugate, then we have x|a, = Xo X;yré/ % where Xo is a finite-order character of G,, (cf. the
statement of [LV20, Lemma 2.8]). Although we will not need this finer statement in what follows, we
indicate how to deduce this from Proposition 2.19 as stated.

Replacing x by a twist by a power of the cyclotomic character xcyc, it suflices to prove this in the
case n = 0. If K contains no CM subfield, then we have r, = 0 for all v | p, so that the idele class
character 7 is only finitely ramified at all places of K, including p-adic places. It follows that 7 factors
through a ray class group of K, so n is a finite-order character. Thus y itself is a finite-order character.

If instead K contains a CM subfield, we write E for its maximal CM subfield and 7y for the restriction
of n to Ay, € A}. The local component of 7y at a p-adic place vy of E agrees, in a neighbourhood
of 1 € EUX07 with the ry,th power of the norm map Np, |g,, Where 7y, = 3_ |, [Ky @ Eylro. If vg is
the place of E conjugate to vg, then we have ry, +r,; = 0 courtesy of Proposition 2.19, and hence nofjo
is finitely ramified at every place of E, where 7 is the composite of 79 with the conjugation on F. As
before, this implies that 797 is a finite-order character of A%. In particular, the restriction of n2 to E
is a finite-order character. Since 7, is finitely ramified, this implies that 7, is a finite-order character,
and so is x|a, -

Corollary 2.21 (cf. [LV20, Lemmas 2.9 and 2.10]). Let L/K be a finite extension and V' a representation
of G, which is de Rham at all places of L above p and unramified and pure of weight n € Z outside a
finite set of places of L. Let v be a self-conjugate place of K above p. Then

Z[Lw 1 K] (Zidime grh DdR,w(V)> _n- [L: K] - dimg, (V) ’

4 2
€L

wlv

where the summation runs through places w of L dividing v, and Dggr (V) := Dar(V|a, ) as filtered
L., -vector spaces.

9Here we are implicitly using that Zariski-closures are stable under base extension. That is, suppose that F’/F is an
extension of fields, X is a variety over F and Xo C X (F) is a subset of the F-rational points of X. Write Z C X and
7' C X g for the Zariski-closures of Xg in X and X, respectively. Then Z' = Zp.
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Proof. We fix an identification L = K to view G, as a subgroup of Gx. The induced representation
W = Indgf (V) is again unramified outside a finite set of places of K, and it is pure of the same weight
n (weights can be read off after restriction to open subgroups of Gk, and for a suitable such the induced
representation will decompose as a direct sum of conjugates of the restriction of V).

For a place w | v above p we also fix an identification L,, = K, to view G,, as a subgroup of G,. The
local induced representation W,, = Indg:] (V) has

Dar,w(V) = (Bar(Lw) ®g, V)" = (Bar(K.) ®g, Ww)“" = Dar,o (W)

as filtered K,-vector spaces. Since W ~ EBw‘U W., as G,-representations, the representation W is also
de Rham at all places above p. The Hodge-Tate weight ¢ occurs with multiplicity

dimy, ((grk Dano(W)) = > [Lu + K] - dimy, ((grk Darw(V)).

wlv

We now apply Proposition 2.19 to the character y = det(W). The character y is unramified and pure
of weight n - [L : K] - dimg, (V') outside a finite set of places of K. It is also de Rham at places above p
and the Hodge-Tate weight at v is

ZidimKU (gr% DdR,v(W)) = Z[Lw K] (Zidime (gr% DdR,w(V))> . O

1€Z wlv 1EZL
3. PRELIMINARIES: FAMILIES OF (GALOIS REPRESENTATIONS AND v-ADIC PERIOD MAPS

The method of Lawrence—Venkatesh revolves around the study of families of Galois representations
arising from smooth proper morphisms 7: X — Y of smooth varieties. In this section, we recall how
the local representations associated to local points y € Y (K,) can be controlled using the theory of
v-adic period maps. Our presentation here differs significantly from that in [LV20], in that we do not
make any good reduction assumptions on the family X — Y and treat the period map from a purely
analytic perspective, without reference to any model. This is most evident in the proof we give that
period maps control the variation of local Galois representations (Theorem 3.3), where we must forgo
crystalline cohomology as a bridge between étale and de Rham cohomology, and must instead use tools
from relative p-adic Hodge theory as developed by Scholze [Sch13| and Shimizu [Shi20].

3.1. Period maps. Suppose that Y is a smooth K,-variety, and let (£, V) be a vector bundle'” with
flat connection on the rigid analytification Y?" (e.g. the analytification of an algebraic vector bundle
on Y with flat connection). Suppose that U,, C Y*" is an admissible open neighbourhood of a point
yo € Y(K,), such that Hig(U,,/K,) = K,; for instance, Uy, could be isomorphic to a closed polydisc
or a closed polyannulus. We say that (£,V) has a full basis of horizontal sections over Uy, just when
&, Vv, = (Oy,,,d)®™ for some m. The vector bundle (£, V) always admits a full basis of horizontal
sections over a sufficiently small neighbourhood of y [Shi20, Theorem 9.7].
When (£, V) has a full basis of horizontal sections over Uy,, then there is a canonical isomorphism

Ty: (Ov,, ®kK, £y, d®@1) = (E,V)|u,,

v
characterised by the fact that the fibre of Tyv0 at yo is the identity map. The fibre of Tyv0 at another point

y € Uy, (K,) is an isomorphism Tyvo,y: Evo = &y from the fibre over yg to the fibre over y, known as the
parallel transport map.

Using parallel transport, one can define the period map associated to a filtered vector bundle with
flat connection.

Definition 3.1. Let Y be a smooth variety over K,,, and let (€, V) be a vector bundle with flat connection
on Y?" endowed with an exhaustive, separated descending filtration
> FTESFE>FIE> L

(not necessarily stable!! under the connection V) whose graded pieces are all vector bundles.

10A vector bundle on a rigid-analytic space S over K, is an 0s-module which is locally finite free. Here, the implicit
topology can equivalently be taken to be the analytic, étale or pro-étale topology [Sch13, Lemma 7.3].

Uy practice, the filtrations appearing will all satisfy Griffiths transversality with respect to the connection, but this is
not necessary to define the period map.
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For yo € Y(K,), we define the period domain to be the flag variety G,, parametrising filtrations on &,
with the same dimension data as F*&,,. If U,, C Y*" is an admissible open neighbourhood of vy such
that Hg (U,,/K,) = K, and (£, V) has a full basis of horizontal sections over U, , then we define the
(v-adic) period map to be the K,-analytic map

. an
@, Uy, — Qyo

classifying the filtration on Oy, ®k, &, given by pulling back the filtration F*E along the parallel
transport map Tyvo. Concretely, if y € Uy, (K,), then ®,,(y) is the K,-point of G, corresponding to the

filtration on &, given by pulling back the filtration on &, along the parallel transport map 7, % y*

Implicitly in this definition, we have used the following description of the analytification of the flag
variety Gy, .

Proposition 3.2. Let V be a finite-dimensional K,-vector space, and let (d;)icz be non-negative integers
summing to dimg, V. Let G/K, denote the flag variety parametrising filtrations on V' with dimension
data (d;)icz. Then the rigid analytification G* represents the functor from K,-analytic spaces to sets

g exhaustive, separated filtrations F* on Os @k, V' such that
each gre(Os ®k, V) is a vector bundle of rank d;

Proof. We may assume V = KP™. By a framing of a filtration F* on 65™ (S a K,-scheme) we mean
a frame f1,..., f;, of ﬁ?’” which is adapted to F*®, meaning that F* ﬁ?m is the span of fi,..., ij>i d.
for all 7. Since the filtration F* is uniquely determined by the framing, we see that the functor B

S+ {framed filtrations F* on 65"}

is represented by GL,,. Moreover, two framed filtrations have the same underlying filtration if and
only if their corresponding elements of GL,,(.S) differ by the right action of an S-point of the parabolic
subgroup P < GL,, consisting of the block upper-triangular matrices with block sizes d;. It follows from
this description that GL,, is a P-torsor over G, locally trivial in the Zariski topology.

Now since analytification commutes with products [FvdP04, Example 4.3.3(4)], it follows that GL2}
is a group in the category of rigid spaces, P*" is a subgroup, and that the right-multiplication action
makes GL: into a P*"-torsor over G*", locally trivial in the analytic topology. In particular, we see
that G2 represents the sheafification in the analytic topology of the functor

S > GL™(S)/ P™(S). (+)

By definition of analytification, we see as in the algebraic setting that GL2"(S) is canonically in bijection
with the set of framed filtrations on @™ (defined in the obvious way), and that two points differ by
the action of an element of P*"(S) if and only if they have the same underlying filtration. So (x) is the
functor taking S to the set of framable filtrations on @?m, which sheafifies to the claimed functor. [

The importance of period maps is that they give a concrete description of how Galois representations
vary in families. This is true in a great level of generality, but for our purposes, it suffices to consider
only those families of Galois representations arising from smooth proper families of varieties. Consider a
smooth proper morphism 7: X — Y of smooth K,-varieties, and let #(X/Y) denote the ith relative
de Rham cohomology of X over Y [KO68, §2|. This is a vector bundle on Y endowed with a Hodge
filtration F* and a flat Gauf—Manin connection V [KO68, Theorem 1]. For any point y € Y (K,), the fibre
of A (X/Y)™ at y is canonically identified with the (algebraic) de Rham cohomology Hip (X, /K,) of
the fibre X, via the base change theorem for de Rham cohomology. If U C Y*" is an admissible open
subset, isomorphic to a closed polydisc, over which the analytification of ##}; (X/Y') has a full basis of
horizontal sections, and yg,y € U(K,), then by mild abuse of notation we will denote the composite

3 i Tyvv?/ 7 an ~ 17?
fﬂR(Xyo/Kv) = %lR(X/Y)ZZL s ” %R(X/Y)y = dR(Xy/Kv)
also by , the unlabelled isomorphisms being the base-change isomorphisms for de Rham cohomology.
1 bT,X’yh labelled i hi bei he b h i hi for de Rh h 1

Theorem 3.3. Let m: X — Y be a smooth proper morphism of smooth Ky -varieties, and let U C YY"
be an admissible open subset, isomorphic to a closed polydisc, over which JR (X/Y)* has a full basis
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of horizontal sections for the Gaufi—Manin connection. Then for every yo,y € U(K,), there is a unique
isomorphism

Tyo,y: Dpst (Hét(Xyofuv@p)) = Dopst (Hét(Xy,K,an))

of (p, N, G,)-modules making the following diagram commute:

?v ®Q;§r Dpst (Hét(Xyo,fvap)> LNO> Fv ®KU DdR (Hét (Xymfua(@p)) LNR> fv ®KU HéR(Xyo/Kv)

1®Ty0$ylz zJ{1®TyVM

K, ®qur Dpst (Hét(nyvap)) —= K, @k, Dar (H(iét(Xy,fv7Qp)) — K, @k, Hip(X,/K,).

Proof. This will come in §3.5. O

Remark 3.4. There are several different definitions of the étale-de Rham comparison isomorphism cqgr in
the literature (e.g. [Fal89, Theorem 8.1], [Tsu02, Theorem A1l]), and the validity of Theorem 3.3 depends,
a priori, on which definition is used. For the sake of clarity, the comparison isomorphism cqr for which
we prove Theorem 3.3 is the comparison isomorphism constructed by Scholze [Sch13, Corollary 1.8] in
the setting of rigid analysis. Throughout this paper, all references to cqr should be taken to refer to this
particular comparison isomorphism, whose construction we will spell out in §3.4.

Later on, we will need to know that the comparison isomorphism cgqr is compatible with all of the
natural constructions in cohomology: pullbacks (functoriality), cup products, Kiinneth decompositions,
trace maps, Poincaré duality, pushforwards, cycle class maps and Chern classes. Although these compat-
ibilities are known for some definitions of cgr, e.g. [Tsu02, Theorem Al], it will be important that these
hold for the above-mentioned cqr, and so we will be forced to re-prove these compatibilities ourselves.

Let us also remark that Niziol has shown in [Niz20] that many definitions of the comparison isomor-
phism cqr are equivalent to one another, but Scholze’s definition is not among those covered by her
work.

From now on, we adopt the notation as in Example 2.10. That is, if Z is a variety defined over a
finite extension L,, of K, contained in K, we adopt the shorthand Hp(Z/Qp") = Dypsi(He (27, Qp)),
and have the p-adic Hodge cohomology

o (Z/ L) = (H3(Z/Qp"), Hir (Z/ L), €ar © cBo) ,
which is a filtered discrete (o, N, Gy,)-module. So Hpy(Z/ L) = Dyn o (He (Z, , Qp))-

When 7: X — Y is a smooth proper morphism of smooth K,-varieties, Theorem 3.3 does not say that
the isomorphism class of the filtered discrete (¢, N, G,)-module H (X, /K,) is constant on the neigh-
bourhood U,,, because the parallel transport map Tyvo’y does not preserve Hodge filtrations in general.
Instead, it says that the isomorphism class of H;St(Xy /Qp) is constant on Uy, as a discrete (¢, N, G,)-
module, and that the variation of the Hodge filtration on H;H(Xy /K,) is controlled by the v-adic period
map.

We give a precise statement. If @ is a filtration on H)g(X,,/K,), we define a filtered discrete
(¢, N,G,)-module M (®) by

MU (®) = (Hp (Xyo / Q) Har (Xyo / Ko), car © €80)
where the (¢, N, G, )-module structure on H;St (Xy,/Qp") is the usual one, but the filtration on Hig (X, /Ky)
is given by @ instead of the Hodge filtration. The following then follows directly from Theorem 3.3.

Proposition 3.5 (Period maps control variation of local Galois representations). Let m: X — Y be
a smooth proper morphism of smooth K,-varieties, let yo € Y (K,) be a K,-rational point, and let
Uy, C Y?" be an admissible open neighbourhood of yo, isomorphic to a closed polydisc, over which
H (XY )™ has a full basis of horizontal sections.

Then for every y € Uy, (K,), there is an isomorphism

Hyp (X, /K)o M (®y,(y))
of filtered discrete (¢, N, G, )-modules.

Proposition 3.5 can be expressed diagrammatically as asserting the commutativity of the diagram
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Y (Ky) D Uy (Ky) —2— Gy (K,)

lHét lMi’
moRepi (@) 2 mMF (i, N, G,)

where the left-hand vertical arrow sends the point y to the isomorphism class of the G,-representation
H, (X o Q,) and 7y denotes the set of isomorphism classes in an essentially small category. Since D,y
is a fully faithful functor, this diagram shows that the period map ®,, determines the isomorphism class
of the local representation Hei (X, %, Qp) for all y € Uy, (Ky).

The rest of this section is devoted to the proof of Theorem 3.3. As mentioned before, when X — Y has
suitably good reduction at v, this can be proved by relating both étale and de Rham cohomology of X,
to the crystalline cohomology of its special fibre. This is the approach taken in [LV20]. However, in the
absence of any assumptions on the reduction type of X — Y, we are forced to take a different approach,
using the relative p-adic Hodge theory of Scholze [Sch13]. Since the proof will be rather technical, the
reader who is prepared to take Theorem 3.3 on faith can skip ahead to the next section §4.

Let us sketch in outline the proof of Theorem 3.3 which we will give. If Y2" denotes the rigid
analytification of Y, then Scholze defines what it means for a Q-local system E and filtered vector
bundle £ with flat connection on Y?" to be associated, meaning roughly that they become isomorphic
when tensored with a certain sheaf of de Rham periods on the pro-étale site of Y. Scholze’s relative
comparison theorem shows that the relative analytic étale cohomology and relative analytic de Rham
cohomology of 7" : X" — Y?" are associated in this sense. Moreover, these relative analytic cohomology
objects are just the analytifications of the corresponding algebraic relative cohomology objects.

So proving Theorem 3.3 reduces to proving the following: if E and £ are an associated Q,-local system
and filtered vector bundle with flat connection on Y**, then for any two points yo,y € Y (K, ) which are
sufficiently close in the v-adic topology, there is an isomorphism

Tyo,y: Dpst(Egy) = Dpsi(Ey)
of discrete (¢, N,G,)-modules making a certain rectangle commute. This is a consequence of theory

developed by Shimizu [Shi20], on potential horizontal semistability of horizontal de Rham local systems
on spherical polyannuli.

3.2. Scholze’s relative p-adic Hodge theory. We begin by recalling some relative p-adic Hodge
theory for rigid analytic varieties, as developed by Scholze [Sch13|, in particular what it means for a
local system and a filtered vector bundle with flat connection to be associated (Definition 3.9). The
main input we need from Scholze’s theory is the relative comparison isomorphism (Theorem 3.12), which
shows that the relative analytic étale and analytic de Rham cohomology of smooth proper morphisms
are associated in this sense.

Let U be a smooth K,-analytic space. Scholze associates to U a site Uprost, called the pro-étale site
[Sch13, Definition 3.9|[Sch16, Erratum (1)]. This site carries several important sheaves of Z,-algebras,
including:

e the structure sheaf &y (a sheaf of K,-algebras);
o the sheaf ZP,U = @(MU) where Z/p"U denotes the constant sheaf on Upyogt (ZP’U is not the

constant sheaf with value Z,, but plays a very similar role) [Sch13, Definition 8.1];

e the positive de Rham sheaf IB%IR)U [Sch13, Definition 6.1(ii)], which is a sheaf of Z, ;-algebras;
and

o the structural de Rham sheaf OBggr y [Schl3, Definition 6.8(iv)|[Sch16, Erratum (3)], which is a
sheaf of filtered &y -algebras endowed with a flat connection

V: ﬁEdR,U — Q%]/KU ®ﬁU ﬁBdR,U

satisfying the Leibniz rule V(fg) = V(f)g + V(g)f, extending the connection d on &y, and
satisfying Griffiths transversality with respect to the filtration F°®. The positive de Rham period
sheaf IB%XR’U = (F0 OBar,v)V =" is the sheaf of horizontal sections of FO OBar,u [Sch13, Proof of
Lemma 7.7].

These sheaves of algebras allow one to identify several important categories of sheaves on Uprost-

Definition 3.6 (Local systems and vector bundles).
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(1) A Zp—local system on U is a sheaf E of ZPVU—modules which, locally on Uprogt, is isomorphic to
the sheaf ZP’U ®z, M for a finitely generated Z,-module M [Sch13, Definition 8.1].

(2) A ]B%(J{R—local system on U is a sheaf M of IB%;LR_U—modules which, locally on Upreet, is free of finite
rank [Sch13, Definition 7.1]. /

(3) A filtered vector bundle with flat connection on U is a locally finite free sheaf £ of &y-modules,
together with an exhaustive, separated decreasing filtration F*E whose graded pieces are all
locally finite free Oy-modules, and a flat connection

Vi€ Qb ®a, €

satisfying the Leibniz rule with respect to the connection d on Oy and Griffiths transversality
with respect to the filtration F* [Sch13, Definition 7.4].

(4) A filtered OBgg-vector bundle with flat connection on U is a sheaf M of filtered 0Bgg -modules
which, locally on Upyees, is filtered-isomorphic to ﬁIB%j?g?U for some m, together with a flat con-
nection

V: M _>Q(1]/Ku ®6’UM

satisfying the Leibniz rule with respect to the connection V on ¢Bgygr,ry and Griffiths transver-
sality with respect to the filtration F* on M.

We write Loc(U, Zp), Loc(U,B}R), FMIC(U, 6;) and FMIC(U, 6B4R) for the ®-categories of Zp—
local systems, IB%IR—Iocal systems, filtered vector bundles with flat connection, and filtered &Bgyg-vector
bundles with flat connection on U, respectively. There are Z,-linear ®-functors

Loc(U, Z,) — Loc(U, Bj,) — FMIC(U, 6Bagr) + FMIC(U, 6y) (3.1)

given by base change along the morphisms'?

Zp,U — BijU — ﬁBdR,U — Oy .
Proposition 3.7. The functors
Loc(U, IB%IR) — FMIC(U, 0B4r) <> FMIC(U, Oy)

are fully faithful, and the image of FMIC(U, Oy) — FMIC(U, OB4R) is contained in the essential
image of Loc(U,B1;) — FMIC(U, OBgR).

Proof. Let T C FMIC(U, 0B4gr) denote the full subcategory consisting of those filtered &Bqr-vector
bundles with flat connection M such that'® FOMV=Cis a BjR—local system on U (for the natural ]B%(J{RU =
F? ﬁ]B%dvlgfoU—module structure). The proof of [Sch13, Theorem 7.6(i)] shows that for any BZ;-local sys-
tem M on U, the natural map ny: M — FO(ﬁBdR,U ®ps, M)V=Y is an isomorphism. Thus the image

of the functor OByr v ®pt (=): Loc(U,Bz) — FMIC(U, 0Bgr) has image contained in Z.

Now the construction M — FCMVY=0 provides a functor Z — Loc(U, BIR) which is right adjoint to
the functor OBgr, v ®pt (—). The unit of this adjunction is the natural isomorphism 7y above, which

implies that the functor OBar,u ®Buy , (—): Loc(U,Bjy) — FMIC(U, 0Bgg) is fully faithful.

Then the proof of [Sch13, Theorem 7.6(ii)] shows that for every filtered vector bundle with flat con-
nection &£, there is a BXR—local system M such that OBgr.u ®e, € is isomorphic to OBgr, i/ ®Bd+R " M

compatibly with the filtrations and connection. This says that the essential image of the functor
OBar,u ®6, (—): FMIC(U, Oy) — FMIC(U, 0Bg4R) is contained in the essential image of the functor
OBar,u ®pt (=): Loc(U,B;) — FMIC(U, 0Bgr). The fact that the functor & — OBar,u ®g, £ is

fully faithful follows then from the fact that the composite functor £ — FYOBar v ®e, £)V=0 is fully
faithful [Sch13, Theorem 7.6(ii)]. O

2T here is a small thing to be checked here: that if £ is a filtered vector bundle with flat connection on U, then
OBar,U ® gy, € is locally filtered-isomorphic to ﬁB?gU for some m. This follows from the fact that £ and all graded pieces
of its filtration are locally free of finite rank, and the fact that, locally on Uy ét, there is a section t of OBgr,y such that
multiplication by t gives a filtered isomorphism OBgg,r = OBgr,u of degree 1.

13The authors do not know whether this condition is in fact true for all M € FMIC(U, OB4R).
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Remark 3.8. In [Sch13|, Scholze does not work with filtered &Bqr-vector bundles with flat connection:
instead, he uses OBl -vector bundles with flat connection [Sch13, Definition 7.1(ii)] where ﬁIB%jR’U is the
positive structural de Rham period sheaf [Sch13, Definition 6.8(iii)|[Sch16, Erratum (3)]. The advantage
of Scholze’s approach is that the functor ﬁBj{Rﬂ ®pt (=) from IB%IR—local systems on U to ﬁEjR—Vector

bundles with flat connection is then an equivalence [Sch13, Theorem 7.2] — this is a p-adic version of the
Riemann—Hilbert correspondence. On the other hand, defining a functor directly from FMIC(U, Oy )
to MIC(U, ﬁ’IB%IR) is not as simple as just base-changing along a morphism of sheaves of rings, so in
the interest of simplicity of exposition, we have chosen to focus on the category of filtered OByr-vector
bundles with flat connection instead.

The ®-functors (3.1) allow one to isolate a class of de Rham Zp—local systems on U, which are those
for which there is a corresponding filtered vector bundle with flat connection under (3.1).

Definition 3.9. A de Rham pair on U is a triple (E,&,¢) consisting of a Zp-local system E on U, a
filtered vector bundle with flat connection £ on U, and an isomorphism

C: ﬁBdR’U ®ZP,U E = ﬁBdR,U oy &

of filtered OBgyg, 17-vector bundles with flat connection on U. The collection of all de Rham pairs naturally
forms a Zjy-linear abelian ®-category, the precise formulation of which we leave to the reader.

It follows from Proposition 3.7 that the forgetful functor from de Rham pairs to Zp—local systems on U
is fully faithful. We say that a Zp—local system E is de Rham just when it lies in the essential image of
this functor, i.e. just when E is the first component of a de Rham pair (E, &, ¢).

Remark 3.10. A Zp-local system E and filtered vector bundle £ appearing in a de Rham pair (E, &, ¢)
are said to be associated [Sch13, Definition 7.5].

3.2.1. Pullback of de Rham pairs. The theory described above is contravariant-functorial in the smooth
K ,-analytic space U in a natural way. Suppose that f: V — U is a morphism of smooth rigid-analytic
spaces over K,. This induces a morphism f: Vprost — Uprogt On pro-étale sites, and there are morphisms
of sheaves of Z,-algebras

f_lzp,U - Zp,V f_lBg_R,U - BIR,V
f1oy — oy fLOBary — OBar.v
compatible with all inclusions among these sheaves. Via these maps, we obtain pullback ®-functors
f*: Loc(U,Z,) — Loc(V, Z,) f*: Loc(U,Bz) — Loc(V,BJy)
f*: FMIC(U, 6y) — FMIC(V, Oy) f*: FMIC(U, OB4r) — FMIC(V, OBg4R) .

Now if E is a Zp—local system on U, resp. £ is a filtered vector bundle with flat connection on U, then

we have'?

ﬁBdRy ®Zp’v f*E = f*(ﬁBdR7U ®2p,U E) , resp. ﬁBdR,v Koy f*g = f*(ﬁBdR,U Ry 5) .

In particular, if ¢: OBgr v ®Zp " E > OB4r,u @6, € is an isomorphism of filtered GB4g-vector bundles,
then so too is f*c: OBgr,v ®Z,, , fFES OBgr,v ®e, [*E. We have thus proven the following.

Proposition 3.11. Let f: V — U be a morphism of smooth K,-analytic spaces, and suppose that
(E,&,¢) is a de Rham pair on U. Then f*(E,E,¢) :== (f*E, f*E, f*¢) is a de Rham pair on V.

3.2.2. Derived pushforward of de Rham pairs. In certain circumstances, it is also possible to push forward
local systems and filtered vector bundles with flat connection. This will all take place in the setting
of derived categories and filtered derived categories; for precise definitions and basic properties, see
Appendix A. Note in particular that the definition of the filtered derived category in [Sch13] corresponds
to what we refer to as the complete filtered derived category.

Suppose that 7: V' — U is a smooth proper morphism of smooth K,-analytic spaces. If E is a Zp—local
system on V, then the derived pushforward Rz, is a ZP,U—module on Uproét. In fact, R, E is always

1481:1‘ictly speaking, these are canonical isomorphisms of filtered OB4gr-vector bundles on V rather than actual equalities.
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a Z,-local system on U, as follows from [DLLZ19, Corollary 6.3.5] (in the case of trivial log structure)
and [Sch13, Proposition 8.2] and the remark below it.

The derived pushforward of a filtered vector bundle with flat connection is slightly more complicated
to define. If £ is a filtered vector bundle with flat connection on V, then one can form its relative de
Rham complex

DRy)(€) = € 5> Qb @6, € > Q2 )y @6, € o ...
defined e.g. as in [KOG68, §1]. This is a filtered complex of sheaves of 7= & -modules on V, where the
filtration on Q, ;; ®e, £ is the tensor product of the filtration on & and the filtration placing Qy ;;
in degree n. Hence the derived de Rham pushforward R'mqr«€ = R'T.DRy,y(€) is a filtered sheaf of
Oy-modules, where F"R'mgr+& is the image of the map
R'm (F"DRy,17(€)) = R'mo(DRy,p(€)) -
Moreover, the derived de Rham pushforward Rimar.E comes with a flat Gauf—Manin connection
V: R'Tar+& = Q) @6, RTaraE
satisfying Griffiths transversality with respect to the filtration. This is defined in the usual way [KOG68].
The absolute de Rham complex
DRy (€) :=€ 5 QL 94, £ Q% Qpy £ > ...
is naturally a left dg-module under the de Rham complex €3,. There is a natural “relatively stupid”
filtration o® on f,, where o™Q}, is the dg-ideal of Q}, generated by m~1Qf. The graded pieces of the
induced filtration on DRy /7 (€) can be canonically identified as
gr7 DRy (€) 2 77'QF ®,-16, DRy, (€)[-n],
just as in [Kat70, (3.2.4)]'°. In particular, we have an extension
0— 7 'Q) ®@r-16, DRy,u(€)[-1] = DRy (€)/0® = DRy, (€) = 0

in the category of filtered complexes of abelian sheaves on V. The coboundary map associated to this
extension is, by definition, the Gaufs—Manin connection V. It follows for purely formal reasons that the
connection V satisfies the Leibniz rule, is flat, and is Griffiths transverse with respect to the filtration.

Analogous constructions apply in the category of filtered OBgr-vector bundles with flat connection.
If M is a filtered OBgr-vector bundle with flat connection on V, then one can form its relative de Rham
complex DRy /(M) exactly as for DRy, (€) above. The relative de Rham complex DRy /(M) is a
filtered complex of 7! @Bqgr, -modules, so

R'mar.M := R'm.(DRy,(M))
is a filtered OBggr,-module. Moreover, RiTqr+M comes with a flat Gau—Manin connection
V: Riﬂ'dR*M — Q[l] Koy Riﬂ'dR*M

satisfying the Leibniz rule with respect to the connection on &Bgr,y; this is constructed from the absolute
de Rham complex DRy (M) exactly as for DRy (€) above.

These constructions of the various derived pushforwards are compatible in a natural way. If E is a
Zy-local system on V, then the map E — OBgr,v ®;, ., E induces a Z; y-linear morphism

E — DRV/U(ﬁBdR,V ®Zp,v ]E) = DRV/U(ﬁBdR,V) ®Zp,V E
of filtered complexes. Since this map even lifts to a morphism into the absolute de Rham complex
DRy (OBar,v ®s, E), it follows that the induced map
Rim,E — Rimgr.(OBar,v ®;, , E)

factors through the kernel of the connection on RiﬂdR*(ﬁEdR,V ®7, . E). Hence the induced OBggr v-
linear map

ne: OBaru @z R'm.E = R'Tar.(OBar,v ©2, ., E)

151y [Kat70, (3.2.4)], the right-hand side of this expression is rendered as T*QF ®,, DRy (€)[—n], but this does not
strictly speaking make sense, since DRy/y7(€) is not a complex of Oy -algebras (its differential is not Oy -linear).
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is compatible with connection and filtration.
Similarly, given a filtered vector bundle with flat connection £ on V| there is an evident morphism of
relative de Rham complexes
DRV/U(E) — DRV/U(ﬁBdR,V Koy 5)
which is 771 0y-linear and compatible with filtrations. Since this morphism extends to a morphism
between the absolute de Rham complexes, it follows that the induced &Bgyg,y-linear map

Ne: OBar.u @y RTarsE — RiTar«(OBar.v Qg &)

is compatible with the connection and filtration.
Scholze proves the following comparison theorem relating these constructions.

Theorem 3.12 ([Sch13, Theorem 1.10]). Let w: V' — U be a smooth proper morphism of smooth rigid-
analytic spaces over K,,, and let (E,E,c) be a de Rham pair on V. Then:

(1) Rimar.€ is a filtered vector bundle with flat connection on U for all i;

(2) the maps ng and ng above become isomorphisms after completing with respect to the filtration;
and

(3) there is a unique isomorphism ¢: OBqr,u ®2, 4 Rim,E = OBar,u Qe RiTar+€ of filtered OBqg-
vector bundles on U making the square

(ﬁBdR,U ®Z:D,U Riﬂ'*E)/\ ”””éf\j fffff > (ﬁBdR,U (g7 Riﬂ'dR*g)/\

lln[@ {77;:\

i (Rimar-c)
R'Tar+«(OBar, v ®3, 4 E)N ———2 Rimgr«(OBar.v @gy £)"

commute ((—)" denotes completion with respect to the filtration).
We write R'm,(E, €, ¢) for the de Rham pair (R'm,E, R'Tqr.&, €).

Remark 3.13. It seems likely that ng and 7n¢ should be isomorphisms even before completing. However,
we were unable to extract this from the theory in [Schl3]. Note that &Bygr y is not complete for its
filtration in general, so the completion operations are non-trivial here.

Proof of Theorem 3.12. This is essentially contained in [Sch13, Theorem 8.8]. We give a small additional
commentary on the second two parts, to clarify where completions enter the picture. In the proof of
[Sch13, Theorem 8.8], Scholze shows that the natural maps

ﬁBdR,U ®ZP,U Rm.E — RWdR*(ﬁBdR,V ®ZP,V E) and ﬁBdR,U Koy R7rgr«€ — RWdR*(ﬁBdR,V Koy 8)

(which act on cohomology objects as ng and 7g above) are isomorphisms in the complete filtered derived
category of abelian sheaves on Up,o¢t, i.e. they induce quasi-isomorphisms on all graded pieces. Both
OBar,u ®7, » Rm.E and 0Bgyr,v ® 6, Rmar«E have filtered cohomology objects in the sense of §A.1 in the
appendix; the second of these follows from the fact that the relative Hodge-de Rham spectral sequence
for £ degenerates at the first page using Lemma A.2. So by Lemma A.3, the two above maps induce
isomorphisms on completed cohomology objects, i.e. nf and 2 are isomorphisms.

The final part is then a special case of the following lemma. O

Lemma 3.14. Let Mg and My be filtered OBgg-vector bundles with flat connection on a smooth
rigid-analytic space U over K,. Suppose that Moy and My lie in the essential image of the functor
Loc(U, IB%;;R) — FMIC(U, OB4r). Then every filtered ﬁIB%dAR,U—lz'near map

" My — M7
compatible with connections is the completion of a unique morphism ¢: My — My of filtered OByR -
vector bundles with flat connection. Moreover, ¢ is an isomorphism if and only if ¢” is.

Proof. Let My := (F'M)V=0 be the ]B%j{R—local system on U corresponding to My, so that My =
OBqr,u ®B(TR " M. Since M is locally finite free, we have M} = ﬁBQKU ®BIR Y M with the filtration

and connection induced from those on ﬁ’Bé\RU. And since IB%;{R U= (FO ﬁBdR’U)V:O is complete, we find

by taking completions that BXR U= (F° ﬁBé\Rﬂ)V:O and hence

My = (FOMy)V=0.
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It follows from this that every OBjy j;-linear map ¢": Mg — M7 compatible with filtrations and
connections is the base-change of a unique IBIR,U—linear map ¢: My — M. In light of Proposition 3.7,
this implies that ¢ is the completion of a unique morphism ¢: My — M of filtered OBgr-vector
bundles with flat connection. The final claim, that ¢ is an isomorphism if and only if ¢” is comes by
applying the lemma to (¢")~!. O

Remark 3.15. In the proof of Lemma 3.14, we used the fact that BchrR,U was complete for its filtration.
This is actually rather subtle: although ]B%ijU is defined as the completion of a filtered period sheaf
Bine,u, this alone is not enough to guarantee that EIR,U is complete. We sketch the proof. To show
that BIR,U is complete, it suffices to show that the natural maps

F'Bi: o/ F'Blg v = F'Bint.vr/ F/Bint,v
are isomorphisms for all j >4 > 0. Using the sequence
0= Bl ; = F'Blg y = F'Bintu/ FBinty — Rllﬂl(FjBinf,U/FkBinf,U) ;
k>j

it suffices to show the vanishing of the right-hand term. This follows from [Sch13, Lemma 3.18], using

the fact that griBinr, o = Oy (k) has vanishing higher cohomology over any affinoid perfectoid U’ € Upyoet
over which Z,(1) is trivial, for any & > 0 [Sch13, Lemma 4.10(v)].

3.2.3. Compatibilities. We will also need to know that Scholze’s comparison isomorphism is compatible
with cup product and base change. We take care to spell these out carefully here.

First, cup product. Fix a smooth proper morphism 7: V' — U of smooth rigid-analytic spaces over K,,.
If we are given a pairing Og: E; ®3, Es — E3 in the category of Zp—local systems on V| resp. a pairing
Be: &1 ®p, E2 — &3 in the category of filtered vector bundles with flat connection on V, then there is
an induced cup product map

Bis: RimEq ®3, 4 Rim,Ey — R m,Es, resp. Bex: R'Mara&1 @6, RIMarsEa — R mar.Es (3.2)

for all 4,j. The latter of these is induced by the evident 7~ !&y-linear pairing DRy, (&1) ®@r-16,
DRy (&) — DRy y(&3) on relative de Rham complexes. Compatibility of Scholze’s comparison iso-
morphism with these cup product maps amounts to the following.

Proposition 3.16. Let m: V. — U be a smooth proper morphism of smooth rigid-analytic spaces over K,
and let B = (B, Bs): (E1,&1,¢1) ® (Ea,E2,¢c2) — (Es,E&5,¢3) be a pairing in the category of de Rham
pairs on V. Suppose that the derived pushforwards Rim,E1, Rim,Ey and Rim,Es are all Zp-local systems
on U for all i. Then the cup product maps (3.2) are the components of a pairing

Bu: Rime(Ey, &1, 1) @ RIT.(Bg, €, c2) — R, (B, E3, ¢3)
in the category of de Rham pairs on U for all i, j.

Proof. If Barg: My ®pB,y ., M2 — M3 is a pairing in the category of filtered OByr-vector bundles on V/,
then there is an induced cup product pairing

Bt RiTars (M1) ®6Bap v R Tar«(Ma) = R 1qr. (M)
for all 4, j, defined analogously to B¢, above. We consider the diagram

OBar.y ® R, (By) @ R, (By) —— 2% 6Bapy @ R, (Ey)

// \\\
/ l’rml QNEy lmEB \
/ \
/

! Rimar« (OBar,y @ E1) @ RImara (OBar,v @ E2) —— R 1apa (OBar,v @ E3)

{ :‘ llRiﬂ'dR* (c1)®RI mar« (c2) ?lRiH Tar«(€3) I: ! (33)
\ R'7ar«(OBar,v @ £1) @ R 7ar«(OBar,v @ E2) —— R mar. (OBar,v @ E3) /'l
N Tngl ®ne, TT,% //
P v
1®Pe«

OBar,u ® R'Tar«(€1) @ R'mars(E2) —————— OBar,u @ R'mar.(E3)
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in the category of filtered &Bgr-vector bundles on U (in which subscripts on tensor products are omit-
ted for readability). The horizontal maps are the various cup product pairings, and the dashed ver-
tical maps are the comparison isomorphisms for the de Rham pairs Rir. (E1,&1,01) ® R’ 7 (Ea, £, c2)
and R, (Es, &3, ¢3).

The three squares in (3.3) formed by the solid arrows each commute. For the top square, this follows
from the commutativity of the square

Ei ®; , Es Es

! |

DRy,u(0Bar,v ®; ., E1) @r-168,n,0 DRv/u(OBar,v ®; | E2) —— DRy y(0Bar,v ®; |, Es)

of pairings of filtered complexes of abelian sheaves on Upyoet; commutativity of the other squares in (3.3)
follows similarly.

Now once we take completions with respect to the filtration, the two squares in (3.3) formed by the
dashed arrows and the vertical maps both commute, and all the maps in the rightmost of these squares
become isomorphisms. It follows that the outermost square in (3.3) formed by the dashed arrows and the
top and bottom horizontal maps commutes after completing. By Lemma 3.14 it even commutes before
completing, so (8g, B¢) is a morphism of de Rham pairs, as desired. O

Second, base change. Fix a commuting square

| VA, v

l’“’ P (3.4)

v v

in the category of smooth rigid-analytic spaces over K,, with m and 7’ both smooth and proper. This
square need not be a base change square. If E is a Z,-local system on V, resp. £ is a filtered vector
bundle with flat connection on V', then there are associated base-change maps

beg: f*Rim,E — Ri7lg*E, 1resp. beg: f*Rimgr.€ — Rim)g.g"E (3.5)
for all 7. We recall the construction of the latter for the benefit of the reader. There is a natural map
g_lDRv/U(g) — DRV//U/ (g*g)

1

in the category of filtered sheaves of ¢g~'m~!Oy-modules on VI; Applying Rin’. and precomposing

roét
with the base-change map f~'R'm, — R'nlg~! for abelian sheaves yields a f~! &y -linear map

FIR Tar-€ = RiTR, 9" E;

the base change map bcg is the unique Op-linear map through which this factors. Compatibility of
Scholze’s comparison isomorphism with these base change maps amounts to the following.

Proposition 3.17. Suppose we are in the above setup: (3.4) is a commuting square in the category of
smooth rigid-analytic spaces over K,, with m and 7' both smooth and proper. Let (E,&,c) be a de Rham
pair on V., and suppose that R'm,E and Riwig*E are Zp—local systems on U and U’, respectively, for all i.
Then Rimgr.& and Riﬂ'(’m*g*é are filtered vector bundles with flat connection on U and U’, respectively,
and the base-change maps (3.5) are the components of a morphism of de Rham pairs

bege: f*R7T.(E, &, ¢) — Rinlg*(E, &, c)
for all i.
Proof. For a filtered 0Bgyr-vector bundle M on V there is a base change map

bea: ¢F Ritig M — Rimgrag* M
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for all 7, defined analogously to bcg above. We consider the diagram

1®bcg

OBar.yr @ f*Ri7.E OBar.u @ Rim,g*E

/// \\
* .
/ f e Ng*E N
/ A\

/ f*RiW/dR*(ﬁBdR7V (024 E) E— RiﬂdR*(g*(ﬁBdR7V ® E)) \\\
ZJ/f*Riﬂ':lR* (c) ZJ/Riﬂ'dR*g*(c) I:

\\\ f*RiTréR*(ﬁBdR7V ® 5) E— RiﬂdR*(g*(ﬁBdR7V ® 5)) //

\\ . //
AN fne Ng*e s
N W

OBar,u’ ® f*RiWéR*(g) LN OBar,u ® R'Tar.g*E

! (3.6)

in the category of filtered &Bggr-vector bundles on U (in which subscripts on tensor products are again
omitted for readability). The horizontal maps are the various base change maps, and the dashed vertical
maps are the comparison isomorphisms for the de Rham pairs f*R'7’(E, £, ¢) and R'm,g*(E, &, c).

The three squares in (3.6) formed by the solid arrows each commute. To see this for the top square,
start from the commuting square

g 'E g°E

| !

9~ 'DRy,u(0Bar,v ® E) —— DRy//p/(0Bar,v' ® g*E)

in the category of filtered complexes of abelian sheaves on U{Jroét' Applying the functor Rim, and
precomposing the horizontal maps with the base change map f~ 'Rz’ — R'm,g* for abelian sheaves
yields a commuting square

fTR'T,E R'7.g*E

| |

fﬁlRiﬂ'/dR*(ﬁ]BdRyv ® E) R RinR*g*(ﬁBdRy (39 E)

in the category of filtered abelian sheaves on llaroét‘ The top map is f _1ZP,U—linear7 so factors uniquely
through a Zprz—linear map f*R’ﬁr;]E — Rm,¢*E, namely the base change map beg. Similarly, the bottom
map factors uniquely through a OBgg y-linear map f*Riﬂ'éR*(ﬁBdRy QRE) — RiwdR*g*(ﬁBdR,v QR E),
which is the base change map for OBgr,v ® E. Commutativity of the top square in (3.6) follows;
commutativity of the other squares in (3.6) follow similarly.

Now once we take completions with respect to the filtration, the two squares in (3.6) formed by the
dashed arrows and the vertical maps both commute, and all the maps in the rightmost of these squares
become isomorphisms. It follows that the outermost square in (3.6) formed by the dashed arrows and the
top and bottom horizontal maps commutes after completing. By Lemma 3.14 it even commutes before
completing, so (bcg, bcg) is a morphism of de Rham pairs, as desired. (|

3.3. Analytification of algebraic maps. We now specialise the preceding discussion to the case of
analytifications of algebraic varieties, following [Sch13, §9].

If X is a smooth algebraic variety over K, then there is a natural morphism of sites X1 — Xet,
and we write (—)®" for the pullback map on categories of sheaves. So if £ is a filtered vector bundle'®
with flat connection on X, then £2" is a filtered vector bundle with flat connection on X?", and if E is
a Zy,-local system on X given as the inverse system of Z/p"-local systems E,,, then [an .= @E;ﬂ is a

an

Z,-local system on X

16Here, we always think of algebraic vector bundles as locally finite free 0x-modules in the étale topology. This is
equivalent to the usual definition with the Zariski topology.
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Suppose now that 7: X — Y is a smooth proper morphism of smooth K,-varieties, so that we have
a 2-commuting square

an ,
Xproét Xet

lﬂan k (3.7)

Yovosr — Yer
of sites. Scholze proves that the expected compatibility between analytic and algebraic derived pushfor-
wards holds. We will use this in the proof of Theorem 3.3 to relate relative algebraic étale and de Rham
cohomology by comparing their analytic cousins via Scholze’s relative comparison theorem.

Proposition 3.18.
(1) If € is a filtered vector bundle with flat connection on X, then the base change map

(Rimar« (€)™ — Rindn, (£2)

associated to the square (3.7) is an isomorphism for all i.
(2) If E is a Z,-local system on X, then the derived pushforward R'nm2"(E*") is a Z,-local system
on Y?®" for all v and the base change map

(Rimaes (B)) ™ — Rizen (20
associated to the square (3.7) is an isomorphism for all i.

Proof. See [Sch13, Theorem 9.1(ii)] for the first point; the second follows from a combination of [Sch13,
Theorem 9.3], [Sch13, Corollary 3.17(ii)] and [Sch13, Proposition 8.2]. O

3.4. The absolute comparison theorem for algebraic varieties. Before continuing with the proof
of Theorem 3.3, let us take the time to precisely spell out the definition of the comparison isomorphism cqr
appearing there, as promised in Remark 3.4.

This essentially amounts to unpacking Scholze’s comparison theory in the case of the analytification
of a smooth proper morphism 7: X — Spec(L,,) for a finite extension L,, of K, contained in K,. We
write U = Sp(L,,) = Spec(L,,)*", and consider the object U € Upyost given by

L/

w

where the colimit is taken over all finite extensions L/, of L,, contained in K,. There is a natural right
action of the absolute Galois group G, of L,, on U, and so for any sheaf F on Uprost, there is an induced
left G,-action on F(U). In the particular case of the de Rham period sheaf OBgr,u, its sections over U
exactly recovers Fontaine’s ring Bqr of de Rham periods, with its Hodge filtration and Galois action.

So, applying Theorem 3.12 to the map 7**: X** — Sp(L,) and the de Rham pair (E,&,¢) =
(Zp7 xan, Oxan, 1), we obtain a series of isomorphisms

OBgr,vu ®ZP,U (RiTrét*Zp,X)/\’an

= OBar,v @, RI727Z, xan

> OBar,u ®oy RTiR, O xon

= OBar,v @y (R'Tar«Ox)™

of filtered &Bqr-vector bundles with flat connection on U, the first and third of which are the isomor-
phisms from Proposition 3.18. Taking sections over U, we thus obtain a comparison isomorphism

car: Bar ®q, Hee(X7,,Qp) = Bar ®1,, Hyr (X/Ly) (3.8)

for every smooth proper algebraic variety X/L,,, which is Bgg-linear, G,,~equivariant and strictly compat-
ible with filtrations. (We write L., instead of K, on the left-hand side to emphasis that the base-change
is from L,, to L, = K,, not from K, to K,.) This is the comparison isomorphism cqgr for which we will
prove Theorem 3.3.
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3.4.1. Compatibilities. We will also need to know that the comparison isomorphism cqr from (3.8) is
compatible with the usual constructions in cohomology. As we said in Remark 3.4, these compatibilities
are already known for the comparison isomorphisms constructed by Faltings, Tsuji and others; however,
it is important for us that these compatibilities hold for the comparison isomorphism defined above, so
we have to check this by hand.

The compatibilities come in two types. The first are those compatibilities which follow formally from

the setup.
Proposition 3.19. The comparison isomorphism cqr from (3.8) has the following properties.
(1) For any smooth proper variety X/L,,, the total comparison isomorphism

car: Bar ®q, Hg (X7, ,Qp) = Bar @1, Hig (X/ L)

18 an isomorphism of graded algebras with respect to cup product.
(2) For fized L.,, the isomorphism cqr is natural in X.
(3) For a finite extension Ly, /Ly, contained in K, and a smooth proper variety X/L,, , the square

Bir ®q, Hfét(Xfwla@p) — > Bar ®r,,, Hig(X/Lu,)

L !

Bar ®q, Hs ((XL,,)z, » Q) —== Bar ®1,, Hir(XL,,/Luw,)

wo

commutes for all i, where the vertical maps are the base change maps.
(4) For two smooth proper varieties X,Y/L,,, the square

Bar ®q, HY (X7, ,Q,) @, He (Y7, ,Q,) “B2% By @p, H3(X/Lw) ©r, Hip(Y/Luw)
| |
Bar ®q, HE (X xr,, V), ,Qp) = Bar @1, Hir(X xr,, Y/Ly)

commutes, where the vertical maps are the Kiinneth isomorphisms.

Proof. The first three points follow straightforwardly from Propositions 3.16 and 3.17. For the final
point, the Kiinneth isomorphism in de Rham cohomology is the unique isomorphism of graded algebras
induced by the pullback maps Hyp (X/L,,) = Hig(X X1, Y/Ly) and Hyz (Y/Ly) — Hig (X ®1, Y/Ly)
induced from the product projections, and similarly for étale cohomology. Hence (4) follows from (1)
and (2). O

The second set of compatibilities are those related to Poincaré duality. In the statement, we use (n)
to denote a shift in filtration by n, i.e. if V' is a filtered object then V{n) denotes the filtered object
with F*(V (n)) = F""V.

Proposition 3.20. There is a G, -equivariant filtered Byg-linear isomorphism

a: Bar(—1) = Bar(~1)
with the following properties.
(5) For any smooth proper geometrically connected variety X/L,, of dimension n, the square
Bar ® HZ' (X7, . Qp) —=+ Bar ® H3%(X/Ly)
zll@trét li1®trdR (3.9)
a®n,
Bar(—n) ————=— Bar(-n)

commutes, where trg, and trqr are the trace maps.
(6) For any smooth proper geometrically connected variety X/L,, of dimension n, the square

Bar ® Hciét (Xfw ’ Qp) ®Qp HQn_i(Xfw ’ Qp)C%R Bar ® HER(X/LW) ® chirrbi_i(X/Lw)

| !

a®n,
Bar(—n) ~ Bar (—n)

commutes for all i, where the vertical maps are the Poincaré duality pairings.
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(7) For any smooth proper variety X/L,, and any codimension r cycle Z on X, the étale and de
Rham cycle classes of Z are identified with one another under the isomorphism

car ® a®7": Bar ®g, Hil (X7, ,Qp)(r) = Bar @1, HiR (X/Ly)(r) . (3.10)

(8) For any smooth proper variety X/L,, and vector bundle V on X, the rth étale and de Rham
Chern classes of V are identified with one another under the isomorphism (3.10).

Proof. First we must define the isomorphism a: we take a to be the unique isomorphism making (3.9)
commute for X = Pk

Now we prove (5). Note firstly that if f: X’ — X is a generically finite morphism of degree d between
smooth proper geometrically connected L,,-varieties of dimension n, then the squares

H(X7,.Q,) —1 HE(XL Q) 20 (X/ L)~ HAL(X'/Ly)
Qp(—n) —— Qu(-n) Ly(—n) —%— Ly(-—n)

both commute. Hence (3.9) commutes for X if and only if it does for X’. Hence it suffices to prove
commutativity of (3.9) for one L,-variety of each dimension n: we do this for X = (P} )". Whenn =1
and L,, = K, this follows by definition of a; when n = 1 and L,, is general this follows by point (3).
For n general, the trace maps for (P} )" are identified, via the Kiinneth isomorphism, with the nth
tensor power of the trace maps for P} . So commutativity of (3.9) follows from point (4).

Point (6) follows immediately from pomts (1) and (5). For (7), by (2) and (3) we need only consider
the case that X is geometrically connected of dimension n and Z is geometrically integral. Choose a
resolution of singularities Z — Z, and let 7 denote the composite Z — Z < X. The de Rham cycle class
of Z is the unique element of H*"(X/L,,)(r) satisfying (clqr(Z), £) = trqr (i*¢) for all € € Hig > (X/Ly,),
where (-, -) is the Poincaré duality pairing, and similarly for the étale cycle class. So (7) follows from
points (2) and (6).

For point (8), Grothendieck’s formalism of Chern classes implies that it suffices to prove the result
when V' is a line bundle and » = 1. But in this case the projection V' — X from the total space of V'
induces an isomorphism on étale and de Rham cohomology, and the first Chern class of V' is none other
than the cycle class of the zero section in V. So we are done by (2) and (7). O

Remark 3.21. The construction of the period ring Bgr provides it with a canonical G,-equivariant map
Q,(1) — Bgr such that the image of any non-zero element spans F!B4r as a BIR—module. Thus there
is a canonical choice of an isomorphism Bgr(—1) & Bqr{(—1); we suspect that the isomorphism a from
Proposition 3.20 should be this canonical choice of isomorphism, but we do not prove it here.

3.5. Horizontal de Rham local systems. With Scholze’s comparison theorem in hand, Theorem 3.3
becomes a special case of a general result about de Rham local systems over polydiscs. In this level of
generality, the problem was studied by Shimizu [Shi20]; we explain carefully here how to extract the result
we need from his theory. The same result we need already appears in work by the first author [Bet22,
Theorem 6.1], but we repeat the derivation here for the sake of completeness.

IfEisa Zp—local system on a smooth rigid-analytic space U over K, and y € U(K,) is a K,-rational
point, then one obtains a continuous representation E; of G, on a finite Z,-module by first pulling back E
along y: Sp(K,) — U and then taking sections over the object

L Sp 6 Sp( )proét

where L,, ranges over finite extensions of K, inside K, as in §3.4. The result we need to extract from
Shimizu’s theory says that if U is a closed polydisc, and if E is a de Rham local system whose associated
vector bundle has a full basis of horizontal sections over U, then the (¢, N, G,)-modules Dy (Ej) are all
canonically isomorphic to one another for y € U(K, ). The precise statement is as follows.

Theorem 3.22. Let U be a rigid-analytic space over K, isomorphic to a closed polydisc or spherical
polyannulus'”, and let (E,&,c) be a de Rham pair on U. Suppose that & has a full basis of horizontal

17 spherical polyannulus over K, is a rigid-analytic space over K, isomorphic to Sp(K, <tf1, S t$1>) for some n > 0.
In other words, it is a polyannulus whose inner and outer radii are equal.
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sections. Then for every yo,y € U(K,), there is a unique isomorphism
Tyo,y: Dpst (Egy) = Dpst (Eg)

of (¢, N, G,)-modules making the diagram

— — 1®Cy R
K, @qu Dpsi (Bg,) == Ky @k, Dar (Egy) —= Ko @k, Ey,

1®Tyo~yll le(@Tyvo,y

— J— 1® —
K, @gu Dpst (By) —22 K, ®x, Dar (By) —= Ko Ox, &

commute.

Proof of Theorem 3.3. 1t is straightforward to deduce Theorem 3.3 from Theorem 3.22. Given a smooth
proper morphism 7: X — Y of smooth K, -varieties, we know by Theorem 3.12 applied to the unit de
Rham pair (Zp, xan, Oxan, 1) on X?" that there is an isomorphism

CdR : ﬁBdR’Yan ®Zp_yan Ri’]'('i‘nzp7xan = ﬁBdR,yan @6y an Ri’ﬂ'grﬁ*ﬁxan
making (R'72"Z,, xan, R'T4%, Oxan, car) into a de Rham pair on Y. As discussed in §3.4, R‘72°Z, xen
and R'mj}, Oxan can be identified as the analytifications of the relative étale and de Rham cohomologies

R'TetsZp, x., and %”diR(X /YY), respectively, and the fibre of the comparison isomorphism cqr at a K-
point y € Y**(K,) = Y(K,) is the comparison isomorphism

car: Bar ®g, He(X, 7., Qp) = Bar @k, Hip (X, /K.)
of (3.8). So we obtain Theorem 3.3 as the special case of Theorem 3.22, applied to the de Rham pair

i o
(R Winzp’xan

7
U, R'T{R. Oxan U, CdR|U)- O

Now we turn to the proof of Theorem 3.3, which we want to extract from [Shi20]. The first step is to
reduce to the case of spherical polyannuli.

Lemma 3.23. Suppose that Theorem 3.22 holds whenever U is a spherical polyannulus, for all finite
extensions K, /Q,. Then it holds in general.

Proof. Let U be a closed polydisc, and suppose first that the residue field of K, is not Fy. Then there
is a spherical polyannulus U°® C U such that yo,y € U°(K,). Indeed, after picking coordinates on U we
may write yo = (a1,...,an) and y = (by,...,b,) with all a;,b; € O,; the desired inclusion U°® — U is
then given by t; — t; — ¢; where ¢; € 0, is not in the residue disc of a; or b;. Since £|yo again has a full
basis of horizontal sections, the result for (U, yo,y) follows from the corresponding result for (U°,yo,y).

If instead the residue field of K, is Fa, let us write L,, , for the unramified extension of K, of degree r
inside K,, and G, for its absolute Galois group. The result applied to (U. Lu.,»Y0,Yy) implies that for
each r > 1 there exists a unique isomorphism

Tyoy.r+ Dpst(Egy) = Dpst(Eg)
of (¢, N, Gy, r)-modules making the claimed diagram commute. Unicity implies that the maps T}, , r
are all equal, to Ty, , say, and so T}, , commutes with the actions of ¢ and IV, and with the action

of Gy, for all » > 1. Since G2 and G,,3 generate G, it follows that Ty, , is G,-equivariant, i.e. an
isomorphism of (¢, N, G,)-modules. So we are done also in this case. ]

We now build up to the proof of Theorem 3.22. Let U = T" := Sp(R,[p~!]) be the spherical
polyannulus with R, := 0, <t1i1, tQﬂ, .., tE1) . As in [Shi20, §3], fix an algebraic closure Frac(R,) of the
fraction field of R,, and let R, C Frac(R,) be the union of all finite R,-subalgebras R!, of Frac(R,) for
which R! [p~!] is étale over R,[p~!]. We write

Gg, = Aut(R,[p~']/Ru[p']).
This group is canonically isomorphic to the étale fundamental group of Spec(R,[p~!]) based at the
geometric point determined by Frac(R,) [SGA1, Exp. I, Proposition 10.2], and hence carries a natural
profinite topology. We always suppose that we chose Frac(R,) to contain K, so that K, C R,[p~!] and

we have a restriction homomorphism
Gr, » Gy. (3.11)
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If L,, is a finite extension of K, contained in K,, we write Gg, C Gg, for the preimage of G,, under
the restriction map.

Shimizu’s theory isolates a class of G, -representations, generalising the class of potentially semistable
representations of G,, (which is recovered by setting R, = &,,). For this, he introduces a certain horizontal
semistable period ring BY (R,), which is a Q)'-algebra and comes with a semilinear crystalline Frobe-
nius endomorphism ¢ and monodromy operator N [Shi20, Definition 4.7]. Moreover, the construction
of BY (R,) is functorial in R,,, and in particular carries a natural action of G g, induced by the tautological
action on R,. For any finite extension L,, /K, contained in K, we have that (BY )%rw = Lyo = LyNQyT
[Shi20, Corollary 4.10]. This period ring allows one to identify the desired class of G g, -representations.

Definition 3.24 (Potentially horizontal semistable representations [Shi20, Definition 4.15]). If F is a
continuous representation of G, on a finite free Z,-module, then we write

DY (E) = lim(BY (R,) @z, E)%#»

where the colimit is taken over finite extensions L.,/K, contained in K,. The natural action of G R,
on DY, (E) factors through G, and has open point-stabilisers: together with the crystalline Frobenius ¢

pst
and monodromy operator N induced from those on BY (R, ), this makes DY, (E) into a discrete (o, N, G, )-
module. We always have the inequality dimgy: D}YSt(E) < dimg, £ [Shi20, Lemma 4.12|, and we say

that FE is potentially horizontal semistable just when equality holds. Equivalently, E is potentially
horizontal semistable just when the evident map

apy: BY (Ry) ®@gpr DY, (E) = BY(R,) ®z, E

pst :
is a BY, (R, )-linear isomorphism.

In the particular case that R, = &, (and R, = ﬁ?v)’ we have that BY(0,) = By is the usual
semistable period ring of Fontaine. In general, if y € U(K,) is a K,-point, we can choose an extension
of the pullback map y*: R,[p~!] — K, to a K,-algebra homomorphism §*: R,[p~!] — K,. The map j*
determines a continuous homomorphism

Sg: GU — GR,U s

identifying G, as the setwise stabiliser of the kernel of §*. For a continuous representation F of Gg, on
a finite free Z,-module, we write Ejy for the G,-representation given by F with the G,-action given by
restriction of the G -action along sj;.
Since the construction of BY, (R,) is functorial in R,, there is an induced morphism
§*: By (Ry) — Byt

of Q,"-algebras, compatible with crystalline Frobenii and monodromy operators. It is also Gy-equivariant
where G, acts on stt (R,) via restriction along sz. So for a continuous representation E of G, on a
finitely generated Z,-module there is then a natural morphism

py: Dyt (E) — Dpst(Ey)
of (¢, N, G,)-modules given by taking invariants in §* ® 1: BY (R,) ®z, £ — By @z, Ej.

Lemma 3.25. Suppose that E is potentially horizontal semistable. Then Ey is potentially semistable as
a representation of Gy and pg is an isomorphism.

Proof. Special case of [Shi20, Lemma 4.4]. |
Corollary 3.26. Let yo,y € U(K,) and choose lifts y5,y*: Ry[p~'] — K,. Then for any potentially

horizontal semistable representation E of Gr, there is a canonical isomorphism
Tyo,y: Dpst(Eg,) = Dopst (Eig)
of (¢, N, Gy)-modules, given by Ty, , := pg o pyiol,

Now we want to translate between the languages of Zp—local systems on U and representations of G, .
For this, let us write

U :=limSp(R,[p~]),
@

v
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where R/ runs over all finite R,-algebras in Frac(R,) such that R, [p~!] is étale over R,[p~1]. Thus U is
an object of the pro-étale site of U, on which Gg, acts naturally from the right.

Lemma 3.27. The category Cov?}g of finite étale coverings of U is a Galois category [SGA1, Exp. V,
Définition 5.1], and the functor

F: Cov?}g — {finite sets}
V +— Homy (U, V)
is a fibre functor.
In particular, the functor from Zy,-local systems on U to continuous representations of Gg, on finitely

generated Zy-modules given by E — H°(U,R) is an equivalence, where the G g, -action on H*(U, E) is the
one induced from the action on U.

Proof. Tt follows from [FvdP04, Definition 4.5.7 & Proposition 8.1.1] that the category of finite étale cov-
erings of U is opposite to the category of finite étale R,[p~!]-algebras (see the proof of [Bet22, Lemma 6.4
for a careful argument). That Fy; is a fibre functor follows from [SGAI, Exp. V, Proposition 5.6]. The

final part follows since the category of Zp—local systems on U in the pro-étale topology is equivalent to
the category of Z,-local systems in the étale topology [Sch13, Proposition 8.2|. O

Remark 3.28. If y € U(K,) is a K,-rational point, then a lifting of y*: ]iv[p‘l] — K, to some
§*: Ry[p~'] — K, is equivalent to a choice of point § € Uy in the fibre of U over §. Hence by the
Yoneda Lemma g determines a natural isomorphism v5: F = Fy of fibre functors on CovaUlg. This
isomorphism vy gives a G,-equivariant isomorphism

H°(U,E); = E,
for all Zp-local systems E on U.

Remark 3.29. Lemma 3.27 implies that the group Gr, is isomorphic to the algebraic fundamental group
of U in the sense of de Jong [dJ95, p. 94], albeit based at a fibre functor that does not canonically come
from a geometric point of the Berkovich space associated to U.

In the proof of Theorem 3.22 which follows, we adopt the notation of [Shi20, p. 47] in writing
BdR(Rv) = Ho(ﬁ, ﬁBdR,U) .

This is a filtered R,[p~!]-algebra endowed with an action of Gg, extending the tautological action
on R,[p~!], and with a flat connection

V: BdR(Rv) — Q}éf[p_q/[{u ®Rv[p*1] BdR(Rv)

satisfying the Leibniz rule with respect to the derivation on R,[p~!]. Here Q}éf[p,ll/K = H(T, Qllj/Kv)

is the module of finite differentials. The horizontal semistable period ring BY (R,) is then a subring
of Bgr(R,) contained in the kernel of the connection V.

Proof of Theorem 3.22 for U a spherical polyannulus. Let E = H° (U,E) be the G g, -representation cor-

responding to the local system E. Since £ has a full basis of horizontal sections, we have that F is

potentially horizontal semistable [Shi20, Lemma 8.9]. We fix lifts ¢, 7*: R,[p~'] — K, of y3,y* as

usual, so there are canonical G-equivariant identifications Ey, = Eg, and E; = E; by Remark 3.28.
We will show that, under these identifications, the map

Tyoy = pgo P§011 Dpst (Eg,) = Dpst (Ey)
from Corollary 3.26 makes the rectangle in Theorem 3.22 commute; it is automatically the unique such

map. For this, we write & = H°(U, &) for the projective R,[p~']-module associated to £. We have
G R,-equivariant isomorphisms

Bar (Rv) ©gnr DYt (E) = Bar(Ry) ®z, E % Bar(Ry) ®g,p-1) EU (%)

of Bgr(R,)-modules with flat connection, the first of which is the base-change of the natural map

BY (R,) ®qur DY (E) = BY (R.) ®z, E, and the second of which is the sections over U of the isomor-

phism c¢: OBgr,u ®Zp v E = OBar,u Qo €.
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Base-changing (x) along ¢ : Bar(R,) — Bar yields a commuting diagram

Bar(R,) ®@qur DYt (E) —— Bar(R,) ®z, E —5— Bar(Ry) ®r,[p-1) €U

lm‘;@pgo l@?é@l }73 (%)

BdR ®Qgr Dpst(Ego) % BdR ®ZT—' Ego * BdR ®Ku gyo
of G,-equivariant Byg-modules. Using this, we claim that the rectangle
Bar(Ry) @qu Dy (E) —~— Bar(Ry) ®z, E —<— Bar(Ry) @g,p-1) €U

zl1®pg0 zTTyVO (1)
Bar(Ry) ®qur Dpst(Ey,) —— Bar(Ry) @z, By, —<— Bar(Ry) @k, Ey,

~

commutes. Since all the maps in () are Gpr, -equivariant isomorphisms of Bgr(R,)-modules with
connection and Bgr(R,)%" V=0 = K, [Shi20, Proposition 4.9], it is certainly true that (f) com-
mutes up to an element of GL,(K,). So it suffices to check that (f) commutes after base-changing
along 43 : Bar (Ry) — Bagr, which follows from commutativity of ().

Base-changing (1) along ¢* then yields the desired result. O

4. ABELIAN-BY-FINITE FAMILIES

In the method of Lawrence and Venkatesh, one studies smooth projective families X — Y of a
particular form, known as abelian-by-finite families.

Definition 4.1 ([LV20, Definition 5.1]). Let Y be a scheme. An abelian-by-finite family over Y
X =Y =Y

consists of a surjective finite étale covering 7/ : Y’ — Y and a polarised abelian scheme 7%: X — Y.
We usually suppress the polarisation from the notation; when we need to refer to it, we denote it A.

In this section, we recall the basic theory of abelian-by-finite families, primarily that the étale and
de Rham cohomology of the fibres of X — Y carries extra structures arising from the abelian-by-finite
structure. Using this, we show that the period map associated to an abelian-by-finite family takes on a
particular form.

4.1. Cohomology of fibres of abelian-by-finite families. To begin with, we introduce the extra
structures on the cohomology of the fibres of an abelian-by-finite family. It suffices to discuss this in the
case that Y = Spec(K) where K is a field, assumed for simplicity of characteristic 0 (we will apply this
with K a number field, or K = K, a finite extension of Q,). So X is then a disjoint union of polarised
abelian varieties defined over finite extensions of K.

4.1.1. Etale cohomology. If we fix an algebraic closure K of K, then the Leray spectral sequence implies
that the cohomology algebra Hg, := Hg, (X7, Q) is the sections over Y- of the derived étale pushforward
R*7¢,, Qp, x5 to Y. It follows from the usual calculation of the cohomology of abelian varieties that the
cup product induces canonical isomorphisms

k
1~ k
A o Hi ™ HE
ét

of HY-modules for all k > 0, where the HY-module structure on either side is the one coming from
cup product. Concretely, this is just saying the following. If we choose, for each closed point y' € Y|,
a K-embedding K(y') < K, then the absolute Galois group Gk (y) of K(y') is identified as an open
subgroup of Gk . Since X is a disjoint union of abelian schemes over the fields K(y’), we have

H, (X% Q) = ][] Indg;, HE (X5, Q) = ] Indgg ) /\H (X, Qp) (4.1)
yely| e

as Qp-algebras with G g-action, where X denotes the fibre of X over the K-point of Y’ determined by
the embedding K (y') < K.

Moreover, the polarisation A on X induces a further structure on the étale cohomology, in the form
of a pairing on Hg,. This is constructed as follows. Let ¢§*(\) € HZ,(1) denote the first étale Chern class
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of a line bundle on X7 representing the polarisation A (this is independent of the choice of line bundle).
Equivalently, if £ := (1,\)*P with P the Poincaré line bundle on X xy+ XV, then ¢{*(\) = 2c{*(£). This
latter construction makes it clear that in fact cSt(\) € HZ, (1)¢%.
Since HZ, = HO, H},, we can view c¢§'()\) as an element of Homypo ( A HO, H, HY, (1))C%, where
HY = Homyyy (Hey, HE,)-
In other words, we can view ¢S*(\) as a G g-equivariant HY-linear pairing on HE'.

Lemma 4.2. The HY, -linear pairing
2 )
oy 0
o N\ HE = H&(D)
ét
determined by cSt(\) is perfect, i.e. determines an Hgt—linear G g -equivariant isomorphism

Hi = Homy (HY, HE, (1)) = Hi, (1)

Proof. Tt suffices to prove this in the case that K = K is algebraically closed. In this case, X is a
disjoint union of polarised abelian varieties (X, \,/) indexed by closed points y' of Y’. It follows
that ¢§*(\) € H3(X,Q,) = Dy HZ2,(X,/,Q,) is the element whose y'th component is ¢§t()\,), so
the pairing w$t on H{® = Sy H$'(X,/,Q,) is the orthogonal direct sum of the pairings @St on
Y

H{*(Xy, Qp). It thus suffices to treat only the case that 7/: Y’ — Y is the identity, so that 7%: X — Y
is a polarised abelian variety.

In this case, H{' = Hét(X ,Qp)* is isomorphic to the Q,-linear Tate module of X, and under this
identification, the pairing dzf’\t is identified up to sign with the Weil pairing associated to A, see the proof
of [0SZ21, Lemma 2.6]. The Weil pairing is known to be perfect. O

Now the pairing @$' induced by c*()), being perfect, induces a dual pairing on H}, (1), and hence by
Tate twisting, we obtain a G g-equivariant Hgt—linear perfect pairing

. 2
wy': /\H(? Hg, — He(—1).

Under the identification Hg, = D, ep Indg; , H}, (Xy,Q,), the pairing w§! is just the orthogonal
Y

direct sum of the inductions of the pairings on each Hét(Xg/, Q,) induced from the polarisation on the
abelian variety Xg .

In summary, we have seen that the triple

(HL, HY, (1), 080

ét
is an example of a symplectic Hgt—module in the following sense.
Definition 4.3. Let A be a finite-dimensional Qp-algebra endowed with a continuous action of Gx
compatible with the algebra structure. A symplectic A-module is a triple V = (V| L,w) consisting of:

e a finite locally free A-module V and a free rank 1 A-module L, each endowed with a continuous
action of G compatible with the action on A; and
e a G -equivariant A-linear perfect pairing

/\QAV%L,

meaning that the induced map V' — Hom 4 (V, L) is an isomorphism.

Symplectic A-modules form a category, where a morphism f: (V, L,w) — (V’/, L’,w’) consists of a pair
of Gi-equivariant A-linear maps fy: V — V' and fr: L — L' compatible with the pairings w and w’.

Later, we will want to also consider symplectic modules over varying algebras A, for which we adopt
the following terminology.

Definition 4.4. A symplectic pair in the category of G g-representations is a pair

P=(AV)
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consisting of a finite-dimensional ,-algebra A endowed with a continuous action of Gk and a symplectic
A-module V = (V| L,w). Symplectic pairs form a category

SP(Repg, (Gk)),

whose morphisms f: (4, (V,L,w)) — (A, (V',L,w)) are triples of Gk-equivariant maps f4: A —
A, fy:V = V' and fr: L — L' compatible with all relevant structures (algebra structures, module
structures, pairing).

Ezample 4.5. If X — Y’ — Y is an abelian-by-finite family over a base scheme Y and y € Y(K) is a
K-rational point, then the fibre X, — Y,/ — Spec(k) is an abelian-by-finite family over Spec(K). So it
follows from the above discussion that

H; (X, 7. Q) == (HY (X, 7. Qp), Hy (X, 7, Q)

is a symplectic pair in the category of G i -representations, the symplectic pairing on Hét = Hét (X NS Qp)
being the pairing discussed above arising from the polarisation. We will see later in §7.1 that these
symplectic pairs for varying y are interpolated by a single symplectic pair in the category of Qp-local
systems on Yg;, given by the relative étale cohomology of X — Y.

One can equally make sense of symplectic modules and symplectic pairs in other appropriate categories.

4.1.2. De Rham cohomology. A similar story holds for the de Rham cohomology of the abelian-by-
finite family X — Y’ — Y = Spec(K) for any field K of characteristic 0. The cohomology algebra
Hig := Hig(X/K) is canonically isomorphic to the graded-commutative algebra HSRH‘%R' Again, this
can be described concretely: the decomposition of X into its connected components gives an isomorphism

Hig = H HiR(Xy /K(Y)) = H /\K( " Hir (X, /K (y") (4.2)

y'ely’| y' Y|
of K-algebras, where the K (y')-vector spaces Hig (X, /K (y')) are viewed as K -vector spaces in the usual
way.
The polarisation A on X induces a pairing on Hig, which is constructed analogously to the pairing on
étale cohomology. That is, we define the first de Rham Chern class ¢f®(\) € F'H3g of the polarisation A

by f®(A) := 3c¢{R®(L) where £ = (1,A)*P with P the Poincaré¢ line bundle on X xy» XV. Via the

identification H3g = /\QHSRHER, the class c{®()\) can be thought of as an element

2
@ € F'Homyo (/\  HI™ Hir(1)),

0
HR

where H{R := Homyo (Hig, H9R) and (—)(1) denotes a shift in filtration: F*(V (j)) := F**7V. Analo-
gously to the étale case, we have the following.

Lemma 4.6. The HSy-linear pairing
2
o3\, HIT = Hig (1)
dR
determined by cI®(N) is perfect, i.e. determines an Hig-linear filtered isomorphism
H?R = HomHgR(H?R» H?iR<1>) = H(11R<1> :

Proof. The easiest way to prove this is by comparing with étale cohomology. That is, via a Lefschetz
argument, it suffices to deal only with the case that K = K, is a finite extension of Q,. As we
shall explain 5hortly, the isomorphism Dgg (HS') = HY® induced from the comparison isomorphisms
Dar (H%,) = HA, for k = 0,1 carries the étale Chern class ¢5*(\) to ¢{®()\). Hence perfectness follows
from the corresponding statement for étale cohomology (Lemma 4.2). O

Again, the fact that &{® is perfect means that it induces a twisted dual pairing

2
R, /\HgR Hig — Hig(—1),
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which is a filtered HgR—linear perfect pairing, equal to the orthogonal direct sum of the pairings on each
Hig (X, /K(y')) induced from the polarisation on the abelian variety X,/. As in the étale case, this can
be conveniently summarised by saying that the triple

(HéRv H3R<_1>7 ng)

is a symplectic HgR—module in the category of filtered vector spaces.

This means something very concrete with regards to the Hodge filtration. Since the Hodge filtration
on HgR is supported in degree 0 and the Hodge filtration on HéR is supported in degrees 0 and 1, the only
interesting step of the Hodge filtration is FlH}iR. The fact that H(liR is a symplectic HgR—module says
exactly that F'H} is a Lagrangian Hig-submodule, i.e. is a Hjz-submodule on which w{® vanishes,
maximal with this property. In other words, with respect to the decomposition

HéRg H HcliR(Xy’/K(y/))’
y'ely’|

the subspace F'HJy, is the product of Lagrangian K (y')-subspaces F'Hjg (X, /K (y')) for each ¢’ € [Y”|.

4.1.3. The comparison isomorphism. In the particular case that K = K, is a finite extension of Q,, the
étale and de Rham cohomology of an abelian-by-finite family X — Y’ — Spec(K,) are related by the
comparison isomorphisms cqr: Dar(H,) — HSg. Being an isomorphism of algebras with respect to
cup product, cqg is an isomorphism of algebras on H°, and an isomorphism of H’-modules on H'. The
fact that cqr preserves Chern classes ensures that the isomorphism cqr: Dar(H% (1)) = H3R (1) takes

S A) = 2c8H(L) to ¢fR(N) = 1efR(L), where £ = (1,\)*P with P the Poincaré line bundle as above.

This ensures that the pairings d)ff and oizf\lR are identified under cgr (so in particular the latter pairing
is perfect as per Lemma 4.6), and hence so too are the twisted dual pairings wit and wiR.
This can all be succinctly summarised on the level of the p-adic Hodge cohomology groups Hz.)H =

o (X/K,), see Example 2.10 for the definition. The triple
H
(Hyl)Hv H2H<71>7 wf )

is a symplectic HZH—module in the category of filtered discrete (¢, N, G,)-modules, where
- 2
pH

is the morphism with components Dpg; (w$') and wiR.
So in particular, if X — Y is an abelian-by-finite family over a general scheme Y and y € Y (K,,) is a
K, -rational point, then
3 (X /K) = (Hyy (X, /K), Hyp (X, /K0))
is a symplectic pair in the category of filtered discrete (¢, N, G,)-modules, the symplectic pairing on
H:,H = H;}H (Xy/K,) being the pairing discussed above arising from the polarisation.

4.2. The period map associated to an abelian-by-finite family. The particular structure of
abelian-by-finite families implies that their period maps take on a particular form. Before we state
this, we observe that de Rham Chern classes of line bundles behave well in families.

Lemma 4.7. Let m: X = Y be a smooth morphism of smooth varieties over a field K of characteristic
zero. Then to any line bundle L on X one can associate a first relative de Rham Chern class

A™(L) )y € FHHY, #n(X/Y))V 0
with the following property. For any field extension L/K and any point y € Y (L), the first de Rham

Chern class ¢§®(L|x,) € F'H3R(X,/L) of the restriction of L to the fibre at y is equal to the fibre
of ¢fR(L) )y aty (once we identify H#3%(X/Y), = HiRr (X, /L) in the usual way).

Proof. To begin with, let us recall the definition of the first de Rham Chern class ¢{®(£) in the absolute
case (Y = Spec(K)), from [Har75, §7.7]'®. The image of the morphism dlog: 0% — Qﬁ(/[{ of abelian

1811 the proof of Proposition 3.20, we used a different definition of the first Chern class, namely that it is the cycle class
of the zero-section in the total space of £. That these two definitions agree follows from [Har75, Proposition 7.7.1].
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sheaves, given by dlog(f) = f~!df, consists of exact differentials. So it induces a map 05 — Q;(/K[l}
of complexes. The first de Rham Chern class of £ is defined to be the image of £ under the induced map

Pic(X) = H'(X, 03) — H2(X, Q%) = Hip(X/K).

The fact that dlog: Ox — Q% [1] factors through Flﬂ;(/K ensures that ¢{®(£) € F'H3R (X/K).

To relativise this construction, if 7: X — Y is a smooth morphism of smooth K-schemes, then there
are maps

HY(X, 0%) — HO(Y,R'm.0%) 1% HO(Y, R*n,0% ) — HO(Y.R*1.0%,y)
where the first map is part of the exact sequence of low-degree terms in the Leray spectral sequence, and
the second and third maps are induced by the maps

dlog ° °
% —= Q% k(1] = Q% )y [1]-

By definition of the Gauf-Manin connection on /% (X/Y) = R*m. Q% /y as a connecting map [KOG68|,

the image of the right-hand map is contained in H(Y, 7% (X/Y))V=C. We define the first relative de
Rham Chern class
A(L) vy € BO(Y, 4R (X/ Y)Y

to be the image of [£] € Pic(X) = H'(X, 0%) under the composite of the above maps. It is easy to
check, using the naturality properties of the Leray spectral sequence and base-change maps, that this
construction satisfies the desired property: the fibre of ¢{R(L) /3 at y € Y/(L) is ¢{*(L]|x,). In particular,

since each ¢{®(L|x,) lies in F', so too does ¢{®(L) /y. O
So suppose now that X — Y’ — Y is an abelian-by-finite family with Y~ a smooth variety over a finite

extension K, of Q,, and write J; = A R (X/Y) for its relative de Rham cohomology. We define the
first relative de Rham Chern class of the polarisation A to be

1 -
ROy = el (0) )y € FHO(Y, 5T,
where £ = (1,\)*P with P the Poincaré line bundle on X xy+ X. The class ¢{®(X),y corresponds to a
% -linear morphism
2

< dR . dR 0

Wy /\WdOR% — Hr(1)
of filtered vector bundles with integrable connection on Y, where S48 = J#om A0 (A%, A%). The
fibre of d)f\iR at a point y € Y(K,) is equal to the pairing d)il; associated to the polarisation A, on the

fibre X,. In particular, it follows from Lemma 4.6 that ©{® is a perfect pairing, i.e. induces a 7} -linear
isomorphism
dR ~ dR
A s Hom s (7, A (1)) = Hgr(1)

of filtered vector bundles with integrable connection on Y. Hence, we have the twisted dual pairing
2
dR . 1 0
wik: /\%OR Ao — AR (1),

which is a %’fj%—linear perfect pairing whose fibre at a K,-point y € Y (K,) is the pairing w§R. The fact
Y

that the pairing wi® is compatible with connections implies the following compatibility result for parallel

transport.

Lemma 4.8. Let yy € Y(K,) be a K,-rational point, and let Uy, C Y?" be an admissible open neigh-
bourhood of yo, isomorphic to a closed polydisc, over which R (X/Y )™ and % (X/Y )™ have a full
basis of flat sections. Then the parallel transport maps

Ty : (Ou,, ®k, ar (Xy /Ky), d®1) = (AR (X)Y), V)™ v,

for 1 =20,1 are compatible with all extra structures: algebra structure, module structure, and pairing.

Remark 4.9. The fact that % (X/Y)™ = % (Y'/Y)™ admits a trivialisation compatible with the
algebra structure over the neighbourhood Uy, in Lemma 4.8 means that the finite étale covering Y’ — Y’
becomes trivialised over Uy,, i.e. there is an isomorphism (Y')*[y, = Uy, x (Y')j5 of rigid-analytic
spaces over K, uniquely characterised by the fact that it restricts to the identity on the fibre at y3. On
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the fibre at another point y € Uy, (K, ), this isomorphism (Y})*" = (Y, )*" is the one induced from the
isomorphism
Tyv Y
0(Yy,) = Har (Yy, /K) =5 Hap (Y, /K,) = O(Yy)

Y
of K,-algebras.

If now yo € Y(K,) is a K,-rational point, let us define H,, to be the K,-variety parametrising
Lagrangian Hp (X,,/K,)-submodules of Hig(X,,/K,). This is a closed K,-subvariety of the flag va-
riety G,, parametrising filtrations on Hjg (X,,/K,) with the same dimension data as F*H} (X, /K,).
As a consequence of Lemma 4.8, if Uy, C Y*" is an admissible open neighbourhood of y, over which
HE (XY )™ and H5 (X/Y )™ have a full basis of flat sections, then the image of the v-adic period map
Py, : Uy, — G5 of §3.1 is contained in Hj. When we refer to the period map of an abelian-by-finite
family, we will always regard it as having codomain Hj rather than the flag variety Gy

To every point ® € H,, (K,), we assign a symplectic pair M= (®) = (M°, M1 (®)) in the category of
filtered discrete (¢, N, G,)-modules as follows.

Definition 4.10. Let ® € H,,(K,), i.e. ® is a Lagrangian Hig (X,,/K,)-submodule of Hi (X, /K,).
We define a filtered discrete (¢, N, Gy,)-module M*(®) by
M@ = (L (X, / Q) B (X, /o) e © c0),
where the (¢, N, G,)-module structure on Hlljst(XyO /Q}F) is the usual one, but where the filtration on
Hig(X,,/K,) is the one given by
Hin (X, /K.) 60 <0,
F'HiR(Xy/Ky) =4 ® ifi=1,
0 ifi>2,
instead of the Hodge filtration. Since ® is a Lagrangian Hyy (X, /K, )-submodule of Hig (X, /K,), this
implies that M!(®) is a symplectic module under

MO = (Hgst(Xyo/er)a HgR(Xyo/KU)’ CdR © CBO)

in the category of filtered discrete (¢, N, G,)-modules, with respect to the pairing wiH described in §4.1.3.
We write

M=H(®) = (M, M (®))
for the corresponding symplectic pair.

As in Proposition 3.5, the v-adic period map associated to an abelian-by-finite family controls the
variation of the local Galois representations attached to K,-points, now compatibly with symplectic
structures. In the proposition below, we write WOSP(RepfiQIZ”(Gv)) (respectively moSP(MF (¢, N, G,)))
for the set of isomorphism classes of symplectic pairs in the category of de Rham G,-representations
(respectively filtered discrete (¢, N, G, )-modules).

Proposition 4.11. Let X — Y’ — Y be an abelian-by-finite family over a smooth K,-variety Y,
let yo € Y(K,) be a K,-rational point, and let Uy, C Y be an admissible open neighbourhood of yo,
isomorphic to a closed polydisc, over which 5 (XY )™ and Az (X/Y )™ have a full basis of horizontal
sections.

Then the map Y (K,) — WOSP(Repfin:(GU)) sending a K,-point y € Y (K,) to the isomorphism class

of Hégtl(Xy %,»Qp) fits into a commuting diagram

Y(K,) D Uy (Ky) —— s 1y, (K,)

1 o

DpH

TSP (Repy (Gy)) ————— mSP(MF(¢, N, G,)).

Proof. This follows from
Dot (HE (X, 70, Qo)) = Hig (X, /Ko) = M= (D4, (y))
where the first isomorphism is the comparison isomorphism and the second is parallel transport. O
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4.2.1. Decomposition of the period map. The period map can be understood somewhat explicitly. For
this, let us enumerate the closed Dpoints of Y, as (y;)icr. For each i, we write Ly, := K,(y;) for short,
and fix a K,-embedding L,,, — K, so as to make the absolute Galois group G, of L,,, into an open
subgroup of G,,.

From (4.2), we see that every Lagrangian HJp (X, /K,) = [[; Lw,-submodule & of

HéR(Xyo/Kv) = H HcliR(Xy;/sz>

factorises as a product [ [, ®;, where each ®; is a Lagrangian L,,,-subspace of H(liR(Xy; /Luw,). Accordingly,
the period domain H,, factorises as

Hyo= [ Resy” Hy, (4.3)
YoElYy, |
where we write H,; := LGrass(HcliR(Xy; /Lw,)) for the Grassmannian of Lagrangian L,,,-subspaces of

H(liR(Xyg /Ly,) viewed as a L, -variety.

This decomposition of H,, induces a corresponding decomposition for the map
M=t H, (K,) — mSP(MF(p, N, G,)) .

For a Lagrangian L,,-subspace ®; of H}iR(Xy;/Lwi), let us write M} (®)) for the symplectic filtered
discrete (¢, N, Gy, )-module with

M (97) = (Hpe(Xy; /Qp) Hr (Xy; /L, ), car © €B0) »

where the (¢, N, Gy, )-module structure on Hflm (X /QpY) is the usual one, but where the filtration on
H(liR(Xyé/Lwi) is the one given by

HcliR(Xyg/qu:) if j <0,
FHip (X, /Lw,) = { @ if j =1,
0 if j > 2,

instead of the usual Hodge filtration.
Denoting the unit object in MF(p, N, Gy,) by 1 = (Q}", Ly, 1), we then have the following.

Lemma 4.12. Let ® € H,,(K,) be a Lagrangian Hig (X, /K,)-submodule of Hig (X,,/Ky), factorising
as the product [[, ®; of Lagrangian L, -subspaces ®} of H(liR(Xyé/Lwi). Then there is a decomposition

M (@) = [[ma§y, MH(@)

in the category of filtered discrete (v, N, G,)-modules, compatible with symplectic module structures over

MO =]]mdge 1.

w;

Proof. As in Example 2.12, the decomposition X,, =[], Xy, induces a decomposition
Hypr (Xyo/ 1) = [ [ Ind@2 Hpp(Xy;/La,)

in the category of filtered discrete (¢, N, G,)-modules, compatible with symplectic module structures
over HgH(XyO /K,) = M° whose de Rham component is the decomposition (4.2). After replacing the
Hodge filtration on Hig (X,,/K,) and on each H(liR(Xyé/Lwi) by the filtrations determined by ® and &/,
respectively, we obtain the desired decomposition of M!(®). O
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5. COMPARISON OF PERIOD MAPS AND FULL MONODROMY

The relevance of v-adic period maps in the context of Diophantine geometry is that they provide a
tool for proving finiteness of subsets of the v-adic points on a smooth curve Y: this idea underlies the
approach of Lawrence and Venkatesh. In order to make this work, one needs to be able to ensure that the
v-adic period map associated to some smooth proper family X — Y has large image. This is achieved by
means of a comparison theorem relating v-adic period maps with period maps over the complex numbers,
the latter of which can be controlled by monodromy computations and basic topology.

In this section, we review the theory of period maps over the complex numbers and its comparison
with v-adic period maps. Using this, we recall what it means for an abelian-by-finite family to have
full monodromy [LV20, p. 927|, and give a criterion for certain subsets of Y (K, ) to be finite in terms
of v-adic period maps. The discussion here closely parallels [LV20, §3], save that we need to compare
v-adic and complex period maps around any K,-point of Y, not just those defined over K.

5.1. Period maps over the complex numbers. Let Y be a smooth connected variety over C. By
an étale neighbourhood Uy, of a point yo € Y?®" in the analytification Y*" of Y, we mean a local
biholomorphism Uy, — Y*" of complex manifolds, together with a chosen point gy € U,, mapping to ¥o.
For example, Uy, could be an open neighbourhood of y in the analytic topology, or could be the universal
cover of Y*" with a chosen point in the fibre over yy.

If Uy, is a simply connected étale neighbourhood of yy and £ = (£, V) is a holomorphic vector bundle
with flat connection on Y2, then by the Riemann—Hilbert correspondence, the restriction (pullback)
of £ to Uy, is trivial: there is a unique isomorphism

Ty : (Ou,, ®c &yy,d®@1) = (Elu,,. Viv,,)

of holomorphic vector bundles with flat connection on Uy,, characterised by the fact that the fibre of TQV0
at o is the identity on &,,. Suppose moreover that £ comes with an exhaustive, separated descending
filtration F*& whose graded pieces are all vector bundles. One then defines, as in Definition 3.1, the period
domain Gy, to be the complex flag variety parametrising filtrations on &, with the same dimension data
as F*&,,, and defines the complex period map

(I)ﬂo : Uyo - gz(?
to be the holomorphic map classifying the filtration on @"Um ®c &y, given by pulling back the filtration F*
along the parallel transport map TgvO . Here we are implicitly using a description of the functor of points
of Gy similar to Proposition 3.2.
Later, we will be interested in the Zariski-closure of the image of the complex period map ®y,, by

which we mean the smallest closed subvariety Z C G, such that ®;, factors through Z*". We note the
following regarding this image.

Lemma 5.1. The Zariski-closure of the image of the complex period map ®g,: Uy, — Go¥ is independent
of the choice of simply connected étale neighbourhood Uy, .

Proof. 1t suffices to prove the following: if Uéo is a simply connected open subset of Uy, containing o,
then the Zariski-closure of the image of ®y, is equal to the Zariski-closure of the image of (I>§0|Ué0. Let
us write Z and Z’, respectively, for the Zariski-closures of these images. We clearly have Z' C Z. For
the converse inclusion, @i) 1(Z' ) is a closed analytic subvariety of U,, with non-empty interior (since it

contains Uy ). Hence by isolation of zeroes égol(Z ") = Uy,, so we have the converse inclusion Z C Z’. O

5.1.1. Monodromy. One can gain some control on the Zariski-closure of the image of the complex period
map using monodromy actions. Let E := £V=0 be the C-local system on Y?" corresponding to £ under
the Riemann-Hilbert correspondence. There is thus a monodromy action of m(Y?" y9) on the fibre
Ey, = &y,, and hence on the flag variety G,,. This monodromy action gives a lower bound on the image
of the period map, as follows.

Lemma 5.2. The Zariski-closure of the image of the complex period map ®g,: Uy, — Gyi' contains the
orbit m (Y, yo) - ho of the point hy € Gy, (C) corresponding to the filtration F*&,, .

Proof. By Lemma 5.1, it suffices to prove this in the case that Uy, is the universal cover of Y*". We
will show that in this case, m (Y, yo) - ho is already contained in the image of &, without passing to
Zariski-closures.
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So let v € m (Y, y0), and lift v to a path 4 in U, starting from gy. The end point g of ¥ also lies
above g, and the monodromy action of v is given by the parallel transport map'?

v .
Ty, Eyo = Eyo -
Hence v~ - hg = @4, (yp) lies in the image of the complex period map, which is what we wanted to

show. 0

5.2. Comparison between v-adic and complex period maps. Complex period maps can be used to
control the image of v-adic period maps. Let K, be a finite extension of Q, and Y a smooth geometrically
connected variety over K, with a fixed basepoint yo € Y (K,), as in §3.1. Let (£,V,F°®) be an algebraic
filtered vector bundle with flat connection on Y, and choose an admissible open subset Uy, , € Y*" in
the rigid analytification Y*" of Y over which £2" has a full basis of flat sections, so that we have a v-adic
period map

. an
CI)yoyv' Uyoyv - Yo ?

where G, is a flag variety parametrising filtrations on &, as in Definition 3.1.

Choose an embedding ¢: K, — C and let YZ" denote the complex analytification of the base change Y¢
of Y to C along ¢. Choose a simply connected étale neighbourhood Uy,  of 1o in Y#", so that we also
have a complex period map

. an
(I)?JO,OO . Uymoo - gyoy(c :

We will prove the following.

Proposition 5.3. Let Z, C Gy, and Zo, C Gy, c denote the Zariski-closure of the image of v-adic period
map ., and the complex period map Py, o, respectively. Then Zo, = Z, ¢ is the base change of Z,
to C along ¢.

The proof of Proposition 5.3 is essentially contained in [LV20, §3.4], except that there the variety YV
and point yg are defined over a number field rather than K,. For the sake of completeness, we give the
full argument here.

We begin with a preparatory observation, which parallels Lemma 5.1 for complex period maps.

Lemma 5.4. The Zariski-closure of the image of the v-adic period map Py, »: Uy, o — Gy 1 indepen-
dent of the choice of v-adic neighbourhood Uy, ..

Proof. A similar proof to that of Lemma 5.1 works. The key point is that any closed analytic subvariety
of a polydisc with non-empty interior is equal to the whole polydisc: this follows since open inclusions
of polydiscs induce injective maps on their affinoid rings. O

Hence, in proving Proposition 5.3 we are free to replace Y by a Zariski-open subvariety containing yq,
shrinking Uy, , and Uy,  correspondingly. Thus, we are free to assume that Y is affine and connected,
that the vector bundle £ ~ ﬁgm is trivial, and that so too are the graded pieces of the filtration F*&.
We fix an identification £ = ﬁ;‘?m for which F'€ = ﬁ’é‘?mi is the constant subbundle spanned by the
first m; basis sections, where m; := rk F*£. Hence, the connection V on £ = ﬁ;‘?m is given by

V() =d(f) +w-f,
where the connection matrix w is an m X m matrix with coefficients in I'(Y, Q3 / x,)- Flatness of the
connection is equivalent to the equality dw +w A w = 0.

Now let us fix a system t = ¢1,.. ., ¢, of local parameters at yg. [Kat70, Proposition 8.9] ensures that
there is a unique m X m matrix T with coefficients in K, [t] = K,[t1,...,t,] satisfying the differential
equation

dT = —w - T subject to the initial condition T|¢—¢ = I, , (5.1)
where

d: Ko[t] = 3l e = P Kot ds
i=1

90ur convention for composition in fundamental groups is that 21 denotes the composite loop given by first follow-
ing 1 and then following ~y2. This is the opposite of the usual convention in topology.
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is the universal t-adically continuous derivation. Here, by mild abuse of notation, we regard w as a
matrix with coefficients in Q}%f[[t]]/Kv via the inclusion T'(Y, Q%//K,U) — Q}%‘f[tﬂ/Ku given by taking power
series expansions.

For 1 <i < m we write T; for the ith column of 7', and let

®,,: Spec(K,[t]) = Gy,
denote the K,-scheme map classifying the filtration on K,[t]®™ where F is the span of the vectors

my_q
T1,...,Tm,. Explicitly, the flag variety G,, is a closed subvariety of [],c, ng”)

ding taking a filtration F* on &,, = K™ to the sequence of one-dimensional subspaces /A" F? inside

via the embed-

A" (KP™) = KSB(Z) for i € Z, and (i)yo is the map whose ith component is given by 71 A -+ A Ty,
viewed as a map from K, [t] — Alm) \ {0}.

Now shrinking the v-adic neighbourhood Uy, , and rescaling the local parameters ¢1, .. ., ¢, if necessary,
we may assume that Uy, , = Sp(K,(t)) is the polydisc of radii 1 in the parameters ¢, ...,¢,. The sheaf
of K,-analytic 1-forms on Uy, , is the free vector bundle generated by di4,...,d¢, [FvdP04, Proof of
Theorem 3.6.1], so the v-adic parallel transport map

TV, (G874 5 (05T V)

Yo,V

is represented by an m X m matrix with coefficients in K, (t) C K,[t] which satisfies the differential
equation (5.1). It thus follows by unicity of solutions to (5.1) that 7)Y , is represented by the matrix T

Yo,v
(which thus has coefficients in K, (t)). It then follows that the v-adic period map
an (77;2)71’&“
Pyo0: Uygw = Gy © HPK,,
i€l

is the map whose 7th component is given by T7 A--- AT, : in other words, the Taylor expansion of ®,, .
at yo is the map ®,,. Using this, we see

Lemma 5.5. The Zariski-closure Z, of the image of the v-adic period map Py, : Uy — Goo' 15 the

scheme-theoretic image of @yo.

Proof. Choose a projective embedding G,, C IP’JI\(’ The above discussion shows that there are elements
fo,---, [N € K,(t) such that both @, ,: Uy, , — G and d,,: Spec(K,[t]) — G,, are given in

projective coordinates by (fo : ... : fn). The homogenous ideal of definition of Z, C }P’%v is then the
ideal generated by those homogenous elements F' € K,[Xy,..., Xy] such that F(fo,...,fn) = 0. But
this is also the homogenous ideal of definition of the scheme-theoretic image of ®,,. O

We can apply exactly the same argument to the complex-analytic period map. Shrinking Uy, o if
necessary, we may assume that the local parameters ¢i,...,t, are defined on all of Uy, o, and that
dty,...,dt, forms a basis for the &(U,, «)-module of holomorphic 1-forms on Uy, . The embedding
t: K, — C induces an embedding K,[t] — C[t], which we also denote by ¢. Since the sheaf of
holomorphic 1-forms on Uy, « is the free vector bundle generated by dt,...,dt,, the complex-analytic
parallel transport map

\ ~
Ty oo (ﬂa’:’x,d@m) — (ﬁf‘zj:‘oc,V)
is represented by an m x m matrix T, with coefficients in the ring €(Uy, ) C C[t] of holomorphic
functions on Uy, ~ which satisfies the differential equation

dTy = —t(w) - T subject to the initial condition Teo|t=0 = L, -

Since this differential equation has a unique solution over C[t], it follows that To, = ¢(T"). It then follows
that the complex-analytic period map

m)—1,an
(I)yo,N: Uy07<>0 - gzjél,(: c HP((C 1)
i€l
is the map whose ith component is given by ¢(Th) A -+ A ¢(Thn,). As for the v-adic period map, this
implies



42 L. ALEXANDER BETTS AND JAKOB STIX

Lemma 5.6. The Zariski-closure Z of the image of the complex period map Py, o0t Uyy 0o = Gy

the scheme-theoretic image of ®,, c: Spec(C ®, K,[t]) = Gyo.c-

c s

Proof. A similar proof to that of Lemma 5.5 works. That is, if we pick a projective embedding G,,, C IP’%U,
then we have shown that there are elements fo,..., fy € K,[t] with each ¢(f;) € C[t] convergent
on Uy, o0, such that @, : Spec(K,[t]) — Gy, € PY and @y oo Uypioo — o C PN are given in
projective coordinates by (fo : ---: fiv) and (¢(fo) : -+ : ¢(fw)), respectively. The homogenous ideal of
definition of Z,, C IP’%U is then the ideal generated by those homogenous elements F € C[Xy, ..., Xy]
such that F(¢(fo),...,¢(fn)) = 0. But this is also the homogenous ideal of definition of the scheme-

theoretic image of ®,, c. O

Taken together, Lemmas 5.5 and 5.6 imply Proposition 5.3. Indeed, for any open affine W C G,
containing the base point (corresponding to the filtration F* &, on &), the intersection Z, N W is the
subscheme of W' cut out by the kernel of ®; : &(W) — K,[t], while Z,, N W is the subscheme of W¢

cut out by the kernel of C®, @ZO :C, 0(W) = C®, K,[t]. But ker(C®, @ZO) =Cw®, ker(@zo), whence
Zoo NWe = (Z, N W)¢. Thus Zo = Z, ¢ as desired. O

Remark 5.7. The germ (i)yo of the period map can be characterised intrinsically, without choosing bases:

the restriction &, of £ to the formal neighbourhood Spec(é’yyyo) of yo in Y is a finite ﬁyyyo—module with
a continuous flat connection, so by [Kat70, Proposition 8.9] admits a unique trivialisation

Tyol (ﬁy’yo Rk, 8y0,d®1) = (gﬁoﬂvﬂo)'

The map ®,,: Spec(Fy.y,) — Gy, is just the map classifying the filtration on Gy, @k, &, given by
pulling back the filtration on &g, along T),,. This description makes it clear that if the variety Y, the
point yg and the filtered vector bundle with flat connection (£, V,F*®) are all defined over some subfield K

of K,, then so too is ®,,.

5.3. Full monodromy and a criterion for finiteness. Let us now specialise all of the above theory
to the case of abelian-by-finite families. Suppose initially that X — Y’ — Y is an abelian-by-finite
family, where Y is a smooth connected variety over C. The relative de Rham cohomology &% (X/Y)*"
corresponds, under the Riemann-Hilbert correspondence, to the relative Betti cohomology R*m2"C yan.
The fibre of R*72"Cy.n at a point yo € Y is the usual C-linear Betti cohomology Hj(X,,,C) of the
fibre Xy, i.e. the singular cohomology of its analytification X". The fibre X, is a disjoint union of
polarised complex abelian varieties, indexed by the closed points of Y’ above yg, so we have a decompo-
sition
H}13(Xy07 Q) = @ H%(Xyé’(@) )

yée‘yylol

where each Hg (Xyé, Q) carries a perfect alternating pairing induced from the polarisation on Xy (con-
structed analogously to the pairings in §4).
The following definition will play a key role.

Definition 5.8 (cf. [LV20, (i) on p928|). We say that the abelian-by-finite family X — Y’ — Y has full
monodromy just when the Zariski-closure of the image of the monodromy representation

p: (Y™, yo) = GL(Hp(X,,, Q))(Q)
contains
IT se(HL(X,;,Q).
Yo Yy,
It is easy to check that this property is independent of the point .
More generally, if Y is a smooth geometrically connected variety over a characteristic 0 field K, we say

that an abelian-by-finite family X — Y’ — Y has full monodromy with respect to a complex embedding
t: K — C just when X¢ — Y{ — Y has full monodromy.

For us, the importance of full monodromy is that it gives a simple criterion for the image of the v-adic
period map to be as large as possible.
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Lemma 5.9. Suppose that Y is a smooth geometrically connected variety over a finite extension K,
of Qp, and that X — Y’ —'Y is an abelian-by-finite family with full monodromy with respect to some
complex embedding v: K, < C. Then for all yo € Y(K,) the v-adic period map

. an
Dyy: Uy, = Hyg

has Zariski-dense image, where H,, is the K, -variety parametrising Lagrangian HSIR(Xy0 /K,)-submodules
of Hig(Xyo/Ky), as in §4.2.

Proof. By Proposition 5.3 and Lemma 5.2, it suffices to show that the orbit of the base point hy € H,,(C)
under the monodromy action of w1 (YE",yo) is Zariski-dense. By assumption, the Zariski-closure of this
orbit contains the orbit of hy under the action of Hyé,e\Y;O\ Sp(H(ljR(Xy67C/(C)). But this group acts

transitively on Lagrangian submodules of Hig (X,,.c/C) = @y()e\Y' | HfliR(Xyé,C/(C), so we are done. [J
Yo

As a consequence of Lemma 5.9, we obtain a criterion for showing that certain subsets of Y (K,) are
finite in the case that Y is a curve.

Corollary 5.10 (cf. [LV20, Lemma 3.3|). Suppose that Y is a smooth curve over a finite extension K,
of Qp, and that X — Y’ — Y is an abelian-by-finite family with full monodromy with respect to some
complex embedding ¢: K,, — C. Let yo € Y(K,) and let Uy, C Y*" be an admissible open neighbourhood
of yo, isomorphic to a closed disc, over which F%(X/Y)™ and R (X/Y)™ have a full basis of
horizontal sections.

Suppose that Cy C Uy, (K,) is a subset such that ®,,(Co) is not Zariski-dense in Hy,. Then Cy is
finite.

Remark 5.11. If C C Y(K,) is a subset for which ®,,(C NU,,(K,)) is not Zariski-dense in #,, for all
choices of point yy and neighbourhood U,,, then the whole set C' must be finite by Corollary 5.10 and
the fact that Y (XK, ) is covered by a finite number of the neighbourhoods Uy, (K,) by compactness. This
is how we will apply Corollary 5.10 in practice.

Proof of Corollary 5.10. Let Z C H,, be a proper Zariski-closed subvariety containing ®,,(Co). Then
Lemma 5.9 ensures that Z*" does not contain the image of ®,,. This implies that @;}%Zan) C Uy isa
closed analytic proper subspace of Uy, i.e. is the vanishing locus of a non-zero coherent sheaf of ideals
in ﬁUyO. But since Uy, is a disc, its only closed analytic proper subspaces are finite. O

6. THE LAWRENCE—VENKATESH LOCUS

Now we come to the heart of the paper. Let us fix a smooth projective curve Y of genus g > 2 over
a number field K and a p-adic place v of K. Inspired by obstruction theory, we make the following
definition.

Definition 6.1. Let X — Y’ — Y be an abelian-by-finite family, and let p be a prime number. We
define the adelic Lawrence—Venkatesh locus (with p-adic coefficients)

Y(Ag)R CY(Axk)

to be the set of adelic points (y,), € Y (Ag) for which there exists a symplectic pair (A4,V) in the
category of G g-representations with Q,-coeflicients such that

<1 ~
Hg (X, 7., Q) = (4lc,. Vie.,)

as symplectic pairs in the category of G,-representations for every place u of K. We say that the

pair (A4,V) interpolates the local points y,, € Y(K,). For a p-adic place v of K, we define

Y(K,)R CY ()
to be the projection of Y (Ax)% to Y (K,).

Although this is the most natural definition of an obstruction locus associated to an abelian-by-finite
family, for our purposes it is more convenient to work with a slightly larger locus by relaxing the local
conditions imposed on the interpolating pair (A4, V). We recall the definition from the introduction.

Definition 6.2. Let S be a finite set of places of K, and p a prime number. A symplectic pair (A4, V)
in the category of G k-representations is called S-good just when:
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e A is unramified outside S;
e V is unramified, pure and integral of weight 1 outside S; and
e V is de Rham at all places over p, with Hodge—Tate weights in {0, 1}.

Let X — Y’ — Y be an abelian-by-finite family, and let S be a finite set of places of K containing all
places dividing poo and all places of bad reduction for X — Y. Let v be a finite place of K, lying over
the rational prime p. We define the Lawrence—Venkatesh locus

Y(Kv)%(\,/s g Y(Kv)
to be the set of points y, € Y(K,) for which there exists an S-good pair (A, V') such that

HZ (X, 7.,Q) = (Alg,. Vle,)

as symplectic pairs in the category of G,-representations. We say that the pair (A, V) interpolates the
point y, € Y(K,).

Remark 6.3. One could also add the restriction that A is pure and integral of weight 0 (i.e. an Artin
representation) in the above definition. This does not change the locus Y (K,)Y’, since if (4, V) inter-
polates y, € Y(K,), then A is isomorphic to Q, as an algebra and so has finite automorphism group.

The relationship between these two loci is as follows.

Lemma 6.4. Let X — Y’ — Y be an abelian-by-finite family. Let p be a prime and let S be a finite
set of places of K, containing all places dividing poo and all places of bad reduction®® for X - Y' =Y.
Suppose that y = (yu)u € Y (Ak)Y is an adelic point in the Lawrence—Venkatesh locus, interpolated by
a symplectic pair (A, V) in the category of Gy -representations. Then the pair (A, V) is S-good in the
sense of Definition 1.2.

In particular we have the containment

Y(K,)R CY(K)Rs
for all suitable®" S, where Y (K,)Xs is as in Definition 1.2.
Proof. This is merely a statement about the local representations Hi, (X yu,?u’QP) associated to local

points y,, € Y (K,): they are unramified, pure and integral of weight ¢ whenever u ¢ S (since X, has
good reduction), and they are de Rham with Hodge—Tate weights in {0,1,...,7} whenever u | p. O

Our aim in this section is to prove the following, which can be seen as an abstraction and generalisation
of the argument in [LV20].

Theorem 6.5. Suppose that the place v is self-conjugate. Then there exists an abelian-by-finite family
X = Y' =Y for which the Lawrence—Venkatesh locus Y(KU)I)‘XS is finite for all suitable S.

This theorem already implies the Mordell Conjecture, as in [LV20], once one makes the almost tauto-
logical observation that

Y(K) CY(K,)Ys
for all X — Y’ — Y. Indeed, for y € Y(K), the interpolating pair (A, V) can be taken to be
<1 0 1
Hz (Xy Fa@p) = (Hét(Xy,?v@p)vHét(Xy,vap))
with its usual Gg-action, which is S-good by Lemma 6.4.
204 finite place of K is of good reduction for X — Y’ — Y just when it extends to an abelian-by-finite family over a

smooth proper model of Y over the ring of integers at that place.
21We will use “suitable” as a shorthand for “containing all places dividing poo and all places of bad reduction”.
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6.1. The Principal Trichotomy. The starting point for the argument is a certain restriction on global
representations. Before we get to this, let us describe an idea which doesn’t work, but nonetheless informs
the general approach, as sketched in the introduction.

Suppose we knew that for every pair (A4, V') satisfying the conditions of Definition 6.1, the A-module V'
had no non-zero G g-stable isotropic A-submodules. One could then show, using the symplectic version
of Faltings’ Lemma (Lemma 2.4), that there are only finitely many possibilities for the pair (A, V) up to
isomorphism, once one specifies the dimensions of A and V. This would imply that there are only finitely
many possibilities for the isomorphism class of Hégt1 (nyw@?) for y € Y(KH)I;XS. To prove finiteness
we may therefore restrict to such y with Hégt1 (X YRy Qp) in a fixed isomorphism class.

Now we restrict attention to points in a suitab’ly small analytic neighbourhood Uy, of some point o,
and assume for simplicity of exposition that the fibre Y, is connected (so isomorphic to Spec(L,,) for a
finite extension L,,/K, and X, is a polarised abelian variety over L,,). For

y e Y(Kv)%(\,/s n Uyo (KU)’

the fact that Hégt1 (X, %, Qp) lies in fixed isomorphism class implies that the image ®,,(y) € Hy, (Ky)
under the period map would have to lie in a single orbit under the action of the automorphism group

GS nr
At R 6 (st (X0 /Q5))

See §2.2.4, especially Remark 2.14.

Since the scalars in Aut?v§%7Gw)(H;St (Xyo/QpF)) act trivially on Resg: H,,, the dimension estimate

of Proposition 2.16(2) would show that ®,,(y) would lie in a closed Q,-subvariety of Resg: H of Q-

dimension < d(2d+ 1), where d is the relative dimension of X — Y. By the base change-Weil restriction

adjunction, this implies that ®,,(y) would lie in a K,-subvariety of H of K,-dimension at most d(2d+1).

So if [Ly, : K] > 4, then we would have

d(d+1)
2

and so @, (y) would have to lie in a proper Zariski-closed K,-subvariety of H,,. If moreover our abelian-
by-finite family had full monodromy, we would obtain finiteness of Y(Kv)rjgfs via Corollary 5.10.

d(2d+1) < [Ly : K] - = dimg, Hy, ,

However, this approach fails as stated, since one has no guarantee that pairs (A, V") satisfying the
conditions of Definition 6.1 have no non-zero Gg-stable isotropic A-submodules in V. The key idea
in [LV20] is that the numerics of self-conjugate places still impose (rather technical) constraints on the
possible representations which can appear, and that these constraints still suffice to prove finiteness
results.

This is what we state and prove here, following [LV20]. Before we give a precise statement, we
introduce some notation. Suppose that A is an algebra in the category of G k-representations (resp.
G-representations). Since A is an artinian Q,-algebra, the set

Y4 :=Spec(A)(Qp) ={¢: A = Q, ; Qp-algebra homomorphism}
is finite and Gk (resp. G,) acts continuously on this finite set from the right. For ¢ € ¥4, we write
GwSGK (I‘eSp. wa SGU)

for the stabiliser of . The fixed fields under Gy and G, are denoted by Ly C K and L, » C
K, respectively. When A is an algebra in G'g-representations, we may view it as an algebra in G,-
representations in a natural way: we then have G, = G, NGy, and Ly, = (Ly)w, is the completion

of Ly at a certain v-adic place wy, of L, namely the restriction of the v-adic place on K,DKD Ly.
So the fields Ly and L., fit together in the following diagram.

Kv wa KU
K Ly K

For an A-module V' in the category of Gx- or G,-representations, we write

Vw = Qp QA Vv
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for the base-change of V along ¢: A — Q,. This is a symplectic representation of Gy, or Gy, , respectively.

Remark 6.6. In the particular case of the symplectic pair Hégt1 (X yv,?u’QP) associated to an abelian-by-
finite family and a K,-rational point y, € Y (K,), we have

HG (X, 7, Q) =HL(Y, 2.Q)= [ &= I .

Yy, x) ey, (R

Thus there is a canonical G,-equivariant bijection
{v: HY, (qu 7, Q) = Qp ; Qp-algebra homomorphism} = Yy/u (K,).

So a Q,-algebra homomorphism 1 corresponds to a choice of a closed point y,, of Yy’v and a K,-embedding
K,(y,) < K,. The condition that [G, : Gy,] > 4 just means that the degree [K,(y,) : K,] is at least 4.

Proposition 6.7 (The Principal Trichotomy, cf. [LV20, Sublemma on p. 936]). Suppose that v is self-
conjugate.

Let (A, V) be a symplectic pair in the category of G -representations, where V' has rank 2d > 0 as
an A-module. Suppose moreover that V is de Rham at places above p, has Hodge—Tate weights in {0,1}
at v, and is unramified and pure of weight 1 outside a finite set.

Let ¥ = ¥4 be the set of Qp-algebra homomorphisms A — Q,. Then at least one of the following
occurs:

a) there is a ¢ € ¥ such that [G, : Gy,] > 4 and Vi is GSp-irreducible as a symplectic representa-
tion of Gy < Gk,

b) thereis avp € ¥ such that |G, : Gy,] > 4 and there exists a non-zero isotropic Gy,-subrepresenta-
tion 0 # W < Vy, whose average Hodge—Tate weight at wy, is > 1/2, i.e.

1
dimp,, F'Dar,w, (W) > 3 dimg, (W); or
c) the number of ¢ € ¥ satisfying [Gy : Gu,,| < 4 is > ﬁ dimg, (A).

Proof. We begin with a preliminary reduction. Let us write ¥ = [[, ¥; as the union of its Gk-orbits.

We write
A= 1] Q.
YEL;

and write V; := A; ®4 V for the base-change of V along the Gg-equivariant map A — A; whose
components are the ¢ € ¥; = ¥ 4,. It is easy to see that (A4, V) satisfies condition (a) (respectively (b))
if and only if some (A;, V;) does. Moreover, if all A; satisfied condition (c), then the proportion of each %;
contained in a G,-orbit of size < 4 would be > ﬁ-l’ and so the proportion of ¥ contained in a G,-orbit
of size < 4 would be > ﬁ. So A would also satisfy (c) because #3 < dimg,(A4). Hence it suffices to
prove the result for the pairs (A;, V;): if any of them satisfy (a) or (b) then so does (A, V), and if all of

them satisfy (c), then so does (A, V).
We thus restrict attention to the case that A = Hwez Qy is a Qp-split Artinian algebra for a transitive
Gr-set ¥ (which is also the set ¥ 4 of Qp-algebra homomorphisms A — @Q,,). The natural map
VST ve
PeED
is an isomorphism by the structure theory of modules over Artinian rings. The action of some o € G
maps the factor V,, isomorphically onto the factor Vy.,. In other words, if we fix some 19 € X, then
V= Indg;‘0 Vi, as Gi-equivariant symplectic modules over A = Indgi‘0 Qp-

Suppose now that neither (a) nor (b) holds; we will show (¢). If 3 contains no G,-orbit of size > 4,
then (c) certainly holds, so we may assume without loss of generality that [G, : Gy, ] > 4. Failure
of (a) implies that Vi, must fail to be GSp-irreducible, so there exists a non-zero G, -stable isotropic
subspace Wy < Vy,. For every o € Gk, o~ (W,) is an isotropic subspace of V.., stable under the

action of Gy, = 0 1Gy,0. The subrepresentation o~ (W) is automatically de Rham at wy,., with
Hodge—Tate weights in {0, 1}, so by failure of (b), we must have

. _ 1, ..
dlmewO»a FlDdRﬂUwO.o(U 1(WO)) < §(dlme(WO) -1) (*)



Galois sections and p-adic period mappings 47

whenever 1) - ¢ is contained in a G,-orbit of size > 4.

Now the place wy,., can be viewed as a place of L := Ly, under the identification Ly,.; — Ly, given
by the action of o. If we let o run over a set of right coset representatives of Gy, < Gk, then we obtain
every v-adic place of L in this way, with the place w appearing [L,,: K,] times. Hence, by summing (x)
and the trivial bound dimy,, F'Dag (W) < dimg, (Wp), we obtain the inequality

. 1 . .
> Ly : Ky dimp, F'Dag,.(Wo) < 5 (dimg, (Wo) — 1) - (#3 — #¥.4) + dimg, (Wo) - #5<a,
w|v
where >4 denotes the subset of ¥ consisting of the G,-orbits of size < 4. But since Wy, being a
subquotient of V', has Hodge—Tate weights in {0, 1}, Corollary 2.21 gives us that

. L.
> L« K] dimp, F'Dar.w(Wo) = 5 dimg, (Wo) - #3 .

wlv
Equating and rearranging, we obtain
(dime(Wo) + 1) . #E<4 Z #Z = dime (A) .

Since Wy is an isotropic subspace of the 2d-dimensional symplectic vector space Vy;,, we have the estimate
dimg, (Wy) < d and we have shown (c). O

The principal trichotomy allows us to decompose the Lawrence—Venkatesh locus Y(KU)I)‘XS into three

sets, according to which of the conditions (a), (b) or (c) is satisfied for the interpolating pair (A, V). Let
us make a precise definition.

Definition 6.8. Let S be a finite set of places of K, p a prime number, and v a p-adic place of K.

a) We say that an S-good symplectic pair (A4, V) in the category of G i-representations is of type (a)
just when there exists a ) € ¥4 such that [G, : Gy,] > 4 and V,, is GSp-irreducible as a
symplectic representation of Gy < Gg.

b) We say that a symplectic pair (4,V) in the category of G, -representations is of type (b) just
when there exists a ¢ € ¥4 such that [G, : Gy,] > 4 and there exists a non-zero isotropic
G, -subrepresentation 0 # W < V,, whose average Hodge-Tate weight is > 1/2.

¢) Let d > 0 be a positive integer. We say that an algebra A in the category of G,-representations

is of type (c) just when the number of ¢ € ¥4 such that [G, : Gy, ] < 4is > d%‘_l dimg, (4).

If X - Y — Y is an abelian-by-finite family of constant relative dimension d > 0, and if S is a
suitable set of places of K, then we define three subsets

Y (Ko) R s s Y (Ko) R ), Y (K) K (o) S Y (Ky)
as follows.

a) Y(Kq,)l)}\fs’(a) C Y(K,) is the set of all points y, € Y(K,) for which there exists an S-good
pair (A4, V) of type (a) such that

H: (X, %, Q) = (A]e,, Via,)
as symplectic pairs in the category of G,-representations.
b) Y(KU)I)JX(b) is the set of all points y, € Y (K,) for which Hégtl(qu %, Qp) is of type (b).
c) Y(KU)I;(Y(C) is the set of all points y, € Y (K,) for which HY (X,, &=, Qp) is of type (c).

With this notation, Proposition 6.7 implies that when v is self-conjugate, then for any abelian-by-finite
family X — Y’ — Y of constant relative dimension d > 0 we have the containment

V(KR s CY(Ky)R s ) UY (Ko) Xy UY (K0 X (o -

So, to prove Theorem 6.5, it suffices to study the sets Y(KU)I)‘(YS(a), Y(KU)I;X(b) and Y(Kv)?/(c) separately.
Specifically, we will prove:

e if X - Y’ — Y has full monodromy, then Y(KU)I)J(\,/S(a) and Y(KU)I;X(b) are finite; and

e there exists a choice of X — Y’ — Y which has full monodromy and for which Y(KU)I)‘X(C) =.
These together suffice to prove Theorem 6.5.
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6.2. Finiteness for points of type (a). To begin with, we deal with the set Y(KU)I;(VS (a) USInG the

theory of period maps. For the duration of §6.2, we fix an abelian-by-finite family X — Y’ — Y and fix
a choice of finite set S of places of K, containing all places dividing poo and all places of bad reduction
for X — Y’ — Y. Our aim here is to prove the following.

Proposition 6.9. For a point yo € Y(K,), let
My (K0)Rs (a) © Hyo (Ko)
denote the set of Lagrangian Hig (X, /K.,)-submodules ® of Hig (X, /K,) for which there exists an
S-good symplectic pair of type (a) in the category of Gk -representations such that
M='(®) = (Dyu(Alc, ), Dpu(Vlg,))

as symplectic pairs in the category of filtered discrete (¢, N, G,)-modules.
Then H,, (Kl,)l)‘cvs (a) s ot Zariski-dense in Hy, .

Corollary 6.10. If X — Y’ — Y has full monodromy, then Y (K, )X S.(a) 08 finite.

Proof of Corollary 6.10. Choose a point yo € Y (K, ) and let U, C Yz" be an admissible open neighbour-
hood isomorphic to a closed disc, over which % (Xk, /Yk,)™™ and 3k (Xk,/Yi,)™ have a full basis
of horizontal sections. It follows from Proposition 4.11 that the image of Y (K )Ig(vs (a) M Uy, (Ky) under

the period map ®,, lies in H,, (KU)I)‘(VS o and hence Y (K, )X 5,(a) 1 Uyo (Ky) is finite by Corollary 5.10.
By compactness this implies that Y (K,)%Y X5, (a) is finite. O

For the proof, let us enumerate the closed points of Y as (y;)icr as in §4.2.1 and write L, = K, (y;)-
Recall that any Lagrangian H3g (X, /K, )-submodule ® of Hi (X,,/K,) factors as [], ®; where each @’
is a Lagrangian L,,,-subspace of HéR(Xyg /Ly, ), and that we then have by Lemma 4.12 a decomposition

= H Indg; M} (@)

in the category of filtered discrete (p, N, G,)-modules, compatible with symplectic structures. We ex-
amine the possibilities for the isomorphism classes of the M} (®).

Definition 6.11. For an index i, let d; := dimg,, X,, and write § := = deg(Y' — Y). We write T; for
the set of isomorphism classes of symplectlc 1- modules of rank 2d; in the category of filtered discrete
(¢, N, Gy, )-modules D for which there exists:

e a finite extension L/K of degree < ¢, unramified outside S;

e a v-adic place w; of L; and

e a GSp-irreducible symplectic representation V of G, de Rham at places of L over p and unram-
ified, pure and integral of weight 1 outside places of L above S

such that L., is K,-isomorphic to the completion of L at w; and D = D,y 4, (V
filtered discrete (¢, N, G, )-modules.

G.,) as symplectic

As a consequence of Hermite-Minkowski and Faltings’ Lemma (Lemma 2.4), we have the following.
Lemma 6.12. The set T; is finite for all i.

Now as in §4 let us write
Hyy = LGrass(H(liR(Xyg/Lwi))
for the Lagrangian Grassmannian parametrising Lagrangian L, -subspaces ®; of HéR(Xyg/Lwi), and
write
My, (Lw,)(2) € Hy; (Lu,)
for the set of Lagrangian L,,,-subspaces ®’ for which M} (®%) € T;. The key computation is as follows.
Lemma 6.13 (cf. proof of [LV20, Lemma 6.2|). If [Lw, : K] > 4, then H,/(Lw,)(a) is not Zariski-dense
in Res?:i Hy:-
Remark 6.14. Tt is important in Lemma 6.13 that we Weil-restrict down to K,: we certainly make no
claim as to whether H,: (L, )(a) is Zariski-dense in H,,.
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Proof of Lemma 6.15. Since T; is finite, the set H,/(Luw,)(a) is a finite union of orbits under the action
of (the Q,-points of) AutGSE’V GW)( pst(Xyl/(@m)) on Hy(Lw,), as in Lemma 2.15. This action is Q-

algebraic, i.e. arises from an action of the Q,-algebraic group Autij?\,’ ) (HéSt (X ” /Q;r)) on Res(g:i Hy:

GSp

Since the scalars inside Aut (NG )( pSt( v/ Q) act trivially, it follows from the dimension estimate

of Proposition 2.16(2) that Hy: (L, )(a) is contained in a closed Q,-algebraic subvariety of Res(g:" H,; of
Qp-dimension < d;(2d;+1). By the base change-Weil restriction adjunction, this implies that H,/ (L, ) (a)

is also contained in a closed K ,-algebraic subvariety of Res Kl Hy of K,-dimension < d;(2d; +1). Since

the K,-dimension of Res KU’ H,y is
ws di(d; +1
dimg, Resf(? Hy = [Lu, : K] - % > di(2d; + 1)
we have non-density for dimension reasons. [l

Proof of Proposition 6.9. Consider the decomposition
Hyy = [ Resi M
i

from (4.3). We claim that for every ® € H,, (KU)I)‘XS)(,&) there exists an index ¢ such that [G, : G,,] > 4
and the ith component ®; of ® lies in H,/(Lw,) ). The proposition then follows from Lemma 6.13.

Proving the claim is a matter of unwinding definitions. Given some ® € H,, (KU)I;X&( a)» there is by
definition an S-good symplectic pair (A, V) of type (a) in the category of G k-representations and an
isomorphism

M=4(®) = (Dpu(Ale,), Dpu(Vls,)) (%)

of symplectic pairs in filtered (¢, N, G,)-modules. Recall that being of type (a) means that there exists
some 1) € ¥4 such that [G, : Gy, ] > 4 and V), is GSp-irreducible. Since D,y is a fully faithful ®-functor,
the algebra part of (x) is D,y of an isomorphism

Hgt(Xyo,fv’Qp) = A‘Gv )
so the element i € ¥ 4 corresponds to a Q,-algebra homomorphism
0
(U Hét(XyO,?“an) = Qp.
Such a map is automatically the map induced by a K ,-point of Y;O, i.e. a pair of a closed point y; € |Yy'0\
and a K,-embedding K,(y.) — K,. Replacing ¢ by another element of ¥, in its G,-orbit, we may

assume without loss of generality that this embedding is the embedding L,,, — K, fixed in §4.2.1.
For this value of i, we have [L,, : K] =[G, : Gy, ] > 4 by assumption. We also have

Dytt,w, (Vile, ) = Dpttw, (Qp @46 V) = 1 @006, Dy, (i) M (®)a,, = M (P))

as symplectic 1-modules in the category of filtered discrete (¢, N, Gy, )-modules, using Lemma 4.12 for
the final identification. The fact that (A, V) is S-good of type (a) implies that the number field L,
place wy and symplectic representation Vy, satisfy the conditions of Definition 6.11, and hence we have
M} (®}) € My (L, )(a)- This completes the proof of the claim, and hence of the proposition. O

6.3. Finiteness for points of type (b). Next, we deal with the set Y (K,)%" ' (b)- Again, this goes via
the theory of period maps, but rather than using Faltings’ Lemma and a dimension estimate, we instead
use a more explicit argument. Throughout §6.3, we again fix an abelian-by-finite family X — Y’ — Y
and a K,-point yo € Y(K,). We define

Hyo (KW)I)J(\,/(b) < Hyo (KU)
to be the set of Lagrangian HJg (X, /K, )-submodules ® of Hjg(X,,/K,) such that
M (®) 2 (Dpu(A), Dpu(V))

for some symplectic pair (A4, V) in the category of de Rham G,-representations of type (b). Our aim is
to prove the following counterpoint to Proposition 6.9.

Proposition 6.15. #,, (KU)I)‘(V(b) is not Zariski-dense in Hy, .
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Corollary 6.16. If X — Y’ — Y has full monodromy, then Y(KU)I;(Y(b) is finite.

Again, the decomposition of the fibre X, reduces this to a simpler computation. For a closed
point y; € |V} |, we write
Hyr (L, )0y € Hyr (Lu,)
for the set of Lagrangian L,,,-subspaces @ of H(liR(Xyg /Ly,,) for which there exists a non-zero isotropic
filtered discrete (¢, N, Gy, )-submodule D < M} (®) such that

1
dimy,, F'Dar > o dimgy: Dps -
We say that D has average Hodge—Tate weight > 1/2.
Lemma 6.17 (cf. [LV20, Lemma 6.3]). If [Ly, : K] > 4, then Hy (Luw,) ) s not Zariski-dense in

Lu,
ResKv ”Hy; .

Proof. Tt suffices to show that H,/ (L., ) ) is not Zariski-dense in the base-change of Resf;:i Hy; from K,
to K,. We enumerate the K,-embeddings Ly, — K, ast1,...,tr, with ¢; the embedding chosen earlier,

so that there is an isomorphism
T

Fv ®KU Lw,- = HF’U
j=1

of K ,-algebras whose jth component is 1 ® tj. For each j, we may choose an element o; € G, such that
tj = 0j 011, and we may assume moreover that o; acts on Q" as an integer power ¢™7 of Frobenius. In
the case j = 1, we may take o1 = 1 and m; = 0. Fixing these choices of o; and m;, we have a K ,-linear
isomorphism

= 1 ~ T 1

Ky @, Hig (Xy;/Luw,) = Ko @qur Hyg (X, /Q")
given as the composite

—1

J— o, ®1 __
K, @y HcliR(Xyg/Lwi) —= K, S HilR(Xy;/Lwi)

{cgéoc;é
i7d nry ¢ Q"I = nr
K’U ®Q;r Hll)st(Xyi/Qp ) - ~ KU ®Q2r Hll)st(Xy: /Qp ) .

Taken together, we obtain an isomorphism

T

Ko @, Hin(Xy/Lu,) = [ (K @, Hin(Xy/Lu,) 2 (Ko Oy Hpe(X,/Q) (6.1)

j=1
of symplectic modules over K,®, Lw, = [[_; K,. In particular, Lagrangian K,®, L, -submodules of
the left-hand side of (6.1) correspond bijectively to r-tuples of Lagrangian K ,-subspaces of the symplectic

vector space K, Qqur HlljSt (X, /QpF), so we have a decomposition

L'w' T nr s
(ResKvl H%)? =~ LGrass(K, ®qur H;St(Xy;/Qp N".
If now @ is a Lagrangian L, -subspace of H(liR(Xy; /Ly,), then K, ®k, ®. corresponds under (6.1)
to an r-tuple of Lagrangian K ,-subspaces @}, of K, ®qur H;St(Xy; /QyF) satisfying
35 = (05 @ 9™)(®i1)
for all i. If ®; € H,/(Lw,)v), then by definition there is a non-zero isotropic (¢, N, Gy, )-submodule
Dpgt < H! (Xy;/Q;”) such that dimg (K, ®qur Dpgt) N @) > %dimQ;r Dy Since Dy is ¢-stable,

pst
this in fact implies that for all j

— 1
dlmfv (Kv ®Q;r Dpst) n (I){Lj 2 5 dlm(@;r Dpst .

Hence non-density of H,:(Lw,)p) in (Resf(’:i Hyé)? follows from the following pure linear algebra

lemma. O
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Sublemma 6.18 (cf. [LV20, Lemma 6.4]). Let (V,w) be a symplectic vector space over a field F, and
let ¥ > 4. Then the set of r-tuples (5)1<s<r of Lagrangian F'-subspaces of V' for which there ezists a
non-zero isotropic F-subspace W <V satisfying

1
dim(®,;, N W) > 3 dim(W) fori1<j<r (%)
is contained in a proper Zariski-closed subscheme of LGrass(V,w)".

Proof. We may assume without loss of generality that F' is algebraically closed, which anyway is the
only case we will need. It suffices to prove the result in the case r = 4. Let IGrass™(V,w) denote
the Grassmannian of non-zero isotropic subspaces in V. The set Z C LGrass(V,w)?* described in the
sublemma is the image under the proper projection

pry: IGrass*(V,w) x LGrass(V,w)* — LGrass(V,w)?

of the set Z of all (W, ®,, &y, B3, B4) satisfying (+). Now for j = 1,2, 3,4, the function dim(®; N W) is
upper-semicontinuous, and hence the subset Z is Zariski-closed. The projection Z = pry(Z) is then also
Zariski-closed. We want to prove that Z is not all of LGrass(V,w)?*, for which it suffices to exhibit an
F-point of LGrass(V,w)* which doesn’t lift to Z(F).

We construct such a point as follows. Let ®; = (ej,es,...,e4) be a Lagrangian subspace and let
@y = (f1, f2,. .., f4) be a Lagrangian complement spanned by a dual basis, i.e. such that w(eq, f3) = dag-
The graph ®,, of a linear map : ®; — ®, is a Lagrangian subspace of V' = ®; @ ®, if and only if
the pairing on ®; defined by (z,y), = w(x,¥(y)) is symmetric; and v is an isomorphism if and only
if (—,—), is non-degenerate. We choose 13,14: ®; — @5 as the maps given by 13(eq) = fo and
Y4(€a) = Aafo for a choice of distinct nonzero A\, € F*. Clearly the pairings (—, —),, are symmetric
for j = 3,4. With ®; = &, for j = 3,4 we find

V= q)jl EB(I)J'2 ; for all jl < jg, (jl,jg) 7é (3,4) .

Suppose now for contradiction that (®q, P, P3, P4) lies in the image of a point in Z(F) There is thus
a non-zero isotropic F-subspace W of V satisfying (*). It follows from this that, writing W; = &, N W,
we have

W =W;, &@Wj,; forall ji <j2, (j1,j2) # (3,4).
It follows that ;(W;) = Wy for j = 3,4 and thus W; is a g = w§1w4-stable subspace of ®;. Since

g(ea) = Aa€q, the map g has dim(®;)-many different eigenvalues and so W; must contain one of the
vectors e,. But then W also contains 93(e,) = fa, contradicting the fact that W is isotropic as

w(en, fo) = 1. O

Remark 6.19. The corresponding result in [LV20], Lemma 6.4, differs from Sublemma 6.18 in that W is
not required to be isotropic, but on the other hand, r is required to be at least 5.

Proof of Proposition 6.15. As in the proof of Proposition 6.9, our aim is to prove that for every & €
Hyo (KU)I)‘X(b) there exists an index 4 such that [G, : G4,;] > 4 and the ith component ®; of ® lies
in Hy: (Lw,)(1)- This implies the proposition by Lemma 6.17 and the decomposition (4.3) of H,,.

Again, proving this claim is a matter of unwinding definitions. Given some & € Hyo(Kv)I;X(b),
there is by definition a symplectic pair (A, V') of type (b) in the category of G,-representations and an
isomorphism

M (®) = (Dyu(A), Dpu(V)) (%)

of symplectic pairs in filtered (¢, N, G, )-modules. Recall that being of type (b) means that there exists
some ¢ € X4 such that [Gy : Gy,| > 4 and Vj; possesses a non-zero isotropic G, -subrepresentation
W <V, whose average Hodge-Tate weight is > 1/2. As in the proof of Proposition 6.9, the element ) €
> 4 corresponds to the Q,-algebra homomorphism

¢i: He (X, %, Qo) = @

induced by a pair of a closed point y; € Y, | and a K,-embedding K, (y;) < K,; again we may assume
without loss of generality that this embedding is the embedding L.,, < K, fixed in §4.2.1.
For this value of i, we have [L,, : K,] =[G, : Gy,] > 4 by assumption, and

DpH,ww (V¢|wa) = Mil(q);)
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as symplectic 1-modules in the category of filtered discrete (¢, N, Gy, )-modules. Hence Dpp ., (W)
corresponds to a non-zero isotropic filtered discrete (¢, N, Gy, )-submodule D of M} (®}) whose average
Hodge-Tate weight is > 1/2. So M}!(®!) € Hy (Luw, ) (b), completing the proof. O

6.4. The Kodaira—Parshin family and points of type (c). It remains to deal with the set Y (K, )%, o
The approach here is different to the approach for Y(KU)IX $,(a) and Y(K,)% X.(b)’ rather than prove that
Y (K, )I)‘(V( ) is finite in any level of generality, we will instead exhibit a particular abelian-by-finite family
X =Y’ — Y for which Y(K,)Y © = . The relevant construction was given in [LV20, §7], where

Lawrence and Venkatesh constructed an abelian-by-finite family X, — Yq’ — Y called the Kodaira—

Parshin family with parameter ¢ (an odd prime number). The Kodaira—Parshin family has constant
relative dimension dy = (9 —1/2)(¢ — 1) > 0 [LV20, §7.2] and always has full monodromy [LV20, §8.2.3].
The key point here is that, for a suitable choice of ¢, we also have Y(KU)I;(V(C) = (.

Proposition 6.20. Let X, — Y, — Y be the Kodaira—Parshin family with parameter q an odd prime
number, and suppose that q satisfies the following two conditions:

e g—1 is not divisible by 4 or any odd prime divisor of q,(q, +1)(g —1), where q, is the cardinality
of the residue field of K,; and o
e ¢—1>9n,, where n, is the number of extensions of K, of degree 2 or 3 inside K,.

Then Y (K,)YY o) =

Proof. We follow a proof similar to [LV20, Theorem 5.4]. For a finite non-empty G,-set ¥ let us write*?

#{r € ¥ : z is contained in a G,-orbit of size < 4}
#2 '

size, (X)) :=

So we wish to prove that
1

dg+1

size, (Y, ,(K,)) <

for all y € Y(K,).
We denote by Aff(q) the affine linear group F, x F* of dimension 1, and write & = (¢ — 1)/2 for short.
The construction of the Kodaira—Parshin family shows that there is a G,-equivariant bijection

Y, (K,) = Surj™* (7" (Y, — y), Aff(q)),

where Surj®""*(7$' (Y% — ), Aff(q)) denotes the set of surjections ﬂft(Y?U —y) — Aff(q) which are
non-trivial on an mertia generator at y, up to conjugation. The projections Aff(q) — Fy — Z/kZ induce
G-equivariant surjections

Surj"t* (r§ et (Y?v —vy), Aff(¢)) — Surj (71'%t (va —y), IFqX) = Surj (ﬂ‘lét (qu),]F;) —» Surj (ﬂ‘lét (va,Z/k:Z)) ,
each of whose fibres all have the same size, see [LV20, Lemma 2.11]**. We then have the estimate
size, (Y, (K,)) = size, (Surj>"" *(ﬂ'ft(Y?v —y), Aff(q))) < size,(Surj (ﬂ'ft(qu), Z/k7)),

so it suffices to prove that size, (Surj(n$"(Yx ), Z/kZ)) < ﬁ.
On the one hand, the number of surjections Wft(va) —» Z/kZ is equal to the number of 2g-tuples of
elements of Z/kZ which generate it as an abelian group. The number of such tuples is

# Surj(n{* (Y, ), Z/KZ) = k9 - H ) >¢(29)7" - K
where 7 runs through the distinct prime factors®* of k.

22This is the same as [LV20, Definition 5.2], except that we count orbits of size < 4 rather than < 8.

23Strictly speaking, [LV20, Lemma 2.11] only proves the corresponding statement when Surj°'"*(n¢* (Y —y), Aff(q))
is replaced by the set Surj*(w§ (Y?v — y), Aff(q)) of surjections ¢t (Yg, —y) — Aff(q) which are non—trivial on an
inertia generator at y, not up to conjugation. But the conjugation action of Aff(¢) on Surj*(« et(va —y), Aff(q)) is free
(since Aff(g) has trivial centre), from which we deduce the statement we need.

240ne can tighten the bound slightly by observing that 2,3t k.
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On the other hand, the group of homomorphisms 7$'(Ys%) — Z/kZ (not necessarily surjective) is

G,-equivariantly isomorphic to the étale cohomology group
M = HY (Ve Z/KZ).
which carries a perfect G,-equivariant alternating Weil pairing
(o) MM = py .
We need to estimate the size of the subset UG MGw of M, where G, ranges over open subgroups of

index 2 or 3. Such a G, contains an element T" acting on the residue field as the ith power of arithmetic
Frobenius for some 1 < i < 3. If my,mgy € MS», we then have

(m1,ma) = (Tmy, Tma) = T{m1,mz) = g, " (my, ms) .

But the first of our assumptions on ¢ ensures that ged(k, ¢! — 1) = 1, and hence we have (mj,mz) = 0,
i.e. MCv is isotropic with respect to the Weil pairing. This implies that

#HMCe < 9.
In total, the number of elements of M contained in a GG,-orbit of size < 4 is at most n,k9.
Combining this with the previous part, we obtain
29)Ny In, 1 1 1
M < n S < — ,
k9 8k9 — 4k9—1 " (29-1Dk+1 d;+1

which is what we wanted to prove. (Il

size, (Surj(7$" (Y, ), Z/kZ)) <

Remark 6.21. The quantity n, appearing in the statement of Proposition 6.20 is bounded depending

only on K. In fact, if v 1 6 then we always have n, = 7: K, has three quadratic extensions and
four cubic extensions inside K,. (If g, = 1 modulo 3 then all of the cubic extensions are Galois; if
instead ¢, = —1 modulo 3 then one of the cubic extensions is Galois and the other three are conjugate

non-Galois extensions.)

Corollary 6.22. For every finite place v of K, there exists an abelian-by-finite family X —Y' =Y of
constant relative dimension > 0, having full monodromy, such that Y(KU)I)‘(\: © = 0.

Proof. Dirichlet’s Theorem ensures that there exists an odd prime ¢ satisfying the conditions of Propo-
sition 6.20. The Kodaira—Parshin family with this parameter ¢ has full monodromy [LV20, §8.2.3] and
has Y (K,)Y () = 0 by Proposition 6.20. O

6.5. Proof of Theorem 6.5. Putting this all together, we obtain the proof of Theorem 6.5. Suppose
that v is self-conjugate, and let X, — Y, — Y be the Kodaira-Parshin family with parameter ¢, where ¢
satisfies the conditions of Proposition 6.20. The Principal Trichotomy (Proposition 6.7) implies that

V(K% CY(K) 5. VY ()R 1y VY (K, )X (c)
since v is self-conjugate. Because the KodalrafParshln family has full monodromy, the sets Y(KU)I;(\Q $,(a)

and Y(KU)I)‘(\(’Z () are finite by Corollaries 6.10 and 6.16, and we also have Y(KU)I)‘(Z © = () by Proposi-
tion 6.20. Hence the Lawrence—Venkatesh locus Y(KU)I;(\Z, g is finite. O

Remark 6.23. Compared with the proof in [LV20], our proof shows finiteness of the locus Y(KU)I)‘(\Z’ g
for more pairs (v,q) of a finite place v and an odd prime g. The proof in [LV20] establishes finiteness
of Y(K,)% X,,s Whenever (v,q) satisfies the following list of conditions:
(1°) wv is self-conjugate and unramified over Q (i.e. friendly), and does not divide 2
(2°) g — 1 is not divisible by 4 or any odd prime divisor of g, - H:Zl(qf) -1y
(3°)
4-¢(29) 27 _ 1 .
(¢—1)9 (9-1/2)(¢—1)+1’
(4°) the Kodaira-Parshin family X, — Y, — Y admits a good model over the ring of integers of K,
in the sense of [LV20, Definition 5.1].
By contrast, our proof establishes finiteness of Y (K
stringent list of conditions:

)X s whenever (v,q) satisfies the following less

(1) v is self-conjugate;
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(2) ¢ — 1 is not divisible by 4 or any odd prime divisor of g, - Hle(qf) -1y
(3)
ny, - ((2g) - 29 - 1
(¢—1) (9-1/2)(¢—1)+1"
(In the case that Y has good reduction at v, the quantity n, can be replaced by 2, since the representa-
tion M appearing in the proof of Proposition 6.20 is unramified, and so one need only consider the two
subgroups G,, corresponding to unramified extensions of K,.)

We conclude with a miscellany of remarks comparing how easy it is to satisfy the conditions (1°)—(4°)
compared with (1)—(3).

(I) When K contains no CM subfield, then for 100% of places v (in the natural density) there exists
an odd prime ¢ satisfying (1°)—(4°). Indeed, for any ¢ satisfying (3°), conditions (1°) and (4°) are
satisfied for all but finitely many places v. And if we choose ¢ = 3 modulo 4 such that Q({;—1) is
linearly disjoint from the Galois closure K’ of K, then g, is equidistributed among the invertible
residue classes modulo ¢ — 1, so condition (2°) is satisfied for a proportion of at least

IT max (1 - 10) ()

of places of K, where r runs over odd prime factors of ¢q. (Here, 18 is the maximal number of
elements of order < 7 in a cyclic group.)

We claim that the quantity (*) can be made arbitrarily close to 1 for suitably chosen ¢
(satisfying all other relevant conditions). For this, choose an auxiliary prime number o > 100
strictly greater than all odd prime divisors of [K’ : Q], and let ¢ be the least prime number
congruent to 3 modulo 4 and congruent to 2 modulo all odd primes less than rg. Then (3°) is
automatically satisfied, K’ is linearly disjoint from Q((;—1), and Linnik’s Theorem tells us that
log(q) = O(m(r¢)log(ro)) = O(ro) where m(rg) = O(ro/log(re)) is the prime counting function.
Now every odd prime factor of ¢ — 1 is at least r¢ and there are at most log(q)/log(ro) of them,
so we obtain

log(g)/ log(ro)
2 (1 ) (10t (00

70 7o log(ro) ~log(ro)

and the right-hand bound tends to 1 as rg — co.

(IT) On the other hand, there are always places v for which (1°)—(4°) are not satisfied for any ¢, e.g.
if v is ramified over Q, if v | 2, or if Y has bad reduction at v. This is the most significant
difference in the context of this paper, since we want to prove a constraint for every place v.

(ITT) In general, the smallest value of ¢ satisfying (1)—(3) is smaller than the smallest value satisfy-
ing (1°)—(4°). For example, if Y is a curve of genus 3, then the smallest value of g satisfying (1°)—
(4°) for some v is ¢ = 23, since (2°) implies in particular that ¢ — 1 cannot be divisible by 3, 5
or 7. On the other hand, the smallest value of ¢ satisfying (1)-(3) (with the modification of (3)
for places of good reduction) is ¢ = 11. As mentioned in the introduction, this extra efficiency
may be useful in the context of carrying out the Lawrence—Venkatesh method in practice.

7. THE LAWRENCE—VENKATESH OBSTRUCTION FOR SELMER SECTIONS

Having shown finiteness of the Lawrence—Venkatesh locus, we now come to the other half of our proof
of Theorem A. We fix notation as in the preceding section; that is, K is a number field, Y/K is a smooth
projective curve of genus > 2, and v is a p-adic place of K for some rational prime p. Our aim is to
prove the following, which proves point (1) of the introduction.

Theorem 7.1. For every abelian-by-finite family X — Y’ —Y, the image of the localisation map
Sec®(Y/K) — Y(K,)
is contained in the Lawrence—Venkatesh locus Y (K,)5Y (see Definition 6.1).

For the remainder of this section, we fix a choice of abelian-by-finite family X — Y’ — Y and write
m: X — Y for the projection.
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7.1. Relative étale cohomology of an abelian-by-finite family. The relative étale cohomology
R*m¢e+Qp of the abelian-by-finite family 7: X — Y is a Qp-local system on Yz whose fibre at any
geometric point y of Y is Hg, (X, Qp). We see, e.g. by looking at any fibre, that the natural map

L] 1 ~
/\ R 7Tét*(@p — R.Wét*(@p
ﬂét*@p

is an isomorphism of Q,-local systems on Ye;. Now let A denote the polarisation on X — Y'. We define
its first relative étale Chern class

Ny € HO(Y, R2m,Qy (1))
as follows. The Kummer sequence induces a boundary map
R'T¢tx G — R2*Mepufipn = R2:7ms0. Z/p" Z(1)
for every n > 0. These maps are compatible in a natural way, so induce a map
R' 76« Grn — R2mgZyp(1)

of inverse systems of abelian sheaves on Yg;, where the left-hand side is viewed as a constant inverse
system. For a line bundle £ on X, we define ¢{*(£)/y to be the image of the class of £ in Pic(X) =

H'(X¢t, Gn) under the composite
H' (X4, Grn) = HO(Y, R'me0s G ) — H (Y, R?meen Zp (1)) — HO (Y, R e Qp (1))

where the first map arises from the Leray spectral sequence for étale cohomology, and the final map is
tensoring with Q, over Z,. We set ¢§*(X)/y = 1¢{*(£)y for £ = (1, A)*P with P the Poincaré bundle.

Now it follows from the usual functoriality properties of the Leray spectral sequence that the fibre of
' (N)/y at a geometric point y of Y is c§'()\,) € HZ (X,,Q,(1)), where A, is the polarisation on the
fibre X,. If we define

Eeit(X/Y, Qp) = %Omﬂ-ét*(@p (Rlﬂét*Qp’ Wét*Qp)v
then
. 2
')y € H(Y, R?7eQp (1)) = HY (Y, \ Rl'me @y (1))
Wét*@p
corresponds to a pairing
- &t 2 e
Wy /\ HY'(X/Y,Qp) — meesQp(1) -
Wét*@p
By considering the fibre of this pairing at a geometric point of Y and using Lemma 4.2, we see that @S
is a perfect pairing: it induces an isomorphism
HY'(X/Y,Qp) = R'meenQy(1)
of Qp-local systems on Y. Hence there is a dual pairing

2
Wy /\ Rlﬂ'ét*Qp — 7"'ét*(@p(_l) s

7Te’t>k(@;0

making Rlﬂ'ét*@p into a symplectic 74 Qp-module in the category of Qp-local systems on Y. The fibre
of the symplectic pair

Rglﬂét*(@p = (Wét*@p7R17Tét*Qp)
at a geometric point y of Y is isomorphic to the symplectic pair
<1
Hg (Xy, Qp) = (Hgt(Xyan)aHét(Xyan))

compatibly with the algebra and symplectic module structures and, if y is defined over a non-algebraically
closed field, the action of the Galois group.
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7.2. Attaching representations to Galois sections. We can use this setup to attach to every Galois
section a symplectic pair in the category of G'x-representations. Let us fix a geometric point 7 of Y,
and write A and V for the 7¢*(Y,7)-representations corresponding to the Qp-local systems mg;Q, and
Rl’f('ét*Qp, respectively. Thus (4, V) is a symplectic pair in the category of w‘ft (Y, 7j)-representations.

If s is a section of the fundamental exact sequence

1= 718 (Y, ) — 7Y, 1) — Gg — 1,

then we define A, := A and V; := V, endowed with the action of Gx given by restriction along
s: Gg — m$t(Y, 7). Thus (A, V;) is a symplectic pair in the category of G x-representations. Moreover,
if v is an element of 7§ (Y4, 7) and s’ = ysy~! is a conjugate section, then the action of v gives a G-
equivariant isomorphism (A, Vi) = (A, Vir). So the isomorphism class of the symplectic pair (As, Vy)
depends only on the m$* (Y, 7])-conjugacy class of s.

More generally, if 77’ is another geometric point of Yz and v € n*(Y%;7,7') is an étale path from 7
to 77/, then conjugation by ~ induces an isomorphism

()

§ i

1 —— (Y&, 7)) —— 7 (Y, 7)) — Gx —— 1

1— ,/Tft (Yfa 77) — ,/Tft (Ya 7_’) GK 1

between the fundamental exact sequences at basepoints 77 and 77/, respectively. If s’ = ysy~! is the section

of the lower sequence in (1) conjugate to s, then the action of v gives a G g-equivariant isomorphism
(As, Vi) = (AL, V), where A" and V' are the 7¢*(Y,#’)-representations corresponding to the Q,-local
systems ¢« Qp and R,l’f('ét*Qp, respectively. So the isomorphism class of the symplectic pair (A, Vi) is
also independent of the choice of geometric basepoint 77 defining the étale fundamental group.

7.2.1. Selmer sections. In the particular case that the section s is Selmer, we can say considerably more
about the local behaviour of the representations A, and V.

Proposition 7.2. Let u be a place of K. Suppose that the restriction s|g, of s to the decomposition
group G, C G is the local section arising from a point y, € Y (K,). Then
~ <1
(Asle: Vsle,) = Hg (X, 7, Q)
as symplectic pairs in the category of Gy -representations.
Proof. By the above discussion, we may suppose that the geometric point 7 defining the fundamental
group is y,, the K,-valued geometric point of Yz determined by y,. Moreover, we may suppose that
the restricted section s|g, is the map
Gy = 71" (Spec(Ky), Spec(Ku)) = 71" (Yic,, Gu) C 71 (Y, 8u)
induced by functoriality from the morphism
t: (Spec(Ky),Spec(K.)) — (Yx,, Uu)
of pointed schemes. By definition of the étale fundamental group as a functor, (4s|g,, Vslg,) is Gu-

equivariantly isomorphic to ¢* Rglﬂ'ét*(@p, which is isomorphic to Hégt1 (X v Ko Qyp). (]

Proof of Theorem 7.1. As a consequence of Proposition 7.2, if s is a Selmer section with associated
adelic point ¥y = (yu)u € Y (Ak), then the symplectic pair (As,Vs) interpolates the points y, in the
sense of Definition 6.1. In particular, we have y € Y (Ag)%Y, and y, € Y(K,)%. Thus we have proved
Theorem 7.1. O

APPENDIX A. FILTERED DERIVED CATEGORIES

In this appendix, we prove a few basic lemmas on filtered derived categories of sheaves used in the
proof of Theorem 3.12. Suppose that (U,.A) is a small ringed site. One then has the derived category
D(A) of A-modules, which is given as the localisation of the category Kom(.A) of (unbounded) complexes
of A-modules at the quasi-isomorphisms.

Let SKom(.A) denote the category of Z-indexed decreasing sequences

s FASTFA S F A L
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of complexes of sheaves of A-modules. The maps F*™* A4 — F'A are not necessarily monomorphisms. A
morphism A — B in SKom(A) is called a filtered quasi-isomorphism just when the induced maps FiA —
F'B are quasi-isomorphisms for all i. We defined the filtered derived category FD(A) to be the localisation
of SKom(A) at the filtered quasi-isomorphisms. Equivalently, FD(A) is the derived category of the
category Seq(.A) of sequences in A.

Remark A.1. Any object of SKom(A) is quasi-isomorphic to an object A in which all of the maps
F™'A — F'A are monomorphisms, i.e. A is a filtered complex. Thus FD(A) can also be described
as the derived category of the category FMod(A) of filtered .A-modules, hence the name. However,
since FMod(.A) is not an abelian category, it is generally clearer to view FD(A) as the derived category
of SMod(.A) instead.

There is a second important class of morphisms in SKom(A). If A € SKom(A) is a sequence
of complexes of A-modules, we write gri A for the cone of the map F*'A - F'A. Amap A — B
in SKom(A) is called a graded quasi-isomorphism just when the induced maps grih A — gri B are
quasi-isomorphisms for all i.

A.1. Cohomology objects. If A € SKom(.A) is a sequence of complexes, then it has natural coho-
mology objects H?(A) € Seq(.A), namely the sequences

- H(F'A) —» H/(FPA) - H/(F1A) — ...

Note that even if A € FKom(A) is a filtered complex, its cohomology objects H’(A) may still not
be filtered themselves (meaning the maps H? (F*t*A) — H’(F'A) may not be injective). We have the
following criterion due to Deligne which governs when this happens.

Lemma A.2. Suppose that A is a filtered complex of sheaves of A-modules whose filtration is bounded
below in every degree. If the spectral sequence associated to A degenerates at the first page, then H? (A)
is a filtered A-module for all j.

Proof. Tt suffices to prove this under the additional assumption that the filtration is degreewise bounded
above. In this case, A is a filtered complex with strict differentials by [Del71, Proposition 1.3.2], and it
is easy to check that this implies that H’(A) is filtered. O

Let us say that A € SKom(A) has filtered cohomology objects just when H’(A) is filtered for all j.

Lemma A.3. Suppose that A — B is a graded quasi-isomorphism in SKom(A) and A has filtered
cohomology objects.
(1) B also has filtered cohomology objects.
(2) The induced map H (A)" — HI(B)" on the completions of cohomology objects with respect to
their filtrations is an isomorphism for all j.

Proof. For the first point, we note that A has filtered cohomology objects if and only if the coboundary
map H'(grf. A) — H™ (FIT1 A) is zero for all 4 and j. So if A has filtered cohomology objects and A — B
is a derived graded quasi-isomorphism, then we have a commuting square

H'(grA) —2— HTH(FIHA)

i |
Hl(gr{;B) Hi+1 (F]+1B)
for all ¢ and j, where the top arrow is 0 and the left-hand vertical arrow is an isomorphism. So the

bottom arrow is 0 too and B has filtered cohomology objects.
For the second point, A having filtered cohomology objects implies that the natural map

H'(F7A)/H' (FFA) — HY(F7 A/ F* A)
is an isomorphism for all i and all j < k, where F/ A/ F* A is the cone of the map F/A — FFA. Since

A — B is a graded quasi-isomorphism, it induces quasi-isomorphisms F’ A/ FkA & FI B/ F*B for
all j <k, and hence the induced maps

H'(F7A)/H'(F*A) — H (F' B)/ H'(F*B)
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are isomorphisms for all 7 and all j < k. Taking the inverse limit over k gives the result. O

Remark A.4. There are several different definitions of the filtered derived category in the literature; the
definition we give above coincides with that used in [SS16] and [BMS19]. If one localises SKom(.A) in-
stead at the graded quasi-isomorphisms, one obtains the filtered derived category as defined in e.g. [GP18].
The filtered derived categories used in [Schl3] is also the localisation of SKom(A) at graded quasi-
isomorphisms: the term “filtered derived category” is not defined in [Sch13], but the definition was
clarified to us in email correspondence with Peter Scholze. In particular, maps referred to as “filtered
quasi-isomorphisms” in [Sch13] are what we refer to as graded quasi-isomorphisms above.

Remark A.5. The above discussion doesn’t strictly apply to the pro-étale site Upyoet of [Sch13], since Upyoet
is large. The necessary modifications were described to us by Peter Scholze. One follows the approach
in [Sch17], by picking a suitable cardinal (as in [Sch17, Lemma 4.1]) and considering only those adic
spaces U which are x-small in the same sense as [Sch17, Definition 4.2]|. If U is k-small, then the x-small
pro-étale site Upyo4t, is defined to be the restriction of the pro-étale site to the full subcategory of k-small
objects. This is a small site.

One then checks, from [Sch17, Proposition 8.2] that the pullback functor

-1 .77~ ~

Cm,n’ + Y proét,k proét,x’

on categories of sheaves is fully faithful for x < ', and the natural map

F — RepprnCp L F (A1)

K,k

is an isomorphism for all abelian sheaves F on Upyost,- We call the (large) colimit

~

proét = hﬂ proét,x
K

the category of small sheaves on Upyo¢t, Which is equivalent to the category of sheaves on Upog; which
arise via pullback from a sheaf on some Uprost,. All of the sheaves discussed in §3.2 are small, and
it follows from isomorphy of (A.1) that cohomology and derived pushforwards of small sheaves can be
computed on the level of sheaves on Uprost,c for a suitable x. So the discussion in this section can be
applied to small sheaves on Upost, even though it is large.
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