
Galois sections and p-adic period mappings

L. ALEXANDER BETTS AND JAKOB STIX

Abstract Let K be a number field not containing a CM subfield. For any smooth projective
curve Y/K of genus ≥ 2, we prove that the image of the “Selmer” part of Grothendieck’s
section set inside the Kv-rational points Y (Kv) is finite for every finite place v. This gives an
unconditional verification of a prediction of Grothendieck’s section conjecture. In the process
of proving our main result, we also refine and extend the method of Lawrence and Venkatesh,
with potential consequences for explicit computations.
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1. Introduction

Let K be a number field and Y/K a smooth projective (geometrically connected) curve of genus ≥ 2.
Associated to Y one has the fundamental exact sequence

1→ πét
1 (YK)→ πét

1 (Y )→ GK → 1 (1.1)

on étale fundamental groups (at appropriate basepoints), where GK is the absolute Galois group of K.
Every K-rational point y ∈ Y (K) gives rise to a πét

1 (YK)-conjugacy class of splittings of (1.1), and
Grothendieck’s Section Conjecture predicts that every splitting of (1.1) arises in this way for a unique y.

In conjunction with the Mordell Conjecture, the Section Conjecture predicts that the set Sec(Y/K)
of conjugacy classes of splittings of (1.1) should be finite, but this remains unknown outside a handful of
particular examples where it can be shown that (1.1) has no splittings at all [HS09, LLSS, Sti10, Sti11].
Our aim in this paper is to prove a partial finiteness result for splittings of (1.1), unconditionally and
for an arbitrary curve Y , provided that K contains no CM subfield. In order to state our main result,
we introduce a subset of Sec(Y/K) of local-to-global nature.

Definition 1.1. A section s of (1.1), when restricted to a decomposition group Gu at a place u of K,
yields a splitting of the local fundamental exact sequence

1→ πét
1 (YKu

)→ πét
1 (YKu)→ Gu → 1 .

We say that s is Selmer just when s|Gu is the section arising from a Ku-rational point yu ∈ Y (Ku) for
each place u. We write SecSel(Y/K) for the set of Selmer sections, and for a finite place u we write

locu : SecSel(Y/K)→ Y (Ku)

for the map taking a Selmer section s to the unique Ku-point yu giving rise to the restricted section s|Gu .

Our main theorem is as follows.

Theorem A. Let K be a number field containing no CM subfield, and let Y/K be a smooth projective
curve of genus ≥ 2. Then for every finite place v of K, the image of the localisation map

locv : SecSel(Y/K)→ Y (Kv)

is finite.
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Theorem A can be rephrased in terms of the finite descent obstruction. Recall that the set of modified
adelic points Y (AK)• of Y is the product of the finite adelic points

∏
v-∞ Y (Kv) with the connected

components of the infinite adelic points
∏
v|∞ π0(Y (Kv)), see [Sto07, §2]. The finite descent locus

Y (AK)f−cov
• ⊆ Y (AK)•

is a subset of the modified adelic points, which contains the K-rational points Y (K) and is conjecturally
equal to them [Sto07, Conjecture 9.1]. The relationship between the finite descent locus and the Selmer
section set is that Y (AK)f−cov

• is exactly the image of SecSel(Y/K) under the total localisation map
loc : SecSel(Y/K)→ Y (AK)• (whose vth component is the map locv above) [HS12, Theorem 11]. Hence
Theorem A implies the following shadow of the expected finiteness of Y (AK)f−cov

• .

Theorem B. Let K be a number field containing no CM subfield, and let Y/K be a smooth pro-
jective curve of genus ≥ 2. Then for every finite place v of K, the projection of the finite descent
locus Y (AK)f−cov

• on Y (Kv) is finite.

The history of Grothendieck’s Section Conjecture is inextricably bound up with that of the Mordell
Conjecture, as it was Grothendieck’s original hope that a proof of the Section Conjecture would lead to a
new arithmetic-homotopical proof of the Mordell Conjecture. This paper rather reverses the relationship
between these two conjectures, in that our concern is to adapt techniques used to prove the Mordell
Conjecture to study the otherwise mysterious section set. In this way, Theorem A demonstrates that
the theory of the étale fundamental group is strong enough to support Mordell-like finiteness theorems,
giving a non-trivial finiteness constraint on the section set that applies to every curve Y , at least over
base fields containing no CM subfield.

1.1. Method of proof. The method we use in the proof of Theorem A is an adaptation of the method
developed by Brian Lawrence and Akshay Venkatesh in their recent new proof of the Mordell Conjecture
[LV20], albeit with some significant modifications necessary for our application. Let us describe our
argument in broad strokes, remarking on the differences from [LV20] as they arise.

We will take an explicitly obstruction-theoretic perspective on the strategy of [LV20]. Consider an
abelian-by-finite family over Y , meaning a sequence

X → Y ′ → Y

where Y ′ → Y is a finite étale covering and X → Y ′ is a polarised abelian scheme. If y ∈ Y (K) is a
K-rational point, then the étale cohomology groups Hi

ét(Xy,K ,Qp) of the geometric fibre Xy,K are Galois
representations carrying extra structures: H0

ét(Xy,K ,Qp) is an algebra and H1
ét(Xy,K ,Qp) is a symplectic

H0
ét(Xy,K ,Qp)-module in the category of GK-representations. This allows us to cut out an obstruction

locus as follows.

Definition 1.2 (recalled as Definition 6.2). Let S be a finite set of places of K, and p a prime number.
A pair (A, V ) of a (commutative) algebra A and a symplectic A-module V in the category of Qp-linear
GK-representations is called S-good just when:

• A is unramified outside S;
• V is unramified, pure and integral of weight 1 outside S (see Definition 2.1); and
• V is de Rham at all places over p, with Hodge–Tate weights in {0, 1}.

Let X → Y ′ → Y be an abelian-by-finite family, and let S be a finite set of places of K containing all
places dividing p∞ and all places of bad reduction for X → Y . Let v be a finite place of K, lying over
the rational prime p. We define the Lawrence–Venkatesh locus

Y (Kv)
LV
X,S ⊆ Y (Kv)

to be the set of points yv ∈ Y (Kv) for which there exists an S-good pair (A, V ) together with Gv-
equivariant isomorphisms

H0
ét(Xyv,Kv

,Qp) ∼= A|Gv and H1
ét(Xyv,Kv

,Qp) ∼= V |Gv

compatible with algebra and symplectic module structures.
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In [LV20, Definition 7.3], Lawrence and Venkatesh construct an abelian-by-finite family

Xq → Y ′q → Y

called the Kodaira–Parshin family, where the parameter q is an odd prime number. Our proof of
Theorem A consists of proving two statements.

(1) For any abelian-by-finite family X → Y ′ → Y , any suitable set S and any finite place v | p of K,
the image of the localisation map locv : Sec(Y/K)Sel → Y (Kv) is contained in Y (Kv)

LV
X,S .

(2) For every self-conjugate finite place v of K, there exists an odd prime q such that Y (Kv)
LV
Xq,S

is
finite for all suitable S.

In the second point, self-conjugacy is a technical condition on the place v, slightly weaker than the
condition of friendliness in [LV20, Definition 2.7]; see Definition 2.17. If K has no CM subfield then
every finite place is self-conjugate, so points (1) and (2) together imply Theorem A.

Remark 1.3. Although not explicitly couched in obstruction-theoretic language, [LV20] essentially1 proves
the following two statements.

(1◦) For any abelian-by-finite family X → Y ′ → Y , any suitable set S and any finite place v | p of K,
we have Y (K) ⊆ Y (Kv)

LV
X,S .

(2◦) There exists a finite place v | p of K and an odd prime q such that Y (Kv)
LV
Xq,S

is finite for all
suitable S.

In particular, (1) (whose proof is easy) and (2◦) together are enough to prove Theorem A for one place v.
In fact, with some careful bookkeeping, one can upgrade this to a proof of Theorem A for 100% of places v
when K has no CM subfield, see Remark 6.23(I). On the other hand, there are always some places v
which the original methods of [LV20] do not cover, e.g. any v which is ramified over Q, which divides 2,
or which is of bad reduction for Y . It is extending the methods of [LV20] to cover also these places which
takes most of the work in this paper.

Remark 1.4. We also remark that the argument in [LV20] actually constrains a slightly larger obstruction
locus to the one described in Definition 1.2, namely the locus Y (Kv)

LV◦

X,S ⊆ Y (Kv) defined by omitting the
word “symplectic” throughout Definition 1.2. We always have the containment Y (Kv)

LV
X,S ⊆ Y (Kv)

LV◦

X,S ,
so the Lawrence–Venkatesh method as we formulate it here imposes stronger conditions on K-rational
points (and Selmer sections).

This extra efficiency is relevant if one wants to use the Lawrence–Venkatesh method to compute Y (K)
in practice. It seems likely that the main contributor to the running time of any implementation of the
method is going to be the relative dimension of X → Y ′, and our formulation here typically requires
abelian-by-finite families of smaller relative dimension than in [LV20]. For example, if Y is a curve
of genus 3 over Q, then the original argument of [LV20] can only prove finiteness of Y (Q) using the
Kodaira–Parshin family Xq → Y for q ≥ 23 (relative dimension ≥ 55), whereas our formulation proves
finiteness already when q = 11 (relative dimension 25). This is surely still out of the range of practical
computation, but indicates that systematically keeping track of symplectic pairings is likely to reduce
the complexity of any explicit Lawrence–Venkatesh computations.

For a detailed comparison of which pairs (v, q) we prove finiteness of Y (Kv)
LV
Xq,S

for, compared with
the original arguments of [LV20], see Remark 6.23.

1.1.1. Assigning representations to sections. Of the two halves of our proof of Theorem A, the proof of
(1) is relatively easy. The relative étale cohomology Riπét∗Qp of the abelian-by-finite family π : X → Y
is a Qp-local system on Y for the étale topology, so corresponds to a continuous representation V i

of πét
1 (Y ). Given a section s : GK → πét

1 (Y ), one can restrict the representations V i along s to obtain
GK-representations V is , where As := V 0

s is an algebra and Vs := V 1
s is a symplectic As-module. When the

section s is Selmer, one checks that the pair (As, Vs) is S-good and witnesses that locv(s) ∈ Y (Kv)
LV
X,S .

This argument will be spelled out carefully in §7.

Remark 1.5. This construction is really quite general, and shows that any v-adic obstruction to K-
rational points coming from a Qp-local system on Y in fact constrains the image of the localisation

1Strictly speaking, the argument in [LV20] is not quite sufficient to prove (2◦), since the analysis in [LV20, §3.4] is only
valid for residue discs centred on K-rational points y0 ∈ Y (K). However, it is easy to adapt this part of the argument to
cover the case when y0 ∈ Y (Kv) is merely Kv-rational, as we shall do in §5.
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map locv : SecSel(Y/K) → Y (Kv). The consequences of this observation in the case of the Chabauty–
Kim method are being worked out in work of the first author, Theresa Kumpitsch and Martin Lüdtke.

1.1.2. Period maps. It is the proof of (2) which is much more difficult, and takes up the majority of this
paper. The principal extra difficulty compared with [LV20] is that we need to prove a finiteness result
for all self-conjugate v, rather than just for some v. This means that we are not free to assume, for
example, that v is a place of good reduction for Xq → Y ′q → Y .

As in [LV20], the strategy relies on the machinery of period maps. If X → Y ′ → Y is an abelian-by-
finite family and v is a finite place of K, then one has a period map

Φy0
: Uy0

→ Han
y0

where Uy0 ⊆ Y an
Kv

is a small admissible neighbourhood of y0 in the rigid analytification of YKv and Hy0

is the Lagrangian Grassmannian parametrising Lagrangian H0
dR(Xy0

/Kv)-submodules of H1
dR(Xy0

/Kv).
The map Φy0

is constructed by parallel transporting the Hodge filtrations on the de Rham cohomology
groups H1

dR(Xy/Kv) along the Gauß–Manin connection (see Definition 3.1 and §4.2).
The point of these period maps is that they control the variation of the local Galois representation

associated to the point y ∈ Uy0
(Kv), namely

H1
ét(Xy,Kv

,Qp),

where p is the rational prime below v. More precisely, they control the associated filtered discrete
(ϕ,N,Gv)-module2

DpH
(

H1
ét(Xy,Kv

,Qp)
)
.

This goes as follows. To a Lagrangian submodule Φ ∈ Hy0
(Kv), one can associate a filtered discrete

(ϕ,N,Gv)-module M1(Φ), whose underlying (ϕ,N,Gv)-module is Dpst(H
1
ét(Xy0,Kv

,Qp)), but whose fil-
tration is the filtration on DdR(H1

ét(Xy0,Kv
/Kv)) ∼= H1

dR(Xy0
/Kv) given by F1 = Φ rather than the usual

Hodge filtration. This makes M1(Φ) into a symplectic module over M0 := DpH(H0
ét(Xy0,Kv

,Qp)) in the
category of filtered (ϕ,N,Gv)-modules. The main technical result we need is that there are isomorphisms

DpH
(

H0
ét(Xy,Kv

,Qp)
) ∼= M0 and DpH

(
H1

ét(Xy,Kv
,Qp)

) ∼= M1
(
Φy0(y)

)
of filtered (ϕ,N,Gv)-modules for every y ∈ Uy0

(Kv), compatible with algebra and symplectic module
structures. We find it elucidates matters to represent this diagrammatically, as the commutativity of the
diagram

Y (Kv) Uy0
(Kv) Hy0

(Kv)

π0SP
(
RepdR

Qp (Gv)
)

π0SP
(
MF(ϕ,N,Gv)

)
.

⊃
Φy0 (

M0,M1(−)
)

DpH

(1.2)

where π0SP denotes the set of isomorphism classes of pairs of an algebra A and symplectic A-module V
in a suitable category.

Remark 1.6. In [LV20], it was sufficient to consider only the case that the abelian-by-finite family
X → Y ′ → Y has good reduction (in the strong sense of [LV20, Definition 5.1]), in which case the
above setup simplifies significantly. One may take Uy0

to be the residue disc of y0, and may work with
filtered ϕ-modules instead of filtered discrete (ϕ,N,Gv)-modules. The commutativity of (1.2) is then
a consequence of standard facts about crystalline cohomology in families. However, outside the good
reduction case, it is significantly more complicated to show commutativity of (1.2); the approach we
explain in §3 uses relative p-adic Hodge theory as developed by Scholze [Sch13], combined with the
potential horizontal semistability theorem of Shimizu [Shi20]. It is possible that one could also prove
commutativity of (1.2) using Hyodo–Kato cohomology and alterations, but we do not know how to do
this.

We can use the diagram (1.2) to isolate a subset of Hy0
(Kv) corresponding to the Lawrence–Venkatesh

locus as follows.

2This is also denoted Dpst in some sources. In this paper, we will reserve Dpst(V ) to denote the (non-filtered) discrete
(ϕ,N,Gv)-module attached to a de Rham representation V , and write DpH(V ) when we want to regard this as a filtered
object via comparison with DdR(V ). The subscript pH stands for “p-adic Hodge”. See §2.2.2 for precise definitions.
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Definition 1.7. We define Hy0(Kv)
LV
X,S ⊆ Hy0(Kv) to be the set of all Lagrangian H0

dR(Xy0/Kv)-
submodules Φ ≤ H1

dR(Xy0
/Kv) for which there exists an S-good pair (A, V ) together with isomorphisms

M0 ∼= DpH(A|Gv ) and M1(Φ) ∼= DpH(V |Gv )

of filtered discrete (ϕ,N,Gv)-modules compatible with algebra and symplectic module structures.

It follows from commutativity of (1.2) that the image of Uy0
(Kv)∩Y (Kv)

LV
X,S under the period map Φy0

is contained in Hy0
(Kv)

LV
X,S . So the Lawrence–Venkatesh locus Y (Kv)

LV
X,S will be finite as soon as the

following conditions hold for all y0 ∈ Y (Kv):
i) the period map Φy0

: Uy0
→ Han

y0
has Zariski-dense image; and

ii) Hy0
(Kv)

LV
X,S is not Zariski-dense in Hy0

.

Indeed, the conjunction of these two conditions implies that Uy0
(Kv) ∩ Y (Kv)

LV
X,S is contained in the

vanishing locus of a non-zero coherent sheaf of ideals on Uy0 , so is finite for all y0. Since Y (Kv) can be
covered by finitely many Uy0

(Kv) by compactness, we are done.
We now discuss the proofs of (i) and (ii).

1.1.3. Full monodromy. Proving (i) for an abelian-by-finite family X → Y ′ → Y reduces to a similar
property for complex-analytic period maps, and eventually follows from a purely topological property
of X → Y ′ → Y known as full monodromy. In any case, full monodromy for Kodaira–Parshin families
was already verified in [LV20], so we need say no more on this point here.

1.1.4. The principal trichotomy. It is (ii) which is the delicate condition. As an illustration of the ap-
proach, let us consider the set Y (Kv)

LV
X,S,ss defined as in Definition 1.2, but with the additional require-

ment that V is semisimple as a representation of GK . We also write Hy0
(Kv)

LV
X,S,ss for the corresponding

subset of Hy0(Kv) as in Definition 1.7. The key theoretical input is a lemma of Faltings, which implies
that there are only finitely many S-good pairs (A, V ) of prescribed dimensions, up to isomorphism. If we
write H/Qp for the Qp-algebraic group of (non-filtered) symplectic (ϕ,N,Gv)-module automorphisms
of Dpst

(
H1

ét(Xy0,Kv
,Qp)

)
, see Definition 2.13, then there is a natural action of H on the Weil restric-

tion ResKvQp Hy0
, whose orbits are exactly the fibres of the right-hand vertical map in (1.2). So Faltings’

Lemma implies that Hy0(Kv)
LV
X,S,ss is contained in a finite number of H(Qp)-orbits, and hence is not

Zariski-dense in Hy0
as soon as the inequality

dimQp H < dimKv Hy0

holds. This condition is relatively easy to arrange in practice, since both dimensions can be controlled
rather precisely. So if one could arrange that X → Y ′ → Y had full monodromy and the above inequality
held for every y0 ∈ Y (Kv), then one would have proved finiteness of Y (Kv)

LV
X,S,ss.

What is less clear a priori is how to adapt this approach to also cover non-semisimple S-good pairs,
and overcoming this is the key insight of [LV20]. Lawrence and Venkatesh proved that when the place v
is chosen appropriately (“friendly” in their terminology), then being S-good imposes strong restrictions
on the isomorphism class of a pair (A, V ): weaker than being semisimple, but still strong enough to
make some version of the above argument work. The property of friendly places v which enables this
is that the average Hodge–Tate weight at v of a GK-representation V is determined by its weight as a
global Galois representation. So if (A, V ) is an S-good pair and v is friendly, then one obtains numerical
constraints on the Hodge–Tate weights of any subrepresentation of V , which ultimately restricts the ways
in which V can fail to be semisimple.

We will formalise this argument in this paper as what we call the principal trichotomy for S-good
pairs, which says that when v is self-conjugate, any S-good pair must satisfy one of three rather technical
properties, the first of which is a weak simplicity condition and the other two of which govern the possible
failures of simplicity. The precise statement is as follows.

Proposition 1.8 (The Principal Trichotomy (=Proposition 6.7)). Let (A, V ) be a pair of an algebra A
and symplectic A-module V in the category of GK-representations which is S-good for some S, and
where V has constant rank 2d > 0 as an A-module. Let Σ = HomAlg(Qp)(A,Qp) be the finite GK-
set of Qp-algebra homomorphisms A → Qp. For ψ ∈ Σ, we write Gψ ≤ GK for its stabiliser in GK
and Gwψ = Gψ ∩Gv for its stabiliser in Gv.

Suppose that v is self-conjugate. Then at least one of the following occurs:
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a) there is a ψ ∈ Σ such that [Gv : Gwψ ] ≥ 4 and Qp ⊗A,ψ V has no non-zero isotropic Gψ-
subrepresentation; or

b) there is a ψ ∈ Σ such that [Gv : Gwψ ] ≥ 4 and Qp ⊗A,ψ V |Gv has a non-zero isotropic Gwψ -
subrepresentation W whose average Hodge–Tate weight is ≥ 1/2; or

c) the number of ψ ∈ Σ satisfying [Gv : Gwψ ] < 4 is ≥ 1
d+1 dimQp(A).

The principal trichotomy gives a decomposition (not necessarily disjoint)

Hy0(Kv)
LV
X,S = Hy0(Kv)

LV
X,S,(a) ∪Hy0(Kv)

LV
X,(b) ∪Hy0(Kv)

LV
X,(c)

according to which of the conditions (a), (b) or (c) is satisfied for the pair (A, V ), and the proof of (ii)
then amounts to showing that, for suitably chosen X, each of these three sets is not Zariski-dense
in Hy0

(Kv)
LV
X,S .

Using a similar argument to that sketched for Y (Kv)
LV
X,S,ss above, we show that Hy0

(Kv)
LV
X,S,(a) is

never Zariski-dense in Hy0 for any X, and a more explicit version of the same argument shows the same
for Hy0

(Kv)
LV
X,(b). For Hy0

(Kv)
LV
X,(c) the strategy is different: one shows that for suitably chosen q, the

set Hy0(Kv)
LV
Xq,(c) is actually empty. Put all together, this shows that when v is self-conjugate and q is

chosen suitably, then

Hy0(Kv)
LV
Xq,S = Hy0(Kv)

LV
Xq,S,(a) ∪Hy0(Kv)

LV
Xq,(b)

is not Zariski-dense in Hy0
, completing the proof of (ii) for the Kodaira–Parshin family with these

parameters q. Since the Kodaira–Parshin family always has full monodromy, this finishes the proof of
Theorem A.

Remark 1.9. The principal trichotomy is not stated explicitly in [LV20], but a trichotomy of sorts
appears implicitly in the structure of their proof. Roughly speaking, pairs of type (a) correspond to
those points dealt with in [LV20, Lemma 6.2], pairs of type (b) correspond to those dealt with in [LV20,
Lemma 6.1], and pairs of type (c) correspond to those dealt with in the proof of [LV20, Theorem 5.4].
This correspondence is not quite exact: we have adjusted the division slightly from [LV20] to make full
use of the symplectic structure.

1.2. Overview of sections. The structure of the paper is as follows. We begin in Section 2 by recalling
some basics on Galois representations and p-adic Hodge theory à la Fontaine. The key points in this
section are the dimension bounds on automorphism groups of (ϕ,N,Gv)-modules (Proposition 2.16),
as well as the definition of self-conjugate places (Definition 2.17) and the consequences for numerics of
Hodge–Tate weights (Corollary 2.21). In Section 3 we recall the construction of v-adic period maps for
smooth proper families X → Y , and prove that these v-adic period maps control the variation of local
Galois representations. This section presents the most significant departure from [LV20] since we need
this machinery for a general smooth proper family, not just one with good reduction. Thus, rather than
using crystalline cohomology as a bridge between étale and de Rham cohomology, we are forced instead
to use analytic techniques and relative p-adic Hodge theory.

Section 4 recalls the definition of abelian-by-finite families, and describes the symplectic module
structure on the cohomology of their fibres. It also introduces the Lagrangian Grassmannian Hy0 above,
and uses the results of Section 3 to justify commutativity of the diagram (1.2). Section 5 then gives the
proof of (i), closely paralleling the discussion in [LV20, §3.4] except that the centre y0 ∈ Y (Kv) of the
disc Uy0

need not be K-rational.
The main part of the argument comes in Section 6, which proves the principal trichotomy (Proposi-

tion 6.7), and then uses this to address (ii) along the lines sketched above. The proof of (2) is assembled
at the end of this section.

Section 7 then tackles part (1), following the construction outlined in §1.1.1 above. This section is
largely independent of the rest of the paper, so may be read first if the reader wishes.

Acknowledgements. We are grateful to Owen Gwilliam, Kiran Kedlaya, Minhyong Kim, Mark Kisin,
Dmitri Pavlov, Koji Shimizu, Xavier Xarles, and Aled Walker for helpful discussions about various parts
of this paper. We particularly thank Peter Scholze for taking the time to explain to us many technical
aspects of the relative p-adic Hodge theory developed in [Sch13].
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2. Preliminaries: Galois representations and (ϕ,N,Gv)-modules

We collect in this section several results on local and global Qp-linear Galois representations which
will be used in the sequel. This is essentially a rephrasing of the material in [LV20, §2], except that we
treat a few subjects, namely (ϕ,N,Gv)-modules and self-conjugate places, in greater generality. This is
so that we can avoid good reduction hypotheses when we set up the machinery of Lawrence–Venkatesh,
which will be important in our proof of the main theorem. The reader may wish to skip this section on
a first reading, referring back to it as needed.

Throughout this section, and indeed the whole paper, we fix a number field K and an algebraic
closure K of K; we write GK = Gal(K|K) for the absolute Galois group of K. For each place u of K,
we also fix an algebraic closure Ku of the completion Ku of K at u and a K-embedding K ↪→ Ku,
allowing us to view the absolute Galois group Gu = Gal(Ku|Ku) as a decomposition group Gu ⊂ GK .
We write Ou for the ring of integers of Ku, write ku for the residue field, and set qu := #ku.

We also fix a prime number p—all representations are to be Qp-linear—and reserve the letter v for
a p-adic place of K. We sometimes permit ourselves to write Kv for a finite extension of Qp, not
necessarily arising as the completion of a specific number field K. The absolute Galois group of a finite
extension Lw/Kv contained in Kv is denoted Gw ≤ Gv.

2.1. Global Galois representations, purity, and the symplectic Faltings’ Lemma.

Definition 2.1 (Purity). Recall that a q-Weil number of weight n is an algebraic number α such that
for all complex embeddings ι the absolute value of α is |ι(α)| = qn/2.

Let u be a place of the number field K not dividing p∞. We say that an unramified representation V
of Gu is pure of weight n ∈ Z just when the eigenvalues of the geometric Frobenius are qu-Weil numbers
of weight n, where qu is the size of the residue field of Ku. We say moreover that V is integral just when
the monic characteristic polynomial of the geometric Frobenius has coefficients in Z.

We say that a representation V of GK is unramified and pure (resp. unramified, pure and integral)
at u just when its restriction to the decomposition group Gu is.

Example 2.2. Let X/K be a smooth proper variety over the number field K. Then there is a finite set S
of places of K outside which X has good reduction, i.e. X is the generic fibre of a smooth proper OK,S-
scheme X. Enlarging S if necessary, we may assume that it contains all places dividing p∞.

Then for all n ≥ 0, the étale cohomology Hn
ét(XK ,Qp) is unramified, pure and integral of weight n at

all places outside S. Unramifiedness follows from smooth proper base change for étale cohomology, and
purity and integrality from Deligne’s proof of the Weil Conjectures [Del74, Théorème 1.6].

It turns out that purity imposes strong restrictions on a Galois representation V . For example, it was
proved by Faltings [Fal83, Satz 5][LV20, Lemma 2.3] that for a given dimension d, weight n ≥ 0 and finite
set S of places of K, there are only finitely many d-dimensional semisimple representations V of GK
which are unramified, pure and integral of weight n outside S. The tricky word here is “semisimple”:
it is in general quite easy to produce Galois representations which are unramified, pure and integral
outside a finite set of primes (see Example 2.2), but it is very hard to show that these representations
are semisimple. Even in the case of an abelian variety A/K, semisimplicity of Hn

ét(AK ,Qp) is part of the
Tate Conjecture, and is only known thanks to work of Faltings [Fal83, Resultat (a)].

Instead of using Faltings’ Lemma [LV20, Lemma 2.3], we will use a variant thereof for symplectic
representations. By a symplectic Galois representation we mean a triple (V,L, ω) consisting of two Galois
representations V and L, the latter being of dimension 1, and a Galois-equivariant perfect alternating
pairing ω :

∧2
V → L. We usually have L = Qp(−1), and we often abbreviate (V,L, ω) to (V, ω) or just V

for short. If we pick bases of V and L for which ω is the standard symplectic form on V = Q⊕2d
p , then the

Galois action on V is given by a continuous group homomorphism ρ : GK → GSp2d(Qp), where GSp2d

is the subgroup of GL2d preserving the standard symplectic form up to scalar factors of similitude.

Definition 2.3 (GSp-irreducibility, [LV20, p905]). A non-zero symplectic representation (V,L, ω) of GK
is called GSp-irreducible just when V has no non-zero GK-stable isotropic subspace (subspace on which ω
vanishes). This amounts to saying that the representation does not factor over a nontrivial parabolic
subgroup of the general symplectic group GSp.

Lemma 2.4 (Symplectic Faltings’ Lemma [LV20, Lemma 2.6]). Let S be a finite set of places of K
containing all places dividing p∞, and let n ≥ 0 and d > 0 be integers. Then there are, up to isomorphism,
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only finitely many GSp-irreducible symplectic representations (V,L, ω) of GK where V has rank 2d and
is unramified, pure and integral of weight n outside S.

Remark 2.5. Our using Lemma 2.4 differs slightly from the argument in [LV20], which instead uses
Faltings’ Lemma [LV20, Lemma 2.3] in the original form.

2.2. Local Galois representations and (ϕ,N,Gv)-modules. While the theory of global Galois rep-
resentations is very complicated, the theory of local Galois representations is much better understood,
thanks to the work of Fontaine as we now recall.

2.2.1. De Rham representations. Fontaine’s theory identifies a certain class of Gv-representations, called
the de Rham representations, which turns out to contain all representations coming from geometry.
Fontaine defines a certain Kv-algebra BdR = BdR(Kv), called the ring of de Rham periods, which is
endowed with an action of the Galois group Gv restricting to the tautological action on Kv. For a
representation V of Gv, one has the Kv-vector space

DdR(V ) := (BdR ⊗Qp V )Gv ,

whose Kv-dimension is at most dimQp(V ). One says that V is de Rham just when equality holds:

dimKv (DdR(V )) = dimQp(V ).

The de Rham representations form a full ⊗-subcategory3

RepdR
Qp (Gv) ⊆ RepQp(Gv)

closed under subobjects [Fon94b, Théorème 3.8(ii)], and the assignment V 7→ DdR(V ) is ⊗-functorial in
de Rham representations V .

Moreover, the period ring BdR is a complete discretely valued field and as such carries an exhaustive,
separated Gv-stable filtration by fractional ideals of its valuation ring. This induces a Kv-linear filtration
on DdR(V ) for every representation V . This is called the Hodge filtration and denoted F• = F•DdR(V ).
The Hodge filtration is ⊗-functorial in V for de Rham representations, see [Fon94b, §3.8].

2.2.2. (ϕ,N,Gv)-modules. One of the most fundamental results in p-adic representation theory is that
the category of de Rham representations can be described in terms of explicit semilinear-algebraic objects
known as filtered discrete (ϕ,N,Gv)-modules. We recall the definition from [Fon94b].

Definition 2.6 ([Fon94b, §4.2.1]). Let Qnr
p denote the maximal unramified extension of Qp contained

in Kv. A (ϕ,N,Gv)-module is a Qnr
p -vector space D endowed with:

(i) a bijective semilinear crystalline Frobenius ϕ (acting as absolute Frobenius on scalars);
(ii) a Qnr

p -linear monodromy operator N ; and
(iii) a semilinear action of the Galois groupGv (with respect to the natural action ofGv onQnr

p ⊂ Kv).
These are required to satisfy:

(iv) N ◦ ϕ = p · ϕ ◦N ; and
(v) both N and ϕ commute with the action of Gv.

The dimension of D is its dimension as Qnr
p -vector space, and D is said to be discrete just when the

point-stabilisers of the Gv-action on D are open in Gv.

Definition 2.7 ([Fon94b, §4.3.2]). A filtered discrete (ϕ,N,Gv)-module is a tuple D = (Dpst, DdR, cBO)
consisting of

(i) a (ϕ,N,Gv)-module Dpst,
(ii) aKv-vector spaceDdR endowed with an exhaustive, separated, decreasingKv-linear filtration F•,

and
(iii) a Kv-linear Gv-equivariant comparison isomorphism

cBO : Kv ⊗Qnr
p
Dpst

∼−→ Kv ⊗Kv DdR .

3In this paper, a ⊗-category/⊗-functor/⊗-natural transformation means a symmetric monoidal category/functor/nat-
ural transformation.
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The comparison isomorphism cBO ensures that Dpst is indeed discrete. The filtration F• is referred to as
the Hodge filtration on D. The collection of all filtered discrete (ϕ,N,Gv)-modules forms a ⊗-category

MF(ϕ,N,Gv)

with respect to the obvious morphisms and tensor products.

Example 2.8. The archetypal example of a filtered discrete (ϕ,N,Gv)-module comes from crystalline
cohomology. Suppose that X is a proper smooth Ov-scheme, with special fibre X0 and generic fibre X.
Write Kv,0 for the maximal unramified subfield of Kv, which is the same as the fraction field of the ring
W (kv) of Witt vectors of the residue field kv. One then has the crystalline cohomology

Hi
cris(X0/Kv,0) := Kv,0 ⊗W (kv) Hi

cris(X0/W (kv))

of the special fibre, which comes with a semilinear crystalline Frobenius ϕ, and the de Rham cohomology
Hi

dR(X/Kv) of the generic fibre, which comes with a Hodge filtration F•. The two are related by the
Berthelot–Ogus isomorphism [BO83, Theorem 2.4]

Kv ⊗Kv,0 Hi
cris(X0/Kv,0)

∼−→ Hi
dR(X/Kv) .

One thus obtains a filtered discrete (ϕ,N,Gv)-module by taking Dpst = Qnr
p ⊗Kv,0 Hi

cris(X0/Kv,0) with
induced ϕ- andGv-action (andN = 0), takingDdR = Hi

dR(X/Kv), and taking cBO to be the isomorphism
obtained from the Berthelot–Ogus isomorphism above by base change to Kv. More refined versions of
this construction yield examples of filtered discrete (ϕ,N,Gv)-modules where N 6= 0 (arising from X
with bad semistable reduction), or where the action of Gv is not just the natural action on Qnr

p ⊗Kv,0 V
for some Kv,0-vector space V (arising from X with unstable reduction).

If V is a representation of Gv, Fontaine defines

Dpst(V ) := lim−→
w

(
Bst ⊗Qp V

)Gw
,

where Bst is Fontaine’s ring of semistable periods [Fon94a, §3.1] and the colimit is taken over open
subgroups Gw ≤ Gv [Fon94b, §5.6.4]. This is a Qnr

p -vector space of dimension at most dimQp(V ) [Fon94b,
Théorème 5.6.7(i)], and carries a natural action of Gv with open point-stabilisers, namely the restriction
of the action on Bst ⊗Qp V . Moreover, the natural Frobenius and monodromy operator on Bst [Fon94a,
§3.2.1–§3.2.2] induce on Dpst(V ) the structure of a discrete (ϕ,N,Gv)-module, functorially in V .

When V is de Rham, a theorem of Berger implies that dimQnr
p
Dpst(V ) = dimQp(V ) [Ber02, Théorème 0.7],

and so the natural Gv-equivariant Kv-linear map

cBO : Kv ⊗Qnr
p
Dpst(V )→ Kv ⊗Kv DdR(V )

induced from the inclusion4 Bst ⊂ BdR is an isomorphism [Fon94b, Théorème 5.6.7(ii)]. In this way, the
tuple

DpH(V ) := (Dpst(V ),DdR(V ), cBO)

is a filtered discrete (ϕ,N,Gv)-module whenever V is de Rham.
One surprising aspect of Fontaine’s theory is that this construction suffices to capture all the intricacies

of the category of de Rham representations.

Theorem 2.9 ([Fon94b, Théorème 5.6.7(v)], [Ber02, Théorème 0.7]). The assignment V 7→ DpH(V )
gives a fully faithful ⊗-functor

DpH : RepdR
Qp (Gv) ↪→ MF(ϕ,N,Gv) .

The following examples of filtered discrete (ϕ,N,Gv)-modules will appear throughout this paper.

Example 2.10. If X/Kv is a variety, we adopt the shorthand

H•pst(X/Qnr
p ) := Dpst(H

•
ét(XKv

,Qp)) ,
which is a discrete (ϕ,N,Gv)-module. The étale–de Rham comparison isomorphism gives an isomorphism

cdR : DdR(H•ét(XKv
,Qp))

∼−→ H•dR(X/Kv) ,

4Usually, one adopts the point of view that the embedding Bst ↪→ BdR is non-canonical, depending on a choice of p-adic
logarithm. However, we shall adopt the point of view of [Shi20], identifying Bst with its image under this embedding, which
is independent of the choice of p-adic logarithm.
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and we define the p-adic Hodge cohomology of X to be the filtered discrete (ϕ,N,Gv)-module

H•pH(X/Kv) := (H•pst(X/Qnr
p ),H•dR(X/Kv), cdR ◦ cBO) .

This is, of course, isomorphic to

DpH(H•ét(XKv
,Qp)) = (Dpst(H

•
ét(XKv

,Qp)),DdR(H•ét(XKv
,Qp)), cBO) .

The assignment X 7→ H•pH(X/Kv) is contravariant functorial in X by Proposition 3.19(2) later.

Remark 2.11. We will later have to be careful about exactly which comparison isomorphism cdR we use
in the definition of the p-adic Hodge cohomology; see Remark 3.4. This is why we have to refer to Propo-
sition 3.19(2) for functoriality of H•pH, rather than the more usual reference [Tsu02, Theorem (A1.1)].

2.2.3. Change of base field. If Lw/Kv is a finite extension of Kv contained in Kv with absolute Galois
group Gw, then one also has the category MF(ϕ,N,Gw) of filtered discrete (ϕ,N,Gw)-modules, using Lw
as the base field in place of Kv. One can pass between (ϕ,N,Gv)- and (ϕ,N,Gw)-modules as follows.

If D is a (ϕ,N,Gv)-module then we obtain by restriction a (ϕ,N,Gw)-module D|Gw . And if D =
(Dpst, DdR, cBO) is a filtered discrete (ϕ,N,Gv)-module, then we define a filtered discrete (ϕ,N,Gw)-
module D|Gw by

D|Gw := (Dpst|Gw , Lw ⊗Kv DdR, cBO)

where cBO also denotes the composite isomorphism

Kv ⊗Qnr
p
Dpst|Gw

cBO−−→
∼

Kv ⊗Kv DdR = Kv ⊗Lw (Lw ⊗Kv DdR) .

The assignment D 7→ D|Gw is a ⊗-functor in a natural way.
In the other direction, if D is a (ϕ,N,Gw)-module, we make the induction5 IndGvGwD into a (ϕ,N,Gv)-

module by giving it the induced Frobenius ϕ and monodromy N , and making it into a Qnr
p -vector space

with the twisted action
(λ · ψ)(g) := g(λ) · ψ(g)

for λ ∈ Qnr
p , ψ ∈ IndGvGwD and g ∈ Gv. And if D = (Dpst, DdR, cBO) is a filtered discrete (ϕ,N,Gw)-

module, then we define
IndGvGwD := (IndGvGwDpst, DdR, c

′
BO)

where we consider DdR as a Kv-vector space, and where c′BO is the right-to-left composite in

Kv ⊗Qnr
p

IndGvGwDpst
∼= IndGvGw(Kv ⊗Qnr

p
Dpst)

Ind(cBO)−−−−−−→
∼

IndGvGw(Kv ⊗Lw DdR) ∼= Kv ⊗Kv DdR .

Explicitly, c′BO sends 1⊗ ψ to∑
i

(gi ⊗ 1)
(
e · cBO(ψ(g−1

i ))
)
∈ Kv ⊗Kv DdR ,

where the sum is over left coset representatives (gi) for Gw ≤ Gv, and e ∈ Lw ⊗Kv Lw is the idempotent
given by

∑
j xj ⊗ yj where (xj) and (yj) are dual bases of Lw with respect to the trace form. The

assignment D 7→ IndGvGwD is a lax ⊗-functor in a natural way.
We remark that the induction functor IndGvGw(−) is right adjoint to the restriction functor (−)|Gw

in a natural way, and that the lax ⊗-structure on IndGvGw(−) is the one induced from the ⊗-structure
on (−)|Gw .
Example 2.12. If X is a variety over Kv, then there is a canonical isomorphism

H•pH(XLw/Lw) ∼= H•pH(X/Kv)|Gw , (2.1)

of filtered discrete (ϕ,N,Gw)-modules induced by the isomorphisms

H•ét((XLw)Lw ,Qp) = H•ét(XKv
,Qp) and H•dR(XLw/Lw) ∼= Lw ⊗Kv H•dR(X/Kv) .

(Here we write (−)Lw = Spec(Kv)×Spec(Lw)(−) to emphasise that the base-change is over Lw.) Similarly,
if X is a variety over Lw, viewed also as a variety over Kv in the natural way, then there is a canonical
isomorphism

H•pH(X/Kv) ∼= IndGvGw H•pH(X/Lw) , (2.2)

5We follow the convention that the induction IndGv
Gw

W is the set MapGw
(Gv ,W ) of Gw-equivariant maps ψ : Gv →W ,

with Gv-action given by (g · ψ)(h) = ψ(hg).
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of filtered discrete (ϕ,N,Gv)-modules induced by the isomorphisms

H•ét(XKv
,Qp) ∼= IndGvGw H•ét(XLw

,Qp) and H•dR(X/Kv) = H•dR(X/Lw) .

We remark that implicit in the assertion that (2.1) is an isomorphism of filtered discrete (ϕ,N,Gv)-
modules is the fact that the comparison isomorphism cdR is compatible with base-change, see Proposi-
tion 3.19(3) later. The corresponding compatibility in (2.2) follows formally from the same property and
the restriction–induction adjunction.

2.2.4. Automorphisms of (ϕ,N,Gv)-modules. In our generalisation of the method of Lawrence–Venkatesh,
it will be important at one point to put upper bounds on the dimensions of automorphism groups of
(ϕ,N,Gv)-modules. More precisely, we will want to bound the dimension of the automorphism group of a
symplectic (ϕ,N,Gv)-module, by which we mean a triple (D,L, ω) consisting of two (ϕ,N,Gv)-modulesD
and L, the latter having Qnr

p -dimension 1, and a Qnr
p -linear perfect pairing

ω :
∧2

Qnr
p

D → L

which is equivariant for the ϕ-, N - and Gv-actions.

Definition 2.13.
(1) Let D be a (ϕ,N,Gv)-module. An automorphism of D is a Qnr

p -linear automorphism of D which
commutes with the actions of ϕ, N and Gv. More generally, if R is a Qp-algebra, an R-linear
automorphism of D is a R ⊗Qp Qnr

p -linear automorphism of R ⊗Qp D which commutes with the
actions of 1⊗ ϕ, 1⊗N and the action of Gv on D. We will see shortly that the functor

Aut(D) : {Qp-algebras} → {groups}

sending a Qp-algebra R to the group of R-linear automorphisms of D is representable by an
affine algebraic group over Qp, which we also call Aut(D).

(2) If D = (D,L, ω) is a symplectic (ϕ,N,Gv)-module, then we define AutGSp(D) to be the closed
algebraic subgroup of Aut(D) consisting of those automorphisms which preserve the pairing ω
up to a scalar factor of similitude6.

By the scalars in Aut(D) (resp. AutGSp(D)), we mean those automorphisms which act on R ⊗Qp D

by multiplication by some λ ∈ R×. The inclusion of the scalars thus defines a central cocharacter
Gm → Aut(D) (resp. Gm → AutGSp(D)) defined over Qp.

Remark 2.14. If D = (Dpst, DdR, cBO) is a filtered discrete (ϕ,N,Gv)-module, then the automorphism
group Aut(Dpst) acts onDdR. Given some ψ ∈ Aut(Dpst)(R), the inducedR⊗QpKv-linear automorphism
of R ⊗Qp Kv ⊗Qnr

p
Dpst

∼= R ⊗Qp Kv ⊗Kv DdR is Gv-equivariant, so induces on taking Gv-invariants an
R⊗QpKv-linear automorphism of R⊗QpDdR, not necessarily preserving the filtration. This construction
yields an action

Aut(Dpst)→ ResKvQp GL(DdR) ,

which one can even show to be a closed embedding (though we don’t use this).

We will later use the following construction. Fix D = (Dpst, DdR, cBO) a filtered discrete (ϕ,N,Gv)-
module and let G denote the flag variety parametrising Kv-linear filtrations on DdR with the same
dimension data as the given filtration F•. So there is an action of Aut(Dpst) on ResKvQp G induced from
the action described in Remark 2.14. If Φ ∈ G(Kv) is such a filtration on DdR, we define a filtered
discrete (ϕ,N,Gv)-module M(Φ) by

M(Φ) := (Dpst, DdR, cBO) ,

where the (ϕ,N,Gv)-module structure on Dpst is the given one, but the filtration on DdR is given by Φ
instead of its original filtration.

6Technically speaking, one should regard this factor of similitude as part of the data of a point of AutGSp(D). This
only makes a difference in the degenerate case D = 0, which we will never see.
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Lemma 2.15. In the above setup, let Φ1,Φ2 ∈ G(Kv) be two filtrations on DdR. ThenM(Φ1) andM(Φ2)
are isomorphic as filtered discrete (ϕ,N,Gv)-modules if and only if Φ1 and Φ2 lie in the same orbit under
the action of Aut(Dpst)(Qp).

In particular, the set of all Φ such that M(Φ) lies in a fixed isomorphism class lies in a Qp-subvariety
of ResKvQp G of dimension at most dimQp Aut(Dpst).

Proof. An isomorphism M(Φ1)
∼−→ M(Φ2) is determined by its pst component, which must be a

(ϕ,N,Gv)-module automorphism ψ of Dpst. The condition that ψ is a filtered isomorphism is exactly
that ψ takes Φ1 to Φ2 under the action described in Remark 2.14, so we are done. �

Now let us give the promised proof of representability of Aut(D) and AutGSp(D), and bound their
dimensions.

Proposition 2.16.
(1) Let D be a (ϕ,N,Gv)-module of Qnr

p -dimension d. Then Aut(D) is a Qp-algebraic group of
Qp-dimension ≤ d2.

(2) Let D = (D,L, ω) be a symplectic (ϕ,N,Gv)-module of Qnr
p -rank 2d. Then AutGSp(D) is a

Qp-algebraic group of Qp-dimension ≤ d(2d+ 1) + 1.

Proof. (1). Let End(D) denote the (possibly) non-commutative Qp-algebra of endomorphisms of D as a
(ϕ,N,Gv)-module, so that Aut(D) is isomorphic to the functor

R 7→ (R⊗Qp End(D))× .

To show that Aut(D) is a Qp-algebraic group, it suffices to show that dimQp End(D) < ∞, for then
Aut(D) is its group-scheme of units (which is a closed algebraic subvariety of the affine space corre-
sponding to End(D)× End(D)). For this, we claim that the map

Qnr
p ⊗Qp End(D)→ EndQnr

p
(D) (∗)

is injective, where the right-hand side denotes the Qnr
p -linear endomorphisms of D (requiring no com-

patibility with the (ϕ,N,Gv)-action). So suppose that ψ1, . . . , ψk are Qp-linearly independent elements
of End(D) and that λ1, . . . , λk ∈ Qnr

p are such that
∑
i λi ⊗ ψi lies in the kernel of (∗). This says that∑

i λiψi = 0 as a Qnr
p -linear endomorphism of D. Since each ψi commutes with the action of Gv on D,

we thus have ∑
i

σ(αλi)ψi = 0

for all α ∈ Qnr
p and all σ ∈ Gv. Taking a suitable linear combination of this identity then shows that∑

i

trQnr
p /Qp(αλi)ψi = 0

for all α ∈ Qnr
p , where trQnr

p /Qp denotes the normalised trace (so that it is the identity on Qp). By
Qp-linear independence of the ψi and non-degeneracy of the trace pairing, this implies that λi = 0 for
all i. So

∑
i λi ⊗ ψi = 0 and hence (∗) is injective.

Thus we have shown that End(D) is finite-dimensional, and so its group-scheme of units Aut(D) is
a Qp-algebraic group. To bound its dimension, we observe that (∗), being an injective morphism of
non-commutative Qnr

p -algebras induces a closed immersion

Aut(D)Qnr
p
↪→ GLQnr

p
(D) (∗∗)

on the Qnr
p -group-schemes of units. Since the right-hand side has Qnr

p -dimension d2, we find that
dimQp Aut(D) ≤ d2 as desired.

(2). This follows from the first part. It is easy to check that preserving ω up to a scalar factor of
similitude is a closed condition on Aut(D), so AutGSp(D) is a closed Qp-subgroup-scheme of Aut(D).
Moreover, the embedding (∗∗) takes AutGSp(D)Qnr

p
into GSpQnr

p
(D), whence

dimQp(AutGSp(D)) ≤ dimQnr
p

(GSpQnr
p

(D)) ≤ d(2d+ 1) + 1 . �
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2.3. Self-conjugate places and average Hodge–Tate weights. In order to make certain numerics
work in a key step of our generalisation of the Lawrence–Venkatesh method, it will be necessary for
us to restrict attention to places v of K which satisfy a particular technical assumption, which we call
self-conjugacy. This is a mild generalisation of the notion of a friendly place from [LV20, Definition 2.7].

Definition 2.17 (Self-conjugate places, cf. [LV20, Definition 2.7]). We say that two finite places v and v′
of K are conjugate just when their restrictions vE and v′E to every CM subfield E of K are conjugate
under the complex conjugation on E, i.e. v′E = vE . We say that a finite place is self-conjugate if it is
conjugate to itself.

Remark 2.18.
(1) If K contains no CM subfield (e.g. K totally real or K of odd degree), then every finite place is

self-conjugate.
(2) If K contains a CM subfield, then it has a maximal CM subfield E, and a finite place v of K is

self-conjugate if and only if its restriction to E is invariant under the conjugation on E.
(3) The friendly places of [LV20, Definition 2.7] are exactly the self-conjugate places which are

unramified over Q.

The property of self-conjugate places v which is relevant in the Lawrence–Venkatesh argument is
that if V is a representation of GK which is pure of some weight, then the average Hodge–Tate weight
of V |Gv is determined by the weight of V . To prove this, one first deals with the case of 1-dimensional
representations.

Proposition 2.19 (cf. [LV20, Lemma 2.8]). Let χ : GK → Q×p be a p-adic character such that:
(i) χ is unramified and pure of weight n ∈ Z outside a finite set S of places of K, and
(ii) χ is de Rham at all p-adic places of K.

For a p-adic place v, write rv for the Hodge–Tate weight7 of χ|Gv . Then if v and v′ are conjugate p-adic
places of K, then rv + rv′ = n.

In particular, if v is self-conjugate, then n is even and rv = n/2.

Proof. We follow the proof of [LV20, Lemma 2.8]. Let η : A×K → Q×p be the idele class character corre-
sponding to χ by global class field theory8. We write ηu : K×u → Q×p for the component of η at a place u
of K. The conditions on χ translate into the following conditions on the ηu:

a) for all places u outside a finite set S (assumed to contain all places dividing p∞) ηu(O×u ) = {1},
and ηu($u) is a qu-Weil number of weight −n, where $u is a uniformiser of Ku and qu is the
order of the residue field of Ku; and

b) for all p-adic places v, the component ηv agrees with the rvth power of the norm character NKv|Qp
on an open subgroup of O×v .

Of these, the second deserves some explanation. Being Hodge–Tate of weight rv, the restricted char-
acter χ|Gv agrees with the −rvth power of the cyclotomic character χcyc on an open subgroup of the
inertia group Iv [Ser89, Theorem III.A5.2]. It follows from Lubin–Tate theory that the composite of χcyc

with the local Artin map O×v → Iab
v is equal to the inverse of the norm map O×v → Z×p ; for instance

this holds when Kv = Qp by the explicit description on [Mil20, p40], and then holds in general by
norm-compatibility of local Artin maps. So ηv agrees with the rvth power of the norm character on an
open subgroup of O×v .

Now let us write
ηalg
p : (K ⊗Q Qp)× =

∏
v|p

K×v → Q×p

for the product of the maps Nrv
Kv|Qp : K×v → Q×p . So, by construction, ηalg

p agrees with the product of
the local characters ηv for v | p on an open neighbourhood of 1 ∈ (K ⊗ Qp)×. From the first condition
above and the fact that η vanishes on K× ⊂ A×K , we deduce the following regarding ηalg

p :

7The Hodge–Tate weights of a representation V of Gv are the integers r such that (Cp(r)⊗Qp V )Gv 6= 0, where the Gv

action on Cp(r) is the rth Tate twist of the natural action on Cp.
8There are two opposite conventions for normalising the isomorphisms of class field theory, depending on whether the

local Artin maps K×u → Gab
u send uniformisers to arithmetic or geometric Frobenii. We adopt the convention of [Mil20],

that a uniformiser corresponds to an arithmetic Frobenius.
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i) ηalg
p (α) = 1 for all α in a finite-index subgroup of O×K ⊂ (K ⊗Qp)×; and

ii) for α ∈ OK , α 6= 0, not divisible by any prime in S, we have that ηalg
p (α) is algebraic over Q,

and |ι(ηalg
p (α))| = |NK|Q(α)|n/2 for every complex embedding ι : Qp ↪→ C.

Now the character ηalg
p above is algebraic, meaning that it is the map on Qp-points of a homomorphism

ηalg
p :

(
ResKQ Gm,K

)
Qp

=
∏
v|p

ResKvQp Gm,Kv → Gm,Qp

of tori over Qp. The fact that ηalg
p vanishes on an open subgroup of O×K ensures that it factors over SK,Qp

where SK is the Serre torus: the quotient of ResKQ Gm,K by the identity component of the Zariski-closure9

of O×K .
We conclude using results of Serre on the structure of SK . Suppose firstly that K has no CM subfield.

Then the norm map NK|Q : SK → SQ = Gm,Q is an isogeny [Ser89, II-34]. So, replacing χ by a power
if necessary we may assume that ηalg

p = Nm
K|Q is a power of the global norm character. Now on the one

hand, the fact that ηalg
p is the product of the local norm characters means that rv = m for all p-adic

places v. On the other hand, condition (ii) above implies that m = n/2. Hence we have rv = n/2 for all
p-adic places v and we are done.

Suppose instead that K has a CM subfield, and write E for the maximal CM subfield of K and E+

for the maximal totally real subfield of E. Then the norm map NK|E : SK → SE is an isogeny, as is the
norm map NE+|Q : SE+ → SQ = Gm,Q by [Ser89, II-34]. So, replacing χ by a power if necessary, we may
assume that ηalg

p factors as ηalg
0 ◦NK|E for some character ηalg

0 : SE,Qp → Gm,Qp , and that ηalg
0 η̄alg

0 = Nm
E|Q

is a power of the norm character, where η̄alg
0 denotes the composite of ηalg

0 and the conjugation on E.
On the one hand, the definition of ηalg

p ensures that rv + rv′ = m whenever v and v′ are conjugate p-adic
places of K. On the other hand, condition (ii) implies that m = n, so rv + rv′ = n and we are done. �

Remark 2.20. The conditions of Proposition 2.19 impose very strong restrictions on the character χ:
if v is self-conjugate, then we have χ|Gv = χ0 · χ−n/2cyc where χ0 is a finite-order character of Gv (cf. the
statement of [LV20, Lemma 2.8]). Although we will not need this finer statement in what follows, we
indicate how to deduce this from Proposition 2.19 as stated.

Replacing χ by a twist by a power of the cyclotomic character χcyc, it suffices to prove this in the
case n = 0. If K contains no CM subfield, then we have rv = 0 for all v | p, so that the idele class
character η is only finitely ramified at all places of K, including p-adic places. It follows that η factors
through a ray class group of K, so η is a finite-order character. Thus χ itself is a finite-order character.

If instead K contains a CM subfield, we write E for its maximal CM subfield and η0 for the restriction
of η to A×E ⊆ A×K . The local component of η0 at a p-adic place v0 of E agrees, in a neighbourhood
of 1 ∈ E×v0

, with the rv0
th power of the norm map NEv0 |Qp , where rv0

:=
∑
v|v0

[Kv : Ev0
]rv. If v′0 is

the place of E conjugate to v0, then we have rv0
+ rv′0 = 0 courtesy of Proposition 2.19, and hence η0η̄0

is finitely ramified at every place of E, where η̄0 is the composite of η0 with the conjugation on E. As
before, this implies that η0η̄0 is a finite-order character of A×E . In particular, the restriction of η2

v to E×v0

is a finite-order character. Since ηv is finitely ramified, this implies that ηv is a finite-order character,
and so is χ|Gv .

Corollary 2.21 (cf. [LV20, Lemmas 2.9 and 2.10]). Let L/K be a finite extension and V a representation
of GL which is de Rham at all places of L above p and unramified and pure of weight n ∈ Z outside a
finite set of places of L. Let v be a self-conjugate place of K above p. Then∑

w|v

[Lw : Kv]

(∑
i∈Z

i dimLw griF DdR,w(V )

)
=
n · [L : K] · dimQp(V )

2
,

where the summation runs through places w of L dividing v, and DdR,w(V ) := DdR(V |Gw) as filtered
Lw-vector spaces.

9Here we are implicitly using that Zariski-closures are stable under base extension. That is, suppose that F ′/F is an
extension of fields, X is a variety over F and X0 ⊆ X(F ) is a subset of the F -rational points of X. Write Z ⊆ X and
Z′ ⊆ XF ′ for the Zariski-closures of X0 in X and XF ′ , respectively. Then Z′ = ZF ′ .
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Proof. We fix an identification L ∼= K to view GL as a subgroup of GK . The induced representation
W = IndGKGL (V ) is again unramified outside a finite set of places of K, and it is pure of the same weight
n (weights can be read off after restriction to open subgroups of GK , and for a suitable such the induced
representation will decompose as a direct sum of conjugates of the restriction of V ).

For a place w | v above p we also fix an identification Lw ∼= Kv to view Gw as a subgroup of Gv. The
local induced representation Ww = IndGvGw(V ) has

DdR,w(V ) = (BdR(Lw)⊗Qp V )Gw ∼= (BdR(Kv)⊗Qp Ww)Gv = DdR,v(Ww)

as filtered Kv-vector spaces. Since W '
⊕

w|vWw as Gv-representations, the representation W is also
de Rham at all places above p. The Hodge–Tate weight i occurs with multiplicity

dimKv

(
griF DdR,v(W )

)
=
∑
w|v

[Lw : Kv] · dimLw

(
griF DdR,w(V )

)
.

We now apply Proposition 2.19 to the character χ = det(W ). The character χ is unramified and pure
of weight n · [L : K] · dimQp(V ) outside a finite set of places of K. It is also de Rham at places above p
and the Hodge-Tate weight at v is∑

i∈Z
idimKv

(
griF DdR,v(W )

)
=
∑
w|v

[Lw : Kv]

(∑
i∈Z

idimLw

(
griF DdR,w(V )

))
. �

3. Preliminaries: families of Galois representations and v-adic period maps

The method of Lawrence–Venkatesh revolves around the study of families of Galois representations
arising from smooth proper morphisms π : X → Y of smooth varieties. In this section, we recall how
the local representations associated to local points y ∈ Y (Kv) can be controlled using the theory of
v-adic period maps. Our presentation here differs significantly from that in [LV20], in that we do not
make any good reduction assumptions on the family X → Y and treat the period map from a purely
analytic perspective, without reference to any model. This is most evident in the proof we give that
period maps control the variation of local Galois representations (Theorem 3.3), where we must forgo
crystalline cohomology as a bridge between étale and de Rham cohomology, and must instead use tools
from relative p-adic Hodge theory as developed by Scholze [Sch13] and Shimizu [Shi20].

3.1. Period maps. Suppose that Y is a smooth Kv-variety, and let (E ,∇) be a vector bundle10 with
flat connection on the rigid analytification Y an (e.g. the analytification of an algebraic vector bundle
on Y with flat connection). Suppose that Uy0

⊆ Y an is an admissible open neighbourhood of a point
y0 ∈ Y (Kv), such that H0

dR(Uy0
/Kv) = Kv; for instance, Uy0

could be isomorphic to a closed polydisc
or a closed polyannulus. We say that (E ,∇) has a full basis of horizontal sections over Uy0

just when
(E ,∇)|Uy0 ' (OUy0 ,d)⊕m for some m. The vector bundle (E ,∇) always admits a full basis of horizontal
sections over a sufficiently small neighbourhood of y0 [Shi20, Theorem 9.7].

When (E ,∇) has a full basis of horizontal sections over Uy0
, then there is a canonical isomorphism

T∇y0
: (OUy0 ⊗Kv Ey0 ,d⊗1)

∼−→ (E ,∇)|Uy0 ,

characterised by the fact that the fibre of T∇y0
at y0 is the identity map. The fibre of T∇y0

at another point
y ∈ Uy0

(Kv) is an isomorphism T∇y0,y : Ey0

∼−→ Ey from the fibre over y0 to the fibre over y, known as the
parallel transport map.

Using parallel transport, one can define the period map associated to a filtered vector bundle with
flat connection.

Definition 3.1. Let Y be a smooth variety overKv, and let (E ,∇) be a vector bundle with flat connection
on Y an endowed with an exhaustive, separated descending filtration

· · · ≥ F−1E ≥ F0E ≥ F1E ≥ . . .
(not necessarily stable11 under the connection ∇) whose graded pieces are all vector bundles.

10A vector bundle on a rigid-analytic space S over Kv is an OS-module which is locally finite free. Here, the implicit
topology can equivalently be taken to be the analytic, étale or pro-étale topology [Sch13, Lemma 7.3].

11In practice, the filtrations appearing will all satisfy Griffiths transversality with respect to the connection, but this is
not necessary to define the period map.
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For y0 ∈ Y (Kv), we define the period domain to be the flag variety Gy0 parametrising filtrations on Ey0

with the same dimension data as F•Ey0 . If Uy0 ⊆ Y an is an admissible open neighbourhood of y0 such
that H0

dR(Uy0/Kv) = Kv and (E ,∇) has a full basis of horizontal sections over Uy0 , then we define the
(v-adic) period map to be the Kv-analytic map

Φy0 : Uy0 → Gan
y0

classifying the filtration on OUy0 ⊗Kv Ey0 given by pulling back the filtration F•E along the parallel
transport map T∇y0

. Concretely, if y ∈ Uy0(Kv), then Φy0(y) is the Kv-point of Gy0 corresponding to the
filtration on Ey0 given by pulling back the filtration on Ey along the parallel transport map T∇y0,y.

Implicitly in this definition, we have used the following description of the analytification of the flag
variety Gy0

.

Proposition 3.2. Let V be a finite-dimensional Kv-vector space, and let (di)i∈Z be non-negative integers
summing to dimKv V . Let G/Kv denote the flag variety parametrising filtrations on V with dimension
data (di)i∈Z. Then the rigid analytification Gan represents the functor from Kv-analytic spaces to sets

S 7→
{

exhaustive, separated filtrations F• on OS ⊗Kv V such that
each griF(OS ⊗Kv V ) is a vector bundle of rank di

}
.

Proof. We may assume V = K⊕mv . By a framing of a filtration F• on O⊕mS (S a Kv-scheme) we mean
a frame f1, . . . , fm of O⊕mS which is adapted to F•, meaning that FiO⊕mS is the span of f1, . . . , f∑

j≥i dj

for all i. Since the filtration F• is uniquely determined by the framing, we see that the functor

S 7→ {framed filtrations F• on O⊕mS }

is represented by GLm. Moreover, two framed filtrations have the same underlying filtration if and
only if their corresponding elements of GLm(S) differ by the right action of an S-point of the parabolic
subgroup P ≤ GLm consisting of the block upper-triangular matrices with block sizes di. It follows from
this description that GLm is a P-torsor over G, locally trivial in the Zariski topology.

Now since analytification commutes with products [FvdP04, Example 4.3.3(4)], it follows that GLan
m

is a group in the category of rigid spaces, Pan is a subgroup, and that the right-multiplication action
makes GLan

m into a Pan-torsor over Gan, locally trivial in the analytic topology. In particular, we see
that Gan represents the sheafification in the analytic topology of the functor

S 7→ GLan
m (S)/Pan(S) . (∗)

By definition of analytification, we see as in the algebraic setting that GLan
m (S) is canonically in bijection

with the set of framed filtrations on O⊕mS (defined in the obvious way), and that two points differ by
the action of an element of Pan(S) if and only if they have the same underlying filtration. So (∗) is the
functor taking S to the set of framable filtrations on O⊕mS , which sheafifies to the claimed functor. �

The importance of period maps is that they give a concrete description of how Galois representations
vary in families. This is true in a great level of generality, but for our purposes, it suffices to consider
only those families of Galois representations arising from smooth proper families of varieties. Consider a
smooth proper morphism π : X → Y of smooth Kv-varieties, and let H i

dR(X/Y ) denote the ith relative
de Rham cohomology of X over Y [KO68, §2]. This is a vector bundle on Y endowed with a Hodge
filtration F• and a flat Gauß–Manin connection∇ [KO68, Theorem 1]. For any point y ∈ Y (Kv), the fibre
of H i

dR(X/Y )an at y is canonically identified with the (algebraic) de Rham cohomology Hi
dR(Xy/Kv) of

the fibre Xy, via the base change theorem for de Rham cohomology. If U ⊆ Y an is an admissible open
subset, isomorphic to a closed polydisc, over which the analytification of H i

dR(X/Y ) has a full basis of
horizontal sections, and y0, y ∈ U(Kv), then by mild abuse of notation we will denote the composite

Hi
dR(Xy0

/Kv) ∼= H i
dR(X/Y )an

y0

T∇y0,y−−−→
∼

H i
dR(X/Y )an

y
∼= Hi

dR(Xy/Kv)

also by T∇y0,y, the unlabelled isomorphisms being the base-change isomorphisms for de Rham cohomology.

Theorem 3.3. Let π : X → Y be a smooth proper morphism of smooth Kv-varieties, and let U ⊆ Y an

be an admissible open subset, isomorphic to a closed polydisc, over which H i
dR(X/Y )an has a full basis
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of horizontal sections for the Gauß–Manin connection. Then for every y0, y ∈ U(Kv), there is a unique
isomorphism

Ty0,y : Dpst

(
Hi

ét(Xy0,Kv
,Qp)

)
∼−→ Dpst

(
Hi

ét(Xy,Kv
,Qp)

)
of (ϕ,N,Gv)-modules making the following diagram commute:

Kv ⊗Qnr
p
Dpst

(
Hi

ét(Xy0,Kv
,Qp)

)
Kv ⊗Kv DdR

(
Hi

ét(Xy0,Kv
,Qp)

)
Kv ⊗Kv Hi

dR(Xy0/Kv)

Kv ⊗Qnr
p
Dpst

(
Hi

ét(Xy,Kv
,Qp)

)
Kv ⊗Kv DdR

(
Hi

ét(Xy,Kv
,Qp)

)
Kv ⊗Kv Hi

dR(Xy/Kv) .

cBO

∼

1⊗Ty0,y o

cdR

∼

1⊗T∇y0,yo

cBO

∼
cdR

∼

Proof. This will come in §3.5. �

Remark 3.4. There are several different definitions of the étale–de Rham comparison isomorphism cdR in
the literature (e.g. [Fal89, Theorem 8.1], [Tsu02, Theorem A1]), and the validity of Theorem 3.3 depends,
a priori, on which definition is used. For the sake of clarity, the comparison isomorphism cdR for which
we prove Theorem 3.3 is the comparison isomorphism constructed by Scholze [Sch13, Corollary 1.8] in
the setting of rigid analysis. Throughout this paper, all references to cdR should be taken to refer to this
particular comparison isomorphism, whose construction we will spell out in §3.4.

Later on, we will need to know that the comparison isomorphism cdR is compatible with all of the
natural constructions in cohomology: pullbacks (functoriality), cup products, Künneth decompositions,
trace maps, Poincaré duality, pushforwards, cycle class maps and Chern classes. Although these compat-
ibilities are known for some definitions of cdR, e.g. [Tsu02, Theorem A1], it will be important that these
hold for the above-mentioned cdR, and so we will be forced to re-prove these compatibilities ourselves.

Let us also remark that Nizioł has shown in [Niz20] that many definitions of the comparison isomor-
phism cdR are equivalent to one another, but Scholze’s definition is not among those covered by her
work.

From now on, we adopt the notation as in Example 2.10. That is, if Z is a variety defined over a
finite extension Lw of Kv contained in Kv we adopt the shorthand H•pst(Z/Qnr

p ) = Dpst(H
•
ét(ZLw ,Qp)),

and have the p-adic Hodge cohomology

H•pH(Z/Lw) = (H•pst(Z/Qnr
p ),H•dR(Z/Lw), cdR ◦ cBO) ,

which is a filtered discrete (ϕ,N,Gw)-module. So H•pH(Z/Lw) ∼= DpH,w(H•ét(ZKv
,Qp)).

When π : X → Y is a smooth proper morphism of smooth Kv-varieties, Theorem 3.3 does not say that
the isomorphism class of the filtered discrete (ϕ,N,Gv)-module Hi

pH(Xy/Kv) is constant on the neigh-
bourhood Uy0 , because the parallel transport map T∇y0,y does not preserve Hodge filtrations in general.
Instead, it says that the isomorphism class of Hi

pst(Xy/Qnr
p ) is constant on Uy0

as a discrete (ϕ,N,Gv)-
module, and that the variation of the Hodge filtration on Hi

pH(Xy/Kv) is controlled by the v-adic period
map.

We give a precise statement. If Φ is a filtration on Hi
dR(Xy0

/Kv), we define a filtered discrete
(ϕ,N,Gv)-module M i(Φ) by

M i(Φ) := (Hi
pst(Xy0/Qnr

p ),Hi
dR(Xy0/Kv), cdR ◦ cBO) ,

where the (ϕ,N,Gv)-module structure on Hi
pst(Xy0

/Qnr
p ) is the usual one, but the filtration on Hi

dR(Xy0
/Kv)

is given by Φ instead of the Hodge filtration. The following then follows directly from Theorem 3.3.

Proposition 3.5 (Period maps control variation of local Galois representations). Let π : X → Y be
a smooth proper morphism of smooth Kv-varieties, let y0 ∈ Y (Kv) be a Kv-rational point, and let
Uy0

⊆ Y an be an admissible open neighbourhood of y0, isomorphic to a closed polydisc, over which
H i

dR(X/Y )an has a full basis of horizontal sections.
Then for every y ∈ Uy0

(Kv), there is an isomorphism

Hi
pH(Xy/Kv) 'M i(Φy0(y))

of filtered discrete (ϕ,N,Gv)-modules.

Proposition 3.5 can be expressed diagrammatically as asserting the commutativity of the diagram
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Y (Kv) Uy0
(Kv) Gy0

(Kv)

π0Rep
dR
Qp (Gv) π0MF(ϕ,N,Gv)

⊃

Hiét

Φy0

Mi

DpH

where the left-hand vertical arrow sends the point y to the isomorphism class of the Gv-representation
Hi

ét(Xy,Kv
,Qp) and π0 denotes the set of isomorphism classes in an essentially small category. Since DpH

is a fully faithful functor, this diagram shows that the period map Φy0
determines the isomorphism class

of the local representation Hi
ét(Xy,Kv

,Qp) for all y ∈ Uy0
(Kv).

The rest of this section is devoted to the proof of Theorem 3.3. As mentioned before, when X → Y has
suitably good reduction at v, this can be proved by relating both étale and de Rham cohomology of Xy0

to the crystalline cohomology of its special fibre. This is the approach taken in [LV20]. However, in the
absence of any assumptions on the reduction type of X → Y , we are forced to take a different approach,
using the relative p-adic Hodge theory of Scholze [Sch13]. Since the proof will be rather technical, the
reader who is prepared to take Theorem 3.3 on faith can skip ahead to the next section §4.

Let us sketch in outline the proof of Theorem 3.3 which we will give. If Y an denotes the rigid
analytification of Y , then Scholze defines what it means for a Qp-local system E and filtered vector
bundle E with flat connection on Y an to be associated, meaning roughly that they become isomorphic
when tensored with a certain sheaf of de Rham periods on the pro-étale site of Y an. Scholze’s relative
comparison theorem shows that the relative analytic étale cohomology and relative analytic de Rham
cohomology of πan : Xan → Y an are associated in this sense. Moreover, these relative analytic cohomology
objects are just the analytifications of the corresponding algebraic relative cohomology objects.

So proving Theorem 3.3 reduces to proving the following: if E and E are an associated Qp-local system
and filtered vector bundle with flat connection on Y an, then for any two points y0, y ∈ Y (Kv) which are
sufficiently close in the v-adic topology, there is an isomorphism

Ty0,y : Dpst(Eȳ0
)
∼−→ Dpst(Eȳ)

of discrete (ϕ,N,Gv)-modules making a certain rectangle commute. This is a consequence of theory
developed by Shimizu [Shi20], on potential horizontal semistability of horizontal de Rham local systems
on spherical polyannuli.

3.2. Scholze’s relative p-adic Hodge theory. We begin by recalling some relative p-adic Hodge
theory for rigid analytic varieties, as developed by Scholze [Sch13], in particular what it means for a
local system and a filtered vector bundle with flat connection to be associated (Definition 3.9). The
main input we need from Scholze’s theory is the relative comparison isomorphism (Theorem 3.12), which
shows that the relative analytic étale and analytic de Rham cohomology of smooth proper morphisms
are associated in this sense.

Let U be a smooth Kv-analytic space. Scholze associates to U a site Uproét, called the pro-étale site
[Sch13, Definition 3.9][Sch16, Erratum (1)]. This site carries several important sheaves of Zp-algebras,
including:

• the structure sheaf OU (a sheaf of Kv-algebras);
• the sheaf Ẑp,U := lim←−(Z/pn

U
) where Z/pn

U
denotes the constant sheaf on Uproét (Ẑp,U is not the

constant sheaf with value Zp, but plays a very similar role) [Sch13, Definition 8.1];
• the positive de Rham sheaf B+

dR,U [Sch13, Definition 6.1(ii)], which is a sheaf of Ẑp,U -algebras;
and

• the structural de Rham sheaf OBdR,U [Sch13, Definition 6.8(iv)][Sch16, Erratum (3)], which is a
sheaf of filtered OU -algebras endowed with a flat connection

∇ : OBdR,U → Ω1
U/Kv

⊗OU OBdR,U

satisfying the Leibniz rule ∇(fg) = ∇(f)g + ∇(g)f , extending the connection d on OU , and
satisfying Griffiths transversality with respect to the filtration F•. The positive de Rham period
sheaf B+

dR,U = (F0OBdR,U )∇=0 is the sheaf of horizontal sections of F0OBdR,U [Sch13, Proof of
Lemma 7.7].

These sheaves of algebras allow one to identify several important categories of sheaves on Uproét.

Definition 3.6 (Local systems and vector bundles).
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(1) A Ẑp-local system on U is a sheaf E of Ẑp,U -modules which, locally on Uproét, is isomorphic to
the sheaf Ẑp,U ⊗Zp M for a finitely generated Zp-module M [Sch13, Definition 8.1].

(2) A B+
dR-local system on U is a sheaf M of B+

dR,U -modules which, locally on Uproét, is free of finite
rank [Sch13, Definition 7.1].

(3) A filtered vector bundle with flat connection on U is a locally finite free sheaf E of OU -modules,
together with an exhaustive, separated decreasing filtration F•E whose graded pieces are all
locally finite free OU -modules, and a flat connection

∇ : E → Ω1
U/Kv

⊗OU E

satisfying the Leibniz rule with respect to the connection d on OU and Griffiths transversality
with respect to the filtration F• [Sch13, Definition 7.4].

(4) A filtered OBdR-vector bundle with flat connection on U is a sheafM of filtered OBdR,U -modules
which, locally on Uproét, is filtered-isomorphic to OB⊕mdR,U for some m, together with a flat con-
nection

∇ : M→ Ω1
U/Kv

⊗OU M
satisfying the Leibniz rule with respect to the connection ∇ on OBdR,U and Griffiths transver-
sality with respect to the filtration F• onM.

We write Loc(U, Ẑp), Loc(U,B+
dR), FMIC(U,OU ) and FMIC(U,OBdR) for the ⊗-categories of Ẑp-

local systems, B+
dR-local systems, filtered vector bundles with flat connection, and filtered OBdR-vector

bundles with flat connection on U , respectively. There are Zp-linear ⊗-functors

Loc(U, Ẑp)→ Loc(U,B+
dR)→ FMIC(U,OBdR)← FMIC(U,OU ) (3.1)

given by base change along the morphisms12

Ẑp,U ↪→ B+
dR,U ↪→ OBdR,U ←↩ OU .

Proposition 3.7. The functors

Loc(U,B+
dR) ↪→ FMIC(U,OBdR)←↩ FMIC(U,OU )

are fully faithful, and the image of FMIC(U,OU ) ↪→ FMIC(U,OBdR) is contained in the essential
image of Loc(U,B+

dR) ↪→ FMIC(U,OBdR).

Proof. Let I ⊆ FMIC(U,OBdR) denote the full subcategory consisting of those filtered OBdR-vector
bundles with flat connectionM such that13 F0M∇=0 is a B+

dR-local system on U (for the natural B+
dR,U =

F0OB∇=0
dR,U -module structure). The proof of [Sch13, Theorem 7.6(i)] shows that for any B+

dR-local sys-
tem M on U , the natural map ηM : M→ F0(OBdR,U ⊗B+

dR,U
M)∇=0 is an isomorphism. Thus the image

of the functor OBdR,U ⊗B+
dR,U

(−) : Loc(U,B+
dR)→ FMIC(U,OBdR) has image contained in I.

Now the constructionM 7→ F0M∇=0 provides a functor I → Loc(U,B+
dR) which is right adjoint to

the functor OBdR,U ⊗B+
dR,U

(−). The unit of this adjunction is the natural isomorphism ηM above, which

implies that the functor OBdR,U ⊗BdR,U
(−) : Loc(U,B+

dR)→ FMIC(U,OBdR) is fully faithful.
Then the proof of [Sch13, Theorem 7.6(ii)] shows that for every filtered vector bundle with flat con-

nection E , there is a B+
dR-local system M such that OBdR,U ⊗OU E is isomorphic to OBdR,U ⊗B+

dR,U
M

compatibly with the filtrations and connection. This says that the essential image of the functor
OBdR,U ⊗OU (−) : FMIC(U,OU )→ FMIC(U,OBdR) is contained in the essential image of the functor
OBdR,U ⊗B+

dR,U
(−) : Loc(U,B+

dR)→ FMIC(U,OBdR). The fact that the functor E 7→ OBdR,U ⊗OU E is

fully faithful follows then from the fact that the composite functor E 7→ F0(OBdR,U ⊗OU E)∇=0 is fully
faithful [Sch13, Theorem 7.6(ii)]. �

12There is a small thing to be checked here: that if E is a filtered vector bundle with flat connection on U , then
OBdR,U ⊗OU E is locally filtered-isomorphic to OB⊕m

dR,U for some m. This follows from the fact that E and all graded pieces
of its filtration are locally free of finite rank, and the fact that, locally on Uproét, there is a section t of OBdR,U such that
multiplication by t gives a filtered isomorphism OBdR,U

∼−→ OBdR,U of degree 1.
13The authors do not know whether this condition is in fact true for allM∈ FMIC(U,OBdR).
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Remark 3.8. In [Sch13], Scholze does not work with filtered OBdR-vector bundles with flat connection:
instead, he uses OB+

dR-vector bundles with flat connection [Sch13, Definition 7.1(ii)] where OB+
dR,U is the

positive structural de Rham period sheaf [Sch13, Definition 6.8(iii)][Sch16, Erratum (3)]. The advantage
of Scholze’s approach is that the functor OB+

dR,U⊗B+
dR,U

(−) from B+
dR-local systems on U to OB+

dR-vector
bundles with flat connection is then an equivalence [Sch13, Theorem 7.2] – this is a p-adic version of the
Riemann–Hilbert correspondence. On the other hand, defining a functor directly from FMIC(U,OU )
to MIC(U,OB+

dR) is not as simple as just base-changing along a morphism of sheaves of rings, so in
the interest of simplicity of exposition, we have chosen to focus on the category of filtered OBdR-vector
bundles with flat connection instead.

The ⊗-functors (3.1) allow one to isolate a class of de Rham Ẑp-local systems on U , which are those
for which there is a corresponding filtered vector bundle with flat connection under (3.1).

Definition 3.9. A de Rham pair on U is a triple (E, E , c) consisting of a Ẑp-local system E on U , a
filtered vector bundle with flat connection E on U , and an isomorphism

c : OBdR,U ⊗Ẑp,U E ∼−→ OBdR,U ⊗OU E

of filtered OBdR,U -vector bundles with flat connection on U . The collection of all de Rham pairs naturally
forms a Zp-linear abelian ⊗-category, the precise formulation of which we leave to the reader.

It follows from Proposition 3.7 that the forgetful functor from de Rham pairs to Ẑp-local systems on U
is fully faithful. We say that a Ẑp-local system E is de Rham just when it lies in the essential image of
this functor, i.e. just when E is the first component of a de Rham pair (E, E , c).

Remark 3.10. A Ẑp-local system E and filtered vector bundle E appearing in a de Rham pair (E, E , c)
are said to be associated [Sch13, Definition 7.5].

3.2.1. Pullback of de Rham pairs. The theory described above is contravariant-functorial in the smooth
Kv-analytic space U in a natural way. Suppose that f : V → U is a morphism of smooth rigid-analytic
spaces over Kv. This induces a morphism f : Vproét → Uproét on pro-étale sites, and there are morphisms
of sheaves of Zp-algebras

f−1Ẑp,U → Ẑp,V f−1B+
dR,U → B+

dR,V

f−1OU → OV f−1OBdR,U → OBdR,V

compatible with all inclusions among these sheaves. Via these maps, we obtain pullback ⊗-functors

f∗ : Loc(U, Ẑp)→ Loc(V, Ẑp) f∗ : Loc(U,B+
dR)→ Loc(V,B+

dR)

f∗ : FMIC(U,OU )→ FMIC(V,OV ) f∗ : FMIC(U,OBdR)→ FMIC(V,OBdR) .

Now if E is a Ẑp-local system on U , resp. E is a filtered vector bundle with flat connection on U , then
we have14

OBdR,V ⊗Ẑp,V f
∗E = f∗(OBdR,U ⊗Ẑp,U E) , resp. OBdR,V ⊗OV f

∗E = f∗(OBdR,U ⊗OU E) .

In particular, if c : OBdR,U ⊗Ẑp,U E ∼−→ OBdR,U ⊗OU E is an isomorphism of filtered OBdR-vector bundles,
then so too is f∗c : OBdR,V ⊗Ẑp,V f

∗E ∼−→ OBdR,V ⊗OV f
∗E . We have thus proven the following.

Proposition 3.11. Let f : V → U be a morphism of smooth Kv-analytic spaces, and suppose that
(E, E , c) is a de Rham pair on U . Then f∗(E, E , c) := (f∗E, f∗E , f∗c) is a de Rham pair on V .

3.2.2. Derived pushforward of de Rham pairs. In certain circumstances, it is also possible to push forward
local systems and filtered vector bundles with flat connection. This will all take place in the setting
of derived categories and filtered derived categories; for precise definitions and basic properties, see
Appendix A. Note in particular that the definition of the filtered derived category in [Sch13] corresponds
to what we refer to as the complete filtered derived category.

Suppose that π : V → U is a smooth proper morphism of smooth Kv-analytic spaces. If E is a Ẑp-local
system on V , then the derived pushforward Riπ∗E is a Ẑp,U -module on Uproét. In fact, Riπ∗E is always

14Strictly speaking, these are canonical isomorphisms of filtered OBdR-vector bundles on V rather than actual equalities.



Galois sections and p-adic period mappings 21

a Ẑp-local system on U , as follows from [DLLZ19, Corollary 6.3.5] (in the case of trivial log structure)
and [Sch13, Proposition 8.2] and the remark below it.

The derived pushforward of a filtered vector bundle with flat connection is slightly more complicated
to define. If E is a filtered vector bundle with flat connection on V , then one can form its relative de
Rham complex

DRV/U (E) := E ∇−→ Ω1
V/U ⊗OV E

∇−→ Ω2
V/U ⊗OV E

∇−→ . . .

defined e.g. as in [KO68, §1]. This is a filtered complex of sheaves of π−1OU -modules on V , where the
filtration on ΩnV/U ⊗OV E is the tensor product of the filtration on E and the filtration placing ΩnV/U
in degree n. Hence the derived de Rham pushforward RiπdR∗E := Riπ∗DRV/U (E) is a filtered sheaf of
OU -modules, where FnRiπdR∗E is the image of the map

Riπ∗(F
nDRV/U (E))→ Riπ∗(DRV/U (E)) .

Moreover, the derived de Rham pushforward RiπdR∗E comes with a flat Gauß–Manin connection

∇ : RiπdR∗E → Ω1
U ⊗OU RiπdR∗E

satisfying Griffiths transversality with respect to the filtration. This is defined in the usual way [KO68].
The absolute de Rham complex

DRV (E) := E ∇−→ Ω1
V ⊗OV E

∇−→ Ω2
V ⊗OV E

∇−→ . . .

is naturally a left dg-module under the de Rham complex Ω•V . There is a natural “relatively stupid”
filtration σ• on Ω•V , where σ

nΩ•V is the dg-ideal of Ω•V generated by π−1ΩnU . The graded pieces of the
induced filtration on DRV/U (E) can be canonically identified as

grσn DRV (E) ∼= π−1ΩnU ⊗π−1OU DRV/U (E)[−n] ,

just as in [Kat70, (3.2.4)]15. In particular, we have an extension

0→ π−1Ω1
U ⊗π−1OU DRV/U (E)[−1]→ DRV (E)/σ2 → DRV/U (E)→ 0

in the category of filtered complexes of abelian sheaves on V . The coboundary map associated to this
extension is, by definition, the Gauß–Manin connection ∇. It follows for purely formal reasons that the
connection ∇ satisfies the Leibniz rule, is flat, and is Griffiths transverse with respect to the filtration.

Analogous constructions apply in the category of filtered OBdR-vector bundles with flat connection.
IfM is a filtered OBdR-vector bundle with flat connection on V , then one can form its relative de Rham
complex DRV/U (M) exactly as for DRV/U (E) above. The relative de Rham complex DRV/U (M) is a
filtered complex of π−1OBdR,U -modules, so

RiπdR∗M := Riπ∗(DRV/U (M))

is a filtered OBdR,U -module. Moreover, RiπdR∗M comes with a flat Gauß–Manin connection

∇ : RiπdR∗M→ Ω1
U ⊗OU RiπdR∗M

satisfying the Leibniz rule with respect to the connection on OBdR,U ; this is constructed from the absolute
de Rham complex DRV (M) exactly as for DRV (E) above.

These constructions of the various derived pushforwards are compatible in a natural way. If E is a
Ẑp-local system on V , then the map E→ OBdR,V ⊗Ẑp,V E induces a Ẑp,V -linear morphism

E→ DRV/U (OBdR,V ⊗Ẑp,V E) = DRV/U (OBdR,V )⊗Ẑp,V E

of filtered complexes. Since this map even lifts to a morphism into the absolute de Rham complex
DRV (OBdR,V ⊗Ẑp,V E), it follows that the induced map

Riπ∗E→ RiπdR∗(OBdR,V ⊗Ẑp,v E)

factors through the kernel of the connection on RiπdR∗(OBdR,V ⊗Ẑp,v E). Hence the induced OBdR,U -
linear map

ηE : OBdR,U ⊗Ẑp,U Riπ∗E→ RiπdR∗(OBdR,V ⊗Ẑp,v E)

15In [Kat70, (3.2.4)], the right-hand side of this expression is rendered as π∗Ωn
U ⊗OV DRV/U (E)[−n], but this does not

strictly speaking make sense, since DRV/U (E) is not a complex of OV -algebras (its differential is not OV -linear).
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is compatible with connection and filtration.
Similarly, given a filtered vector bundle with flat connection E on V , there is an evident morphism of

relative de Rham complexes
DRV/U (E)→ DRV/U (OBdR,V ⊗OV E)

which is π−1OU -linear and compatible with filtrations. Since this morphism extends to a morphism
between the absolute de Rham complexes, it follows that the induced OBdR,U -linear map

ηE : OBdR,U ⊗OU RiπdR∗E → RiπdR∗(OBdR,V ⊗OV E)

is compatible with the connection and filtration.
Scholze proves the following comparison theorem relating these constructions.

Theorem 3.12 ([Sch13, Theorem 1.10]). Let π : V → U be a smooth proper morphism of smooth rigid-
analytic spaces over Kv, and let (E, E , c) be a de Rham pair on V . Then:

(1) RiπdR∗E is a filtered vector bundle with flat connection on U for all i;
(2) the maps ηE and ηE above become isomorphisms after completing with respect to the filtration;

and
(3) there is a unique isomorphism c̃ : OBdR,U⊗Ẑp,U Riπ∗E

∼−→ OBdR,U⊗OU RiπdR∗E of filtered OBdR-
vector bundles on U making the square

(OBdR,U ⊗Ẑp,U Riπ∗E)∧ (OBdR,U ⊗OU RiπdR∗E)∧

RiπdR∗(OBdR,V ⊗Ẑp,V E)∧ RiπdR∗(OBdR,V ⊗OV E)∧

c̃∧

∼

η∧Eo η∧Eo

(RiπdR∗c)
∧

∼

commute ((−)∧ denotes completion with respect to the filtration).
We write Riπ∗(E, E , c) for the de Rham pair (Riπ∗E,RiπdR∗E , c̃).

Remark 3.13. It seems likely that ηE and ηE should be isomorphisms even before completing. However,
we were unable to extract this from the theory in [Sch13]. Note that OBdR,U is not complete for its
filtration in general, so the completion operations are non-trivial here.

Proof of Theorem 3.12. This is essentially contained in [Sch13, Theorem 8.8]. We give a small additional
commentary on the second two parts, to clarify where completions enter the picture. In the proof of
[Sch13, Theorem 8.8], Scholze shows that the natural maps

OBdR,U ⊗Ẑp,U Rπ∗E→ RπdR∗(OBdR,V ⊗Ẑp,V E) and OBdR,U ⊗OU RπdR∗E → RπdR∗(OBdR,V ⊗OV E)

(which act on cohomology objects as ηE and ηE above) are isomorphisms in the complete filtered derived
category of abelian sheaves on Uproét, i.e. they induce quasi-isomorphisms on all graded pieces. Both
OBdR,U⊗Ẑp,U Rπ∗E and OBdR,U⊗OU RπdR∗E have filtered cohomology objects in the sense of §A.1 in the
appendix; the second of these follows from the fact that the relative Hodge–de Rham spectral sequence
for E degenerates at the first page using Lemma A.2. So by Lemma A.3, the two above maps induce
isomorphisms on completed cohomology objects, i.e. η∧E and η∧E are isomorphisms.

The final part is then a special case of the following lemma. �

Lemma 3.14. Let M0 and M1 be filtered OBdR-vector bundles with flat connection on a smooth
rigid-analytic space U over Kv. Suppose that M0 and M1 lie in the essential image of the functor
Loc(U,B+

dR) ↪→ FMIC(U,OBdR). Then every filtered OB∧dR,U -linear map

φ∧ : M∧0 →M∧1
compatible with connections is the completion of a unique morphism φ : M0 → M1 of filtered OBdR-
vector bundles with flat connection. Moreover, φ is an isomorphism if and only if φ∧ is.

Proof. Let M0 := (F0M0)∇=0 be the B+
dR-local system on U corresponding to M0, so that M0 =

OBdR,U ⊗B+
dR,U

M0. Since M0 is locally finite free, we haveM∧0 = OB∧dR,U ⊗B+
dR,U

M0 with the filtration

and connection induced from those on OB∧dR,U . And since B+
dR,U = (F0OBdR,U )∇=0 is complete, we find

by taking completions that B+
dR,U = (F0OB∧dR,U )∇=0 and hence

M0 = (F0M∧0 )∇=0 .
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It follows from this that every OB∧dR,U -linear map φ∧ : M∧0 → M∧1 compatible with filtrations and
connections is the base-change of a unique B+

dR,U -linear map φ : M0 → M1. In light of Proposition 3.7,
this implies that φ∧ is the completion of a unique morphism φ : M0 → M1 of filtered OBdR-vector
bundles with flat connection. The final claim, that φ is an isomorphism if and only if φ∧ is comes by
applying the lemma to (φ∧)−1. �

Remark 3.15. In the proof of Lemma 3.14, we used the fact that B+
dR,U was complete for its filtration.

This is actually rather subtle: although B+
dR,U is defined as the completion of a filtered period sheaf

Binf,U , this alone is not enough to guarantee that B+
dR,U is complete. We sketch the proof. To show

that B+
dR,U is complete, it suffices to show that the natural maps

FiB+
dR,U/FjB+

dR,U → FiBinf,U/FjBinf,U

are isomorphisms for all j ≥ i ≥ 0. Using the sequence

0→ FjB+
dR,U → FiB+

dR,U → FiBinf,U/FjBinf,U → R1lim←−
k≥j

(FjBinf,U/FkBinf,U ) ,

it suffices to show the vanishing of the right-hand term. This follows from [Sch13, Lemma 3.18], using
the fact that grkFBinf,U

∼= ÔU (k) has vanishing higher cohomology over any affinoid perfectoid U ′ ∈ Uproét

over which Zp(1) is trivial, for any k ≥ 0 [Sch13, Lemma 4.10(v)].

3.2.3. Compatibilities. We will also need to know that Scholze’s comparison isomorphism is compatible
with cup product and base change. We take care to spell these out carefully here.

First, cup product. Fix a smooth proper morphism π : V → U of smooth rigid-analytic spaces overKv.
If we are given a pairing βE : E1 ⊗Ẑp,V E2 → E3 in the category of Ẑp-local systems on V , resp. a pairing
βE : E1 ⊗OV E2 → E3 in the category of filtered vector bundles with flat connection on V , then there is
an induced cup product map

βE∗ : Riπ∗E1⊗Ẑp,U Rjπ∗E2 → Ri+jπ∗E3 , resp. βE∗ : RiπdR∗E1⊗OU RjπdR∗E2 → Ri+jπdR∗E3 (3.2)

for all i, j. The latter of these is induced by the evident π−1OU -linear pairing DRV/U (E1) ⊗π−1OU

DRV/U (E2) → DRV/U (E3) on relative de Rham complexes. Compatibility of Scholze’s comparison iso-
morphism with these cup product maps amounts to the following.

Proposition 3.16. Let π : V → U be a smooth proper morphism of smooth rigid-analytic spaces over Kv,
and let β = (βE, βE) : (E1, E1, c1) ⊗ (E2, E2, c2) → (E3, E3, c3) be a pairing in the category of de Rham
pairs on V . Suppose that the derived pushforwards Riπ∗E1, Riπ∗E2 and Riπ∗E3 are all Ẑp-local systems
on U for all i. Then the cup product maps (3.2) are the components of a pairing

β∗ : Riπ∗(E1, E1, c1)⊗ Rjπ∗(E2, E2, c2)→ Ri+jπ∗(E3, E3, c3)

in the category of de Rham pairs on U for all i, j.

Proof. If βM : M1⊗OBdR,V
M2 →M3 is a pairing in the category of filtered OBdR-vector bundles on V ,

then there is an induced cup product pairing

βM∗ : RiπdR∗(M1)⊗OBdR,U
RjπdR∗(M2)→ Ri+jπdR∗(M3)

for all i, j, defined analogously to βE∗ above. We consider the diagram

OBdR,U ⊗ Riπ∗(E1)⊗ Rjπ∗(E2) OBdR,U ⊗ Ri+jπ∗(E3)

RiπdR∗(OBdR,V ⊗ E1)⊗ RjπdR∗(OBdR,V ⊗ E2) Ri+jπdR∗(OBdR,V ⊗ E3)

RiπdR∗(OBdR,V ⊗ E1)⊗ RjπdR∗(OBdR,V ⊗ E2) Ri+jπdR∗(OBdR,V ⊗ E3)

OBdR,U ⊗ RiπdR∗(E1)⊗ RiπdR∗(E2) OBdR,U ⊗ RiπdR∗(E3)

1⊗βE∗

ηE1
⊗ηE2

o

ηE3

oRiπdR∗(c1)⊗RjπdR∗(c2)o Ri+jπdR∗(c3)o

1⊗βE∗

ηE1⊗ηE2 ηE3

(3.3)
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in the category of filtered OBdR-vector bundles on U (in which subscripts on tensor products are omit-
ted for readability). The horizontal maps are the various cup product pairings, and the dashed ver-
tical maps are the comparison isomorphisms for the de Rham pairs Riπ∗(E1, E1, c1) ⊗ Rjπ∗(E2, E2, c2)
and Ri+jπ∗(E3, E3, c3).

The three squares in (3.3) formed by the solid arrows each commute. For the top square, this follows
from the commutativity of the square

E1 ⊗Ẑp,V E2 E3

DRV/U (OBdR,V ⊗Ẑp,V E1)⊗π−1OBdR,U
DRV/U (OBdR,V ⊗Ẑp,V E2) DRV/U (OBdR,V ⊗Ẑp,V E3)

of pairings of filtered complexes of abelian sheaves on Uproét; commutativity of the other squares in (3.3)
follows similarly.

Now once we take completions with respect to the filtration, the two squares in (3.3) formed by the
dashed arrows and the vertical maps both commute, and all the maps in the rightmost of these squares
become isomorphisms. It follows that the outermost square in (3.3) formed by the dashed arrows and the
top and bottom horizontal maps commutes after completing. By Lemma 3.14 it even commutes before
completing, so (βE, βE) is a morphism of de Rham pairs, as desired. �

Second, base change. Fix a commuting square

V ′ V

U ′ U

g

π′ π

f

(3.4)

in the category of smooth rigid-analytic spaces over Kv, with π and π′ both smooth and proper. This
square need not be a base change square. If E is a Ẑp-local system on V , resp. E is a filtered vector
bundle with flat connection on V , then there are associated base-change maps

bcE : f∗Riπ∗E→ Riπ′∗g
∗E , resp. bcE : f∗RiπdR∗E → Riπ′dR∗g

∗E (3.5)

for all i. We recall the construction of the latter for the benefit of the reader. There is a natural map

g−1DRV/U (E)→ DRV ′/U ′(g
∗E)

in the category of filtered sheaves of g−1π−1OU -modules on V ′proét. Applying Riπ′∗ and precomposing
with the base-change map f−1Riπ∗ → Riπ′∗g

−1 for abelian sheaves yields a f−1OU -linear map

f−1RiπdR∗E → Riπ′dR∗g
∗E ;

the base change map bcE is the unique OU ′ -linear map through which this factors. Compatibility of
Scholze’s comparison isomorphism with these base change maps amounts to the following.

Proposition 3.17. Suppose we are in the above setup: (3.4) is a commuting square in the category of
smooth rigid-analytic spaces over Kv, with π and π′ both smooth and proper. Let (E, E , c) be a de Rham
pair on V , and suppose that Riπ∗E and Riπ′∗g

∗E are Ẑp-local systems on U and U ′, respectively, for all i.
Then RiπdR∗E and Riπ′dR∗g

∗E are filtered vector bundles with flat connection on U and U ′, respectively,
and the base-change maps (3.5) are the components of a morphism of de Rham pairs

bcE,E : f∗Riπ∗(E, E , c)→ Riπ′∗g
∗(E, E , c)

for all i.

Proof. For a filtered OBdR-vector bundleM on V there is a base change map

bcM : g∗Riπ′dR∗M→ RiπdR∗g
∗M
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for all i, defined analogously to bcE above. We consider the diagram

OBdR,U ′ ⊗ f∗Riπ′∗E OBdR,U ′ ⊗ Riπ∗g
∗E

f∗Riπ′dR∗(OBdR,V ⊗ E) RiπdR∗(g
∗(OBdR,V ⊗ E))

f∗Riπ′dR∗(OBdR,V ⊗ E) RiπdR∗(g
∗(OBdR,V ⊗ E))

OBdR,U ′ ⊗ f∗Riπ′dR∗(E) OBdR,U ′ ⊗ RiπdR∗g
∗E

1⊗bcE

f∗ηE

o

ηg∗E

of∗Riπ′dR∗(c)o RiπdR∗g
∗(c)o

1⊗bcE

f∗ηE ηg∗E

(3.6)

in the category of filtered OBdR-vector bundles on U (in which subscripts on tensor products are again
omitted for readability). The horizontal maps are the various base change maps, and the dashed vertical
maps are the comparison isomorphisms for the de Rham pairs f∗Riπ′∗(E, E , c) and Riπ∗g

∗(E, E , c).
The three squares in (3.6) formed by the solid arrows each commute. To see this for the top square,

start from the commuting square

g−1E g∗E

g−1DRV/U (OBdR,V ⊗ E) DRV ′/U ′(OBdR,V ′ ⊗ g∗E)

in the category of filtered complexes of abelian sheaves on U ′proét. Applying the functor Riπ∗ and
precomposing the horizontal maps with the base change map f−1Riπ′∗ → Riπ∗g

∗ for abelian sheaves
yields a commuting square

f−1Riπ′∗E Riπ∗g
∗E

f−1Riπ′dR∗(OBdR,V ⊗ E) RiπdR∗g
∗(OBdR,V ⊗ E)

in the category of filtered abelian sheaves on U ′proét. The top map is f−1Ẑp,U -linear, so factors uniquely
through a Ẑp,U ′ -linear map f∗Riπ′∗E→ Riπ∗g

∗E, namely the base change map bcE. Similarly, the bottom
map factors uniquely through a OBdR,U ′ -linear map f∗Riπ′dR∗(OBdR,V ⊗E)→ RiπdR∗g

∗(OBdR,V ⊗E),
which is the base change map for OBdR,V ⊗ E. Commutativity of the top square in (3.6) follows;
commutativity of the other squares in (3.6) follow similarly.

Now once we take completions with respect to the filtration, the two squares in (3.6) formed by the
dashed arrows and the vertical maps both commute, and all the maps in the rightmost of these squares
become isomorphisms. It follows that the outermost square in (3.6) formed by the dashed arrows and the
top and bottom horizontal maps commutes after completing. By Lemma 3.14 it even commutes before
completing, so (bcE,bcE) is a morphism of de Rham pairs, as desired. �

3.3. Analytification of algebraic maps. We now specialise the preceding discussion to the case of
analytifications of algebraic varieties, following [Sch13, §9].

If X is a smooth algebraic variety over Kv, then there is a natural morphism of sites Xan
proét → Xét,

and we write (−)an for the pullback map on categories of sheaves. So if E is a filtered vector bundle16

with flat connection on X, then Ean is a filtered vector bundle with flat connection on Xan, and if E is
a Zp-local system on X given as the inverse system of Z/pn-local systems En, then Êan := lim←−Ean

n is a
Ẑp-local system on Xan.

16Here, we always think of algebraic vector bundles as locally finite free OX -modules in the étale topology. This is
equivalent to the usual definition with the Zariski topology.
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Suppose now that π : X → Y is a smooth proper morphism of smooth Kv-varieties, so that we have
a 2-commuting square

Xan
proét Xét

Y an
proét Yét

πan π (3.7)

of sites. Scholze proves that the expected compatibility between analytic and algebraic derived pushfor-
wards holds. We will use this in the proof of Theorem 3.3 to relate relative algebraic étale and de Rham
cohomology by comparing their analytic cousins via Scholze’s relative comparison theorem.

Proposition 3.18.

(1) If E is a filtered vector bundle with flat connection on X, then the base change map(
RiπdR∗(E)

)an → Riπan
dR∗(Ean)

associated to the square (3.7) is an isomorphism for all i.
(2) If E is a Zp-local system on X, then the derived pushforward Riπan

∗ (Êan) is a Ẑp-local system
on Y an for all i and the base change map(

Riπét∗(E)
)∧,an → Riπan

∗ (Êan)

associated to the square (3.7) is an isomorphism for all i.

Proof. See [Sch13, Theorem 9.1(ii)] for the first point; the second follows from a combination of [Sch13,
Theorem 9.3], [Sch13, Corollary 3.17(ii)] and [Sch13, Proposition 8.2]. �

3.4. The absolute comparison theorem for algebraic varieties. Before continuing with the proof
of Theorem 3.3, let us take the time to precisely spell out the definition of the comparison isomorphism cdR

appearing there, as promised in Remark 3.4.
This essentially amounts to unpacking Scholze’s comparison theory in the case of the analytification

of a smooth proper morphism π : X → Spec(Lw) for a finite extension Lw of Kv contained in Kv. We
write U = Sp(Lw) = Spec(Lw)an, and consider the object U ∈ Uproét given by

U = lim←−
L′w

Sp(L′w) ,

where the colimit is taken over all finite extensions L′w of Lw contained in Kv. There is a natural right
action of the absolute Galois group Gw of Lw on U , and so for any sheaf F on Uproét there is an induced
left Gw-action on F(U). In the particular case of the de Rham period sheaf OBdR,U , its sections over U
exactly recovers Fontaine’s ring BdR of de Rham periods, with its Hodge filtration and Galois action.

So, applying Theorem 3.12 to the map πan : Xan → Sp(Lw) and the de Rham pair (E, E , c) =

(Ẑp,Xan ,OXan , 1), we obtain a series of isomorphisms

OBdR,U ⊗Ẑp,U

(
Riπét∗Zp,X

)∧,an ∼= OBdR,U ⊗Ẑp,U Riπan
∗ Ẑp,Xan

∼= OBdR,U ⊗OU Riπan
dR∗OXan

∼= OBdR,U ⊗OU

(
RiπdR∗OX

)an

of filtered OBdR-vector bundles with flat connection on U , the first and third of which are the isomor-
phisms from Proposition 3.18. Taking sections over U , we thus obtain a comparison isomorphism

cdR : BdR ⊗Qp Hi
ét(XLw

,Qp)
∼−→ BdR ⊗Lw Hi

dR(X/Lw) (3.8)

for every smooth proper algebraic varietyX/Lw, which is BdR-linear, Gw-equivariant and strictly compat-
ible with filtrations. (We write Lw instead of Kv on the left-hand side to emphasis that the base-change
is from Lw to Lw = Kv, not from Kv to Kv.) This is the comparison isomorphism cdR for which we will
prove Theorem 3.3.
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3.4.1. Compatibilities. We will also need to know that the comparison isomorphism cdR from (3.8) is
compatible with the usual constructions in cohomology. As we said in Remark 3.4, these compatibilities
are already known for the comparison isomorphisms constructed by Faltings, Tsuji and others; however,
it is important for us that these compatibilities hold for the comparison isomorphism defined above, so
we have to check this by hand.

The compatibilities come in two types. The first are those compatibilities which follow formally from
the setup.

Proposition 3.19. The comparison isomorphism cdR from (3.8) has the following properties.
(1) For any smooth proper variety X/Lw, the total comparison isomorphism

cdR : BdR ⊗Qp H•ét(XLw
,Qp)

∼−→ BdR ⊗Lw H•dR(X/Lw)

is an isomorphism of graded algebras with respect to cup product.
(2) For fixed Lw, the isomorphism cdR is natural in X.
(3) For a finite extension Lw2/Lw1 contained in Kv and a smooth proper variety X/Lw1 , the square

BdR ⊗Qp Hi
ét(XLw1

,Qp) BdR ⊗Lw1
Hi

dR(X/Lw1
)

BdR ⊗Qp Hi
ét((XLw2

)Lw2
,Qp) BdR ⊗Lw2

Hi
dR(XLw2

/Lw2
)

cdR

∼

o

cdR

∼

commutes for all i, where the vertical maps are the base change maps.
(4) For two smooth proper varieties X,Y/Lw, the square

BdR ⊗Qp H•ét(XLw
,Qp)⊗Qp H•ét(YLw ,Qp) BdR ⊗Lw H•dR(X/Lw)⊗Lw H•dR(Y/Lw)

BdR ⊗Qp H•ét((X ×Lw Y )Lw ,Qp) BdR ⊗Lw H•dR(X ×Lw Y/Lw)

cdR⊗cdR

∼

o o

cdR

∼

commutes, where the vertical maps are the Künneth isomorphisms.

Proof. The first three points follow straightforwardly from Propositions 3.16 and 3.17. For the final
point, the Künneth isomorphism in de Rham cohomology is the unique isomorphism of graded algebras
induced by the pullback maps H•dR(X/Lw)→ H•dR(X×Lw Y/Lw) and H•dR(Y/Lw)→ H•dR(X⊗Lw Y/Lw)
induced from the product projections, and similarly for étale cohomology. Hence (4) follows from (1)
and (2). �

The second set of compatibilities are those related to Poincaré duality. In the statement, we use 〈n〉
to denote a shift in filtration by n, i.e. if V is a filtered object then V 〈n〉 denotes the filtered object
with Fi(V 〈n〉) = Fi+nV .

Proposition 3.20. There is a Gv-equivariant filtered BdR-linear isomorphism

a : BdR(−1)
∼−→ BdR〈−1〉

with the following properties.
(5) For any smooth proper geometrically connected variety X/Lw of dimension n, the square

BdR ⊗H2n
ét (XLw

,Qp) BdR ⊗H2n
dR(X/Lw)

BdR(−n) BdR〈−n〉

cdR

∼

1⊗tréto 1⊗trdRo

a⊗n

∼

(3.9)

commutes, where trét and trdR are the trace maps.
(6) For any smooth proper geometrically connected variety X/Lw of dimension n, the square

BdR ⊗Hi
ét(XLw

,Qp)⊗Qp H2n−i(XLw
,Qp) BdR ⊗Hi

dR(X/Lw)⊗H2n−i
dR (X/Lw)

BdR(−n) BdR〈−n〉

cdR⊗cdR

∼

a⊗n

∼

commutes for all i, where the vertical maps are the Poincaré duality pairings.
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(7) For any smooth proper variety X/Lw and any codimension r cycle Z on X, the étale and de
Rham cycle classes of Z are identified with one another under the isomorphism

cdR ⊗ a⊗−r : BdR ⊗Qp H2r
ét (XLw

,Qp)(r)
∼−→ BdR ⊗Lw H2r

dR(X/Lw)〈r〉 . (3.10)

(8) For any smooth proper variety X/Lw and vector bundle V on X, the rth étale and de Rham
Chern classes of V are identified with one another under the isomorphism (3.10).

Proof. First we must define the isomorphism a: we take a to be the unique isomorphism making (3.9)
commute for X = P1

Kv
.

Now we prove (5). Note firstly that if f : X ′ → X is a generically finite morphism of degree d between
smooth proper geometrically connected Lw-varieties of dimension n, then the squares

H2n
ét (XLw

,Qp) H2n
ét (X ′

Lw
,Qp) H2n

dR(X/Lw) H2n
dR(X ′/Lw)

Qp(−n) Qp(−n) Lw〈−n〉 Lw〈−n〉

f∗

trét trét

f∗

trdR trdR

d d

both commute. Hence (3.9) commutes for X if and only if it does for X ′. Hence it suffices to prove
commutativity of (3.9) for one Lw-variety of each dimension n: we do this for X = (P1

Lw
)n. When n = 1

and Lw = Kv this follows by definition of a; when n = 1 and Lw is general this follows by point (3).
For n general, the trace maps for (P1

Lw
)n are identified, via the Künneth isomorphism, with the nth

tensor power of the trace maps for P1
Lw

. So commutativity of (3.9) follows from point (4).
Point (6) follows immediately from points (1) and (5). For (7), by (2) and (3) we need only consider

the case that X is geometrically connected of dimension n and Z is geometrically integral. Choose a
resolution of singularities Z̃ → Z, and let ι̃ denote the composite Z̃ → Z ↪→ X. The de Rham cycle class
of Z is the unique element of H2r(X/Lw)〈r〉 satisfying 〈cldR(Z), ξ〉 = trdR(ι̃∗ξ) for all ξ ∈ H2n−2r

dR (X/Lw),
where 〈·, ·〉 is the Poincaré duality pairing, and similarly for the étale cycle class. So (7) follows from
points (2) and (6).

For point (8), Grothendieck’s formalism of Chern classes implies that it suffices to prove the result
when V is a line bundle and r = 1. But in this case the projection V → X from the total space of V
induces an isomorphism on étale and de Rham cohomology, and the first Chern class of V is none other
than the cycle class of the zero section in V . So we are done by (2) and (7). �

Remark 3.21. The construction of the period ring BdR provides it with a canonical Gv-equivariant map
Qp(1) → BdR such that the image of any non-zero element spans F1BdR as a B+

dR-module. Thus there
is a canonical choice of an isomorphism BdR(−1) ∼= BdR〈−1〉; we suspect that the isomorphism a from
Proposition 3.20 should be this canonical choice of isomorphism, but we do not prove it here.

3.5. Horizontal de Rham local systems. With Scholze’s comparison theorem in hand, Theorem 3.3
becomes a special case of a general result about de Rham local systems over polydiscs. In this level of
generality, the problem was studied by Shimizu [Shi20]; we explain carefully here how to extract the result
we need from his theory. The same result we need already appears in work by the first author [Bet22,
Theorem 6.1], but we repeat the derivation here for the sake of completeness.

If E is a Ẑp-local system on a smooth rigid-analytic space U over Kv and y ∈ U(Kv) is a Kv-rational
point, then one obtains a continuous representation Eȳ of Gv on a finite Zp-module by first pulling back E
along y : Sp(Kv)→ U and then taking sections over the object

lim←−
Lw

Sp(Lw) ∈ Sp(Kv)proét

where Lw ranges over finite extensions of Kv inside Kv, as in §3.4. The result we need to extract from
Shimizu’s theory says that if U is a closed polydisc, and if E is a de Rham local system whose associated
vector bundle has a full basis of horizontal sections over U , then the (ϕ,N,Gv)-modules Dpst(Eȳ) are all
canonically isomorphic to one another for y ∈ U(Kv). The precise statement is as follows.

Theorem 3.22. Let U be a rigid-analytic space over Kv isomorphic to a closed polydisc or spherical
polyannulus17, and let (E, E , c) be a de Rham pair on U . Suppose that E has a full basis of horizontal

17A spherical polyannulus over Kv is a rigid-analytic space over Kv isomorphic to Sp(Kv〈t±1
1 , . . . , t±1

n 〉) for some n ≥ 0.
In other words, it is a polyannulus whose inner and outer radii are equal.
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sections. Then for every y0, y ∈ U(Kv), there is a unique isomorphism

Ty0,y : Dpst (Eȳ0
)
∼−→ Dpst (Eȳ)

of (ϕ,N,Gv)-modules making the diagram

Kv ⊗Qnr
p
Dpst (Eȳ0) Kv ⊗Kv DdR (Eȳ0) Kv ⊗Kv Ey0

Kv ⊗Qnr
p
Dpst (Eȳ) Kv ⊗Kv DdR (Eȳ) Kv ⊗Kv Ey

cBO

∼

1⊗Ty0,y o

1⊗cy0
∼

1⊗T∇y0,yo

cBO

∼
1⊗cy
∼

commute.

Proof of Theorem 3.3. It is straightforward to deduce Theorem 3.3 from Theorem 3.22. Given a smooth
proper morphism π : X → Y of smooth Kv-varieties, we know by Theorem 3.12 applied to the unit de
Rham pair (Ẑp,Xan ,OXan , 1) on Xan that there is an isomorphism

cdR : OBdR,Y an ⊗Ẑp,Y an
Riπan

∗ Ẑp,Xan
∼−→ OBdR,Y an ⊗OY an Riπan

dR∗OXan

making (Riπan
∗ Ẑp,Xan ,Riπan

dR∗OXan , cdR) into a de Rham pair on Y an. As discussed in §3.4, Riπan
∗ Ẑp,Xan

and Riπan
dR∗OXan can be identified as the analytifications of the relative étale and de Rham cohomologies

Riπét∗Zp,Xét
and H i

dR(X/Y ), respectively, and the fibre of the comparison isomorphism cdR at a Kv-
point y ∈ Y an(Kv) = Y (Kv) is the comparison isomorphism

cdR : BdR ⊗Qp Hi
ét(Xy,Kv

,Qp)
∼−→ BdR ⊗Kv Hi

dR(Xy/Kv)

of (3.8). So we obtain Theorem 3.3 as the special case of Theorem 3.22, applied to the de Rham pair

(Riπan
∗ Ẑp,Xan |U ,Riπan

dR∗OXan |U , cdR|U ). �

Now we turn to the proof of Theorem 3.3, which we want to extract from [Shi20]. The first step is to
reduce to the case of spherical polyannuli.

Lemma 3.23. Suppose that Theorem 3.22 holds whenever U is a spherical polyannulus, for all finite
extensions Kv/Qp. Then it holds in general.

Proof. Let U be a closed polydisc, and suppose first that the residue field of Kv is not F2. Then there
is a spherical polyannulus U◦ ⊂ U such that y0, y ∈ U◦(Kv). Indeed, after picking coordinates on U we
may write y0 = (a1, . . . , an) and y = (b1, . . . , bn) with all ai, bi ∈ Ov; the desired inclusion U◦ ↪→ U is
then given by ti 7→ ti − ci where ci ∈ Ov is not in the residue disc of ai or bi. Since E|U◦ again has a full
basis of horizontal sections, the result for (U, y0, y) follows from the corresponding result for (U◦, y0, y).

If instead the residue field of Kv is F2, let us write Lw,r for the unramified extension of Kv of degree r
inside Kv, and Gw,r for its absolute Galois group. The result applied to (ULw,r , y0, y) implies that for
each r > 1 there exists a unique isomorphism

Ty0,y,r : Dpst(Eȳ0
)
∼−→ Dpst(Eȳ)

of (ϕ,N,Gw,r)-modules making the claimed diagram commute. Unicity implies that the maps Ty0,y,r

are all equal, to Ty0,y say, and so Ty0,y commutes with the actions of ϕ and N , and with the action
of Gw,r for all r > 1. Since Gw,2 and Gw,3 generate Gv, it follows that Ty0,y is Gv-equivariant, i.e. an
isomorphism of (ϕ,N,Gv)-modules. So we are done also in this case. �

We now build up to the proof of Theorem 3.22. Let U = Tn := Sp(Rv[p
−1]) be the spherical

polyannulus with Rv := Ov〈t±1
1 , t±1

2 , . . . , t±1
n 〉. As in [Shi20, §3], fix an algebraic closure Frac(Rv) of the

fraction field of Rv, and let Rv ⊆ Frac(Rv) be the union of all finite Rv-subalgebras R′v of Frac(Rv) for
which R′v[p−1] is étale over Rv[p−1]. We write

GRv := Aut(Rv[p
−1]/Rv[p

−1]) .

This group is canonically isomorphic to the étale fundamental group of Spec(Rv[p
−1]) based at the

geometric point determined by Frac(Rv) [SGA1, Exp. I, Proposition 10.2], and hence carries a natural
profinite topology. We always suppose that we chose Frac(Rv) to contain Kv, so that Kv ⊆ Rv[p−1] and
we have a restriction homomorphism

GRv � Gv . (3.11)
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If Lw is a finite extension of Kv contained in Kv, we write GRw ⊆ GRv for the preimage of Gw under
the restriction map.

Shimizu’s theory isolates a class of GRv -representations, generalising the class of potentially semistable
representations of Gv (which is recovered by setting Rv = Ov). For this, he introduces a certain horizontal
semistable period ring B∇st(Rv), which is a Qnr

p -algebra and comes with a semilinear crystalline Frobe-
nius endomorphism ϕ and monodromy operator N [Shi20, Definition 4.7]. Moreover, the construction
of B∇st(Rv) is functorial in Rv, and in particular carries a natural action of GRv induced by the tautological
action on Rv. For any finite extension Lw/Kv contained inKv, we have that (B∇st)

GRw = Lw,0 = Lw∩Qnr
p

[Shi20, Corollary 4.10]. This period ring allows one to identify the desired class of GRv -representations.

Definition 3.24 (Potentially horizontal semistable representations [Shi20, Definition 4.15]). If E is a
continuous representation of GRv on a finite free Zp-module, then we write

D∇pst(E) := lim−→
w

(B∇st(Rv)⊗Zp E)GRw

where the colimit is taken over finite extensions Lw/Kv contained in Kv. The natural action of GRv
on D∇pst(E) factors through Gv and has open point-stabilisers: together with the crystalline Frobenius ϕ
and monodromy operatorN induced from those on B∇st(Rv), this makes D∇pst(E) into a discrete (ϕ,N,Gv)-
module. We always have the inequality dimQnr

p
D∇pst(E) ≤ dimQp E [Shi20, Lemma 4.12], and we say

that E is potentially horizontal semistable just when equality holds. Equivalently, E is potentially
horizontal semistable just when the evident map

α∇pst : B∇st(Rv)⊗Qnr
p
D∇pst(E)→ B∇st(Rv)⊗Zp E

is a B∇st(Rv)-linear isomorphism.

In the particular case that Rv = Ov (and Rv = OKv
), we have that B∇st(Ov) = Bst is the usual

semistable period ring of Fontaine. In general, if y ∈ U(Kv) is a Kv-point, we can choose an extension
of the pullback map y∗ : Rv[p

−1]→ Kv to a Kv-algebra homomorphism ỹ∗ : Rv[p
−1]→ Kv. The map ỹ∗

determines a continuous homomorphism

sỹ : Gv → GRv ,

identifying Gv as the setwise stabiliser of the kernel of ỹ∗. For a continuous representation E of GRv on
a finite free Zp-module, we write Eỹ for the Gv-representation given by E with the Gv-action given by
restriction of the GRv -action along sỹ.

Since the construction of B∇st(Rv) is functorial in Rv, there is an induced morphism

ỹ∗ : B∇st(Rv)→ Bst

of Qnr
p -algebras, compatible with crystalline Frobenii and monodromy operators. It is also Gv-equivariant

where Gv acts on B∇st(Rv) via restriction along sỹ. So for a continuous representation E of GRv on a
finitely generated Zp-module there is then a natural morphism

ρỹ : D∇pst(E)→ Dpst(Eỹ)

of (ϕ,N,Gv)-modules given by taking invariants in ỹ∗ ⊗ 1: B∇st(Rv)⊗Zp E → Bst ⊗Zp Eỹ.

Lemma 3.25. Suppose that E is potentially horizontal semistable. Then Eỹ is potentially semistable as
a representation of Gv and ρỹ is an isomorphism.

Proof. Special case of [Shi20, Lemma 4.4]. �

Corollary 3.26. Let y0, y ∈ U(Kv) and choose lifts y∗0 , y∗ : Rv[p
−1] → Kv. Then for any potentially

horizontal semistable representation E of GRv there is a canonical isomorphism

Ty0,y : Dpst(Eỹ0)
∼−→ Dpst(Eỹ)

of (ϕ,N,Gv)-modules, given by Ty0,y := ρỹ ◦ ρ−1
ỹ0

.

Now we want to translate between the languages of Ẑp-local systems on U and representations of GRv .
For this, let us write

U := lim←−
R′v

Sp(R′v[p
−1]) ,
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where R′v runs over all finite Rv-algebras in Frac(Rv) such that R′v[p−1] is étale over Rv[p−1]. Thus U is
an object of the pro-étale site of U , on which GRv acts naturally from the right.

Lemma 3.27. The category Covalg
U of finite étale coverings of U is a Galois category [SGA1, Exp. V,

Définition 5.1], and the functor

FU : Covalg
U → {finite sets}
V 7→ HomU (U, V )

is a fibre functor.
In particular, the functor from Ẑp-local systems on U to continuous representations of GRv on finitely

generated Zp-modules given by E 7→ H0(U,E) is an equivalence, where the GRv -action on H0(U,E) is the
one induced from the action on U .

Proof. It follows from [FvdP04, Definition 4.5.7 & Proposition 8.1.1] that the category of finite étale cov-
erings of U is opposite to the category of finite étale Rv[p−1]-algebras (see the proof of [Bet22, Lemma 6.4]
for a careful argument). That FU is a fibre functor follows from [SGA1, Exp. V, Proposition 5.6]. The
final part follows since the category of Ẑp-local systems on U in the pro-étale topology is equivalent to
the category of Zp-local systems in the étale topology [Sch13, Proposition 8.2]. �

Remark 3.28. If y ∈ U(Kv) is a Kv-rational point, then a lifting of y∗ : Rv[p
−1] → Kv to some

ỹ∗ : Rv[p
−1] → Kv is equivalent to a choice of point ỹ ∈ U ȳ in the fibre of U over ȳ. Hence by the

Yoneda Lemma ỹ determines a natural isomorphism γỹ : FU
∼−→ Fȳ of fibre functors on Covalg

U . This
isomorphism γỹ gives a Gv-equivariant isomorphism

H0(U,E)ỹ ∼= Eȳ
for all Ẑp-local systems E on U .

Remark 3.29. Lemma 3.27 implies that the group GRv is isomorphic to the algebraic fundamental group
of U in the sense of de Jong [dJ95, p. 94], albeit based at a fibre functor that does not canonically come
from a geometric point of the Berkovich space associated to U .

In the proof of Theorem 3.22 which follows, we adopt the notation of [Shi20, p. 47] in writing

BdR(Rv) := H0(U,OBdR,U ) .

This is a filtered Rv[p
−1]-algebra endowed with an action of GRv extending the tautological action

on Rv[p−1], and with a flat connection

∇ : BdR(Rv)→ Ω1,f
Rv[p−1]/Kv

⊗Rv [p−1] BdR(Rv)

satisfying the Leibniz rule with respect to the derivation on Rv[p−1]. Here Ω1,f
Rv [p−1]/Kv

= H0(U,Ω1
U/Kv

)

is the module of finite differentials. The horizontal semistable period ring B∇st(Rv) is then a subring
of BdR(Rv) contained in the kernel of the connection ∇.

Proof of Theorem 3.22 for U a spherical polyannulus. Let E = H0(U,E) be the GRv -representation cor-
responding to the local system E. Since E has a full basis of horizontal sections, we have that E is
potentially horizontal semistable [Shi20, Lemma 8.9]. We fix lifts ỹ∗0 , ỹ∗ : Rv[p

−1] → Kv of y∗0 , y∗ as
usual, so there are canonical Gv-equivariant identifications Eỹ0

∼= Eȳ0 and Eỹ ∼= Eȳ by Remark 3.28.
We will show that, under these identifications, the map

Ty0,y := ρỹ ◦ ρ−1
ỹ0

: Dpst(Eỹ0
)
∼−→ Dpst(Eỹ)

from Corollary 3.26 makes the rectangle in Theorem 3.22 commute; it is automatically the unique such
map. For this, we write EU := H0(U, E) for the projective Rv[p−1]-module associated to E . We have
GRv -equivariant isomorphisms

BdR(Rv)⊗Qnr
p
D∇pst(E)

∼−→ BdR(Rv)⊗Zp E
c−→
∼

BdR(Rv)⊗Rv [p−1] EU (∗)

of BdR(Rv)-modules with flat connection, the first of which is the base-change of the natural map
B∇st(Rv) ⊗Qnr

p
D∇pst(E)

∼−→ B∇st(Rv) ⊗Zp E, and the second of which is the sections over U of the isomor-
phism c : OBdR,U ⊗Ẑp,U E ∼−→ OBdR,U ⊗OU E .
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Base-changing (∗) along ỹ∗0 : BdR(Rv)→ BdR yields a commuting diagram

BdR(Rv)⊗Qnr
p
D∇pst(E) BdR(Rv)⊗Zp E BdR(Rv)⊗Rv[p−1] EU

BdR ⊗Qnr
p
Dpst(Eỹ0

) BdR ⊗Zp Eỹ0
BdR ⊗Kv Ey0

∼

ỹ∗0⊗ρỹ0

c
∼

ỹ∗0⊗1 ỹ∗0

∼ cy0
∼

(∗∗)

of Gv-equivariant BdR-modules. Using this, we claim that the rectangle

BdR(Rv)⊗Qnr
p
D∇pst(E) BdR(Rv)⊗Zp E BdR(Rv)⊗Rv [p−1] EU

BdR(Rv)⊗Qnr
p
Dpst(Eỹ0

) BdR(Rv)⊗Zp Eỹ0
BdR(Rv)⊗Kv Ey0

∼

1⊗ρỹ0o

c
∼

∼ cy0
∼

T∇y0o (†)

commutes. Since all the maps in (†) are GRv -equivariant isomorphisms of BdR(Rv)-modules with
connection and BdR(Rv)

GRv ,∇=0 = Kv [Shi20, Proposition 4.9], it is certainly true that (†) com-
mutes up to an element of GLn(Kv). So it suffices to check that (†) commutes after base-changing
along ỹ∗0 : BdR(Rv)→ BdR, which follows from commutativity of (∗∗).

Base-changing (†) along ỹ∗ then yields the desired result. �

4. Abelian-by-finite families

In the method of Lawrence and Venkatesh, one studies smooth projective families X → Y of a
particular form, known as abelian-by-finite families.

Definition 4.1 ([LV20, Definition 5.1]). Let Y be a scheme. An abelian-by-finite family over Y

X → Y ′ → Y

consists of a surjective finite étale covering πf : Y ′ → Y and a polarised abelian scheme πa : X → Y ′.
We usually suppress the polarisation from the notation; when we need to refer to it, we denote it λ.

In this section, we recall the basic theory of abelian-by-finite families, primarily that the étale and
de Rham cohomology of the fibres of X → Y carries extra structures arising from the abelian-by-finite
structure. Using this, we show that the period map associated to an abelian-by-finite family takes on a
particular form.

4.1. Cohomology of fibres of abelian-by-finite families. To begin with, we introduce the extra
structures on the cohomology of the fibres of an abelian-by-finite family. It suffices to discuss this in the
case that Y = Spec(K) where K is a field, assumed for simplicity of characteristic 0 (we will apply this
with K a number field, or K = Kv a finite extension of Qp). So X is then a disjoint union of polarised
abelian varieties defined over finite extensions of K.

4.1.1. Étale cohomology. If we fix an algebraic closure K of K, then the Leray spectral sequence implies
that the cohomology algebra H•ét := H•ét(XK ,Qp) is the sections over Y ′K of the derived étale pushforward
R•πaét∗Qp,XK to Y ′

K
. It follows from the usual calculation of the cohomology of abelian varieties that the

cup product induces canonical isomorphisms∧k

H0
ét

H1
ét
∼−→ Hk

ét

of H0
ét-modules for all k ≥ 0, where the H0

ét-module structure on either side is the one coming from
cup product. Concretely, this is just saying the following. If we choose, for each closed point y′ ∈ |Y ′|,
a K-embedding K(y′) ↪→ K, then the absolute Galois group GK(y′) of K(y′) is identified as an open
subgroup of GK . Since X is a disjoint union of abelian schemes over the fields K(y′), we have

H•ét(XK ,Qp) =
∏

y′∈|Y ′|

IndGKGK(y′)
H•ét(Xȳ′ ,Qp) =

∏
y′∈|Y ′|

IndGKGK(y′)

∧•
H1

ét(Xȳ′ ,Qp) (4.1)

as Qp-algebras with GK-action, where Xȳ′ denotes the fibre of X over the K-point of Y ′ determined by
the embedding K(y′) ↪→ K.

Moreover, the polarisation λ on X induces a further structure on the étale cohomology, in the form
of a pairing on H1

ét. This is constructed as follows. Let cét
1 (λ) ∈ H2

ét(1) denote the first étale Chern class
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of a line bundle on XK representing the polarisation λ (this is independent of the choice of line bundle).
Equivalently, if L := (1, λ)∗P with P the Poincaré line bundle on X×Y ′X∨, then cét

1 (λ) = 1
2c

ét
1 (L). This

latter construction makes it clear that in fact cét
1 (λ) ∈ H2

ét(1)GK .
Since H2

ét =
∧2

H0
ét

H1
ét, we can view cét

1 (λ) as an element of HomH0
ét

(
∧2

H0
ét

Hét
1 ,H

0
ét(1))GK , where

Hét
1 := HomH0

ét
(H1

ét,H
0
ét).

In other words, we can view cét
1 (λ) as a GK-equivariant H0

ét-linear pairing on Hét
1 .

Lemma 4.2. The H0
ét-linear pairing

ω̌ét
λ :

∧2

H0
ét

Hét
1 → H0

ét(1)

determined by cét
1 (λ) is perfect, i.e. determines an H0

ét-linear GK-equivariant isomorphism

Hét
1
∼−→ HomH0

ét
(Hét

1 ,H
0
ét(1)) = H1

ét(1) .

Proof. It suffices to prove this in the case that K = K is algebraically closed. In this case, X is a
disjoint union of polarised abelian varieties (Xy′ , λy′) indexed by closed points y′ of Y ′. It follows
that cét

1 (λ) ∈ H2
ét(X,Qp) =

⊕
y′∈|Y ′|H

2
ét(Xy′ ,Qp) is the element whose y′th component is cét

1 (λy′), so
the pairing ω̌ét

λ on Hét
1 =

⊕
y′∈|Y ′|H

ét
1 (Xy′ ,Qp) is the orthogonal direct sum of the pairings ω̌ét

λy′
on

Hét
1 (Xy′ ,Qp). It thus suffices to treat only the case that πf : Y ′ → Y is the identity, so that πa : X → Y

is a polarised abelian variety.
In this case, Hét

1 = H1
ét(X,Qp)∗ is isomorphic to the Qp-linear Tate module of X, and under this

identification, the pairing ω̌ét
λ is identified up to sign with the Weil pairing associated to λ, see the proof

of [OSZ21, Lemma 2.6]. The Weil pairing is known to be perfect. �

Now the pairing ω̌ét
λ induced by cét

1 (λ), being perfect, induces a dual pairing on H1
ét(1), and hence by

Tate twisting, we obtain a GK-equivariant H0
ét-linear perfect pairing

ωét
λ :

∧2

H0
ét

H1
ét → H0

ét(−1) .

Under the identification H1
ét =

⊕
y′∈|Y ′| IndGKGK(y′)

H1
ét(Xȳ′ ,Qp), the pairing ωét

λ is just the orthogonal

direct sum of the inductions of the pairings on each H1
ét(Xȳ′ ,Qp) induced from the polarisation on the

abelian variety Xȳ′ .
In summary, we have seen that the triple

(H1
ét,H

0
ét(−1), ωét

λ )

is an example of a symplectic H0
ét-module in the following sense.

Definition 4.3. Let A be a finite-dimensional Qp-algebra endowed with a continuous action of GK
compatible with the algebra structure. A symplectic A-module is a triple V = (V,L, ω) consisting of:

• a finite locally free A-module V and a free rank 1 A-module L, each endowed with a continuous
action of GK compatible with the action on A; and

• a GK-equivariant A-linear perfect pairing∧2

A
V → L ,

meaning that the induced map V → HomA(V,L) is an isomorphism.
Symplectic A-modules form a category, where a morphism f : (V,L, ω) → (V ′, L′, ω′) consists of a pair
of GK-equivariant A-linear maps fV : V → V ′ and fL : L→ L′ compatible with the pairings ω and ω′.

Later, we will want to also consider symplectic modules over varying algebras A, for which we adopt
the following terminology.

Definition 4.4. A symplectic pair in the category of GK-representations is a pair

P = (A, V )
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consisting of a finite-dimensional Qp-algebra A endowed with a continuous action of GK and a symplectic
A-module V = (V,L, ω). Symplectic pairs form a category

SP(RepQp(GK)),

whose morphisms f : (A, (V,L, ω)) → (A′, (V ′, L′, ω′)) are triples of GK-equivariant maps fA : A →
A′, fV : V → V ′ and fL : L → L′ compatible with all relevant structures (algebra structures, module
structures, pairing).

Example 4.5. If X → Y ′ → Y is an abelian-by-finite family over a base scheme Y and y ∈ Y (K) is a
K-rational point, then the fibre Xy → Y ′y → Spec(K) is an abelian-by-finite family over Spec(K). So it
follows from the above discussion that

H≤1
ét (Xy,K ,Qp) := (H0

ét(Xy,K ,Qp),H
1
ét(Xy,K ,Qp))

is a symplectic pair in the category of GK-representations, the symplectic pairing on H1
ét = H1

ét(Xy,K ,Qp)
being the pairing discussed above arising from the polarisation. We will see later in §7.1 that these
symplectic pairs for varying y are interpolated by a single symplectic pair in the category of Qp-local
systems on Yét, given by the relative étale cohomology of X → Y .

One can equally make sense of symplectic modules and symplectic pairs in other appropriate categories.

4.1.2. De Rham cohomology. A similar story holds for the de Rham cohomology of the abelian-by-
finite family X → Y ′ → Y = Spec(K) for any field K of characteristic 0. The cohomology algebra
H•dR := H•dR(X/K) is canonically isomorphic to the graded-commutative algebra

∧•
H0

dR
H1

dR. Again, this
can be described concretely: the decomposition of X into its connected components gives an isomorphism

H•dR
∼=

∏
y′∈|Y ′|

H•dR(Xy′/K(y′)) ∼=
∏

y′∈|Y ′|

∧•
K(y′)

H1
dR(Xy′/K(y′)) (4.2)

of K-algebras, where the K(y′)-vector spaces H•dR(Xy′/K(y′)) are viewed as K-vector spaces in the usual
way.

The polarisation λ on X induces a pairing on H1
dR, which is constructed analogously to the pairing on

étale cohomology. That is, we define the first de Rham Chern class cdR
1 (λ) ∈ F1H2

dR of the polarisation λ
by cdR

1 (λ) := 1
2c

dR
1 (L) where L = (1, λ)∗P with P the Poincaré line bundle on X ×Y ′ X∨. Via the

identification H2
dR
∼=
∧2

H0
dR

H1
dR, the class cdR

1 (λ) can be thought of as an element

ω̌dR
λ ∈ F0HomH0

dR
(
∧2

H0
dR

HdR
1 ,H0

dR〈1〉),

where HdR
1 := HomH0

dR
(H1

dR,H
0
dR) and (−)〈1〉 denotes a shift in filtration: Fi(V 〈j〉) := Fi+jV . Analo-

gously to the étale case, we have the following.

Lemma 4.6. The H0
dR-linear pairing

ω̌dR
λ :

∧2

H0
dR

HdR
1 → H0

dR〈1〉

determined by cdR
1 (λ) is perfect, i.e. determines an H0

dR-linear filtered isomorphism

HdR
1

∼−→ HomH0
dR

(HdR
1 ,H0

dR〈1〉) = H1
dR〈1〉 .

Proof. The easiest way to prove this is by comparing with étale cohomology. That is, via a Lefschetz
argument, it suffices to deal only with the case that K = Kv is a finite extension of Qp. As we
shall explain shortly, the isomorphism DdR(Hét

1 ) ∼= HdR
1 induced from the comparison isomorphisms

DdR(Hk
ét)
∼= Hk

dR for k = 0, 1 carries the étale Chern class cét
1 (λ) to cdR

1 (λ). Hence perfectness follows
from the corresponding statement for étale cohomology (Lemma 4.2). �

Again, the fact that ω̌dR
λ is perfect means that it induces a twisted dual pairing

ωdR
λ :

∧2

H0
dR

H1
dR → H0

dR〈−1〉 ,
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which is a filtered H0
dR-linear perfect pairing, equal to the orthogonal direct sum of the pairings on each

H1
dR(Xy′/K(y′)) induced from the polarisation on the abelian variety Xy′ . As in the étale case, this can

be conveniently summarised by saying that the triple

(H1
dR,H

0
dR〈−1〉, ωdR

λ )

is a symplectic H0
dR-module in the category of filtered vector spaces.

This means something very concrete with regards to the Hodge filtration. Since the Hodge filtration
on H0

dR is supported in degree 0 and the Hodge filtration on H1
dR is supported in degrees 0 and 1, the only

interesting step of the Hodge filtration is F1H1
dR. The fact that H1

dR is a symplectic H0
dR-module says

exactly that F1H1
dR is a Lagrangian H0

dR-submodule, i.e. is a H0
dR-submodule on which ωdR

λ vanishes,
maximal with this property. In other words, with respect to the decomposition

H1
dR
∼=

∏
y′∈|Y ′|

H1
dR(Xy′/K(y′)),

the subspace F1H1
dR is the product of Lagrangian K(y′)-subspaces F1H1

dR(Xy′/K(y′)) for each y′ ∈ |Y ′|.

4.1.3. The comparison isomorphism. In the particular case that K = Kv is a finite extension of Qp, the
étale and de Rham cohomology of an abelian-by-finite family X → Y ′ → Spec(Kv) are related by the
comparison isomorphisms cdR : DdR(H•ét)

∼−→ H•dR. Being an isomorphism of algebras with respect to
cup product, cdR is an isomorphism of algebras on H0, and an isomorphism of H0-modules on H1. The
fact that cdR preserves Chern classes ensures that the isomorphism cdR : DdR(H2

ét(1))
∼−→ H2

dR〈1〉 takes
cét
1 (λ) = 1

2c
ét
1 (L) to cdR

1 (λ) = 1
2c

dR
1 (L), where L = (1, λ)∗P with P the Poincaré line bundle as above.

This ensures that the pairings ω̌ét
λ and ω̌dR

λ are identified under cdR (so in particular the latter pairing
is perfect as per Lemma 4.6), and hence so too are the twisted dual pairings ωét

λ and ωdR
λ .

This can all be succinctly summarised on the level of the p-adic Hodge cohomology groups H•pH :=
H•pH(X/Kv), see Example 2.10 for the definition. The triple

(H1
pH,H

0
pH〈−1〉, ωpHλ )

is a symplectic H0
pH-module in the category of filtered discrete (ϕ,N,Gv)-modules, where

ωpHλ :
∧2

H0
pH

H1
pH → H0

pH〈−1〉

is the morphism with components Dpst(ω
ét
λ ) and ωdR

λ .
So in particular, if X → Y is an abelian-by-finite family over a general scheme Y and y ∈ Y (Kv) is a

Kv-rational point, then
H≤1
pH(Xy/Kv) := (H0

pH(Xy/Kv),H
1
pH(Xy/Kv))

is a symplectic pair in the category of filtered discrete (ϕ,N,Gv)-modules, the symplectic pairing on
H1
pH = H1

pH(Xy/Kv) being the pairing discussed above arising from the polarisation.

4.2. The period map associated to an abelian-by-finite family. The particular structure of
abelian-by-finite families implies that their period maps take on a particular form. Before we state
this, we observe that de Rham Chern classes of line bundles behave well in families.

Lemma 4.7. Let π : X → Y be a smooth morphism of smooth varieties over a field K of characteristic
zero. Then to any line bundle L on X one can associate a first relative de Rham Chern class

cdR
1 (L)/Y ∈ F1H0(Y,H 2

dR(X/Y ))∇=0

with the following property. For any field extension L/K and any point y ∈ Y (L), the first de Rham
Chern class cdR

1 (L|Xy ) ∈ F1H2
dR(Xy/L) of the restriction of L to the fibre at y is equal to the fibre

of cdR
1 (L)/Y at y (once we identify H 2

dR(X/Y )y ∼= H2
dR(Xy/L) in the usual way).

Proof. To begin with, let us recall the definition of the first de Rham Chern class cdR
1 (L) in the absolute

case (Y = Spec(K)), from [Har75, §7.7]18. The image of the morphism d log : O×X → Ω1
X/K of abelian

18In the proof of Proposition 3.20, we used a different definition of the first Chern class, namely that it is the cycle class
of the zero-section in the total space of L. That these two definitions agree follows from [Har75, Proposition 7.7.1].
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sheaves, given by d log(f) = f−1 df , consists of exact differentials. So it induces a map O×X → Ω•X/K [1]

of complexes. The first de Rham Chern class of L is defined to be the image of L under the induced map

Pic(X) = H1(X,O×X)→ H2(X,Ω•X/K) = H2
dR(X/K) .

The fact that d log : OX → Ω•X/K [1] factors through F1Ω•X/K ensures that cdR
1 (L) ∈ F1H2

dR(X/K).
To relativise this construction, if π : X → Y is a smooth morphism of smooth K-schemes, then there

are maps

H1(X,O×X)→ H0(Y,R1π∗O
×
X)

d log−−−→ H0(Y,R2π∗Ω
•
X/K)→ H0(Y,R2π∗Ω

•
X/Y )

where the first map is part of the exact sequence of low-degree terms in the Leray spectral sequence, and
the second and third maps are induced by the maps

O×X
d log−−−→ Ω•X/K [1]→ Ω•X/Y [1].

By definition of the Gauß–Manin connection on H 2
dR(X/Y ) = R2π∗Ω

•
X/Y as a connecting map [KO68],

the image of the right-hand map is contained in H0(Y,H 2
dR(X/Y ))∇=0. We define the first relative de

Rham Chern class
cdR
1 (L)/Y ∈ H0(Y,H 2

dR(X/Y ))∇=0

to be the image of [L] ∈ Pic(X) = H1(X,O×X) under the composite of the above maps. It is easy to
check, using the naturality properties of the Leray spectral sequence and base-change maps, that this
construction satisfies the desired property: the fibre of cdR

1 (L)/Y at y ∈ Y (L) is cdR
1 (L|Xy ). In particular,

since each cdR
1 (L|Xy ) lies in F1, so too does cdR

1 (L)/Y . �

So suppose now that X → Y ′ → Y is an abelian-by-finite family with Y a smooth variety over a finite
extension Kv of Qp, and write H •

dR = H •
dR(X/Y ) for its relative de Rham cohomology. We define the

first relative de Rham Chern class of the polarisation λ to be

cdR
1 (λ)/Y =

1

2
cdR
1 (L)/Y ∈ F1H0(Y,H 2

dR)∇=0,

where L = (1, λ)∗P with P the Poincaré line bundle on X ×Y ′ X. The class cdR
1 (λ)/Y corresponds to a

H 0
dR-linear morphism

ω̌dR
λ :

∧2

H 0
dR

H dR
1 →H 0

dR〈1〉

of filtered vector bundles with integrable connection on Y , where H dR
1 = HomH 0

dR
(H 1

dR,H
0

dR). The
fibre of ω̌dR

λ at a point y ∈ Y (Kv) is equal to the pairing ω̌dR
λy

associated to the polarisation λy on the
fibre Xy. In particular, it follows from Lemma 4.6 that ω̌dR

λ is a perfect pairing, i.e. induces a H 0
dR-linear

isomorphism
H dR

1
∼−→HomH 0

dR
(H dR

1 ,H 0
dR〈1〉) = H 1

dR〈1〉
of filtered vector bundles with integrable connection on Y . Hence, we have the twisted dual pairing

ωdR
λ :

∧2

H 0
dR

H 1
dR →H 0

dR〈−1〉 ,

which is a H 0
dR-linear perfect pairing whose fibre at a Kv-point y ∈ Y (Kv) is the pairing ωdR

λy
. The fact

that the pairing ωdR
λ is compatible with connections implies the following compatibility result for parallel

transport.

Lemma 4.8. Let y0 ∈ Y (Kv) be a Kv-rational point, and let Uy0
⊆ Y an be an admissible open neigh-

bourhood of y0, isomorphic to a closed polydisc, over which H 0
dR(X/Y )an and H 1

dR(X/Y )an have a full
basis of flat sections. Then the parallel transport maps

T∇y0
: (OUy0 ⊗Kv Hi

dR(Xy0
/Kv),d⊗1)

∼−→ (H i
dR(X/Y ),∇)an|Uy0

for i = 0, 1 are compatible with all extra structures: algebra structure, module structure, and pairing.

Remark 4.9. The fact that H 0
dR(X/Y )an = H 0

dR(Y ′/Y )an admits a trivialisation compatible with the
algebra structure over the neighbourhood Uy0 in Lemma 4.8 means that the finite étale covering Y ′ → Y
becomes trivialised over Uy0

, i.e. there is an isomorphism (Y ′)an|Uy0 ∼= Uy0
× (Y ′)an

y0
of rigid-analytic

spaces over Kv, uniquely characterised by the fact that it restricts to the identity on the fibre at y0. On



Galois sections and p-adic period mappings 37

the fibre at another point y ∈ Uy0(Kv), this isomorphism (Y ′y)an ∼= (Y ′y0
)an is the one induced from the

isomorphism

O(Y ′y0
) = H0

dR(Y ′y0
/Kv)

T∇y0,y−−−→
∼

H0
dR(Y ′y/Kv) = O(Y ′y)

of Kv-algebras.

If now y0 ∈ Y (Kv) is a Kv-rational point, let us define Hy0 to be the Kv-variety parametrising
Lagrangian H0

dR(Xy0
/Kv)-submodules of H1

dR(Xy0
/Kv). This is a closed Kv-subvariety of the flag va-

riety Gy0
parametrising filtrations on H1

dR(Xy0
/Kv) with the same dimension data as F•H1

dR(Xy0
/Kv).

As a consequence of Lemma 4.8, if Uy0
⊆ Y an is an admissible open neighbourhood of y0 over which

H 0
dR(X/Y )an and H 1

dR(X/Y )an have a full basis of flat sections, then the image of the v-adic period map
Φy0 : Uy0 → Gan

y0
of §3.1 is contained in Han

y0
. When we refer to the period map of an abelian-by-finite

family, we will always regard it as having codomain Han
y0

rather than the flag variety Gan
y0
.

To every point Φ ∈ Hy0(Kv), we assign a symplectic pair M≤1(Φ) = (M0,M1(Φ)) in the category of
filtered discrete (ϕ,N,Gv)-modules as follows.

Definition 4.10. Let Φ ∈ Hy0
(Kv), i.e. Φ is a Lagrangian H0

dR(Xy0
/Kv)-submodule of H1

dR(Xy0
/Kv).

We define a filtered discrete (ϕ,N,Gv)-module M1(Φ) by

M1(Φ) := (H1
pst(Xy0/Qnr

p ),H1
dR(Xy0/Kv), cdR ◦ cBO) ,

where the (ϕ,N,Gv)-module structure on H1
pst(Xy0

/Qnr
p ) is the usual one, but where the filtration on

H1
dR(Xy0/Kv) is the one given by

FiH1
dR(Xy0/Kv) :=


H1

dR(Xy0
/Kv) if i ≤ 0,

Φ if i = 1,
0 if i ≥ 2,

instead of the Hodge filtration. Since Φ is a Lagrangian H0
dR(Xy0

/Kv)-submodule of H1
dR(Xy0

/Kv), this
implies that M1(Φ) is a symplectic module under

M0 := (H0
pst(Xy0/Qnr

p ),H0
dR(Xy0/Kv), cdR ◦ cBO)

in the category of filtered discrete (ϕ,N,Gv)-modules, with respect to the pairing ωpHλ described in §4.1.3.
We write

M≤1(Φ) := (M0,M1(Φ))

for the corresponding symplectic pair.

As in Proposition 3.5, the v-adic period map associated to an abelian-by-finite family controls the
variation of the local Galois representations attached to Kv-points, now compatibly with symplectic
structures. In the proposition below, we write π0SP(RepdR

Qp (Gv)) (respectively π0SP(MF(ϕ,N,Gv)))
for the set of isomorphism classes of symplectic pairs in the category of de Rham Gv-representations
(respectively filtered discrete (ϕ,N,Gv)-modules).

Proposition 4.11. Let X → Y ′ → Y be an abelian-by-finite family over a smooth Kv-variety Y ,
let y0 ∈ Y (Kv) be a Kv-rational point, and let Uy0

⊆ Y an be an admissible open neighbourhood of y0,
isomorphic to a closed polydisc, over which H 0

dR(X/Y )an and H 1
dR(X/Y )an have a full basis of horizontal

sections.
Then the map Y (Kv) → π0SP(RepdR

Qp (Gv)) sending a Kv-point y ∈ Y (Kv) to the isomorphism class
of H≤1

ét (Xy,Kv
,Qp) fits into a commuting diagram

Y (Kv) Uy0
(Kv) Hy0

(Kv)

π0SP(RepdR
Qp (Gv)) π0SP(MF(ϕ,N,Gv)) .

⊃
Φy0

M≤1

DpH

Proof. This follows from

DpH
(

H≤1
ét (Xy,Kv

,Qp)
)
' H≤1

pH(Xy/Kv) 'M≤1(Φy0
(y)) ,

where the first isomorphism is the comparison isomorphism and the second is parallel transport. �
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4.2.1. Decomposition of the period map. The period map can be understood somewhat explicitly. For
this, let us enumerate the closed points of Y ′y0

as (y′i)i∈I . For each i, we write Lwi := Kv(y
′
i) for short,

and fix a Kv-embedding Lwi ↪→ Kv so as to make the absolute Galois group Gwi of Lwi into an open
subgroup of Gv.

From (4.2), we see that every Lagrangian H0
dR(Xy0/Kv) =

∏
i Lwi -submodule Φ of

H1
dR(Xy0/Kv) =

∏
i

H1
dR(Xy′i

/Lwi)

factorises as a product
∏
i Φ′i, where each Φ′i is a Lagrangian Lwi -subspace of H1

dR(Xy′i
/Lwi). Accordingly,

the period domain Hy0
factorises as

Hy0
=

∏
y′0∈|Y ′y0 |

Res
Lwi
Kv
Hy′i , (4.3)

where we write Hy′i := LGrass(H1
dR(Xy′i

/Lwi)) for the Grassmannian of Lagrangian Lwi -subspaces of
H1

dR(Xy′i
/Lwi) viewed as a Lwi -variety.

This decomposition of Hy0 induces a corresponding decomposition for the map

M≤1 : Hy0
(Kv)→ π0SP(MF(ϕ,N,Gv)) .

For a Lagrangian Lwi-subspace Φ′i of H1
dR(Xy′i

/Lwi), let us write M1
i (Φ′i) for the symplectic filtered

discrete (ϕ,N,Gwi)-module with

M1
i (Φ′i) := (H1

pst(Xy′i
/Qnr

p ),H1
dR(Xy′i

/Lwi), cdR ◦ cBO) ,

where the (ϕ,N,Gwi)-module structure on H1
pst(Xy′i

/Qnr
p ) is the usual one, but where the filtration on

H1
dR(Xy′i

/Lwi) is the one given by

FjH1
dR(Xy′i

/Lwi) =


H1

dR(Xy′i
/Lwi) if j ≤ 0,

Φ′i if j = 1,
0 if j ≥ 2,

instead of the usual Hodge filtration.
Denoting the unit object in MF(ϕ,N,Gwi) by 1 = (Qnr

p , Lwi , 1), we then have the following.

Lemma 4.12. Let Φ ∈ Hy0
(Kv) be a Lagrangian H0

dR(Xy0
/Kv)-submodule of H1

dR(Xy0
/Kv), factorising

as the product
∏
i Φ′i of Lagrangian Lwi-subspaces Φ′i of H1

dR(Xy′0
/Lwi). Then there is a decomposition

M1(Φ) =
∏
i

IndGvGwi
M1
i (Φ′i)

in the category of filtered discrete (ϕ,N,Gv)-modules, compatible with symplectic module structures over

M0 ∼=
∏
i

IndGvGwi
1 .

Proof. As in Example 2.12, the decomposition Xy0
=
∐
iXy′i

induces a decomposition

H1
pH(Xy0/Kv) =

∏
i

IndGvGwi
H1
pH(Xy′i

/Lwi)

in the category of filtered discrete (ϕ,N,Gv)-modules, compatible with symplectic module structures
over H0

pH(Xy0/Kv) = M0, whose de Rham component is the decomposition (4.2). After replacing the
Hodge filtration on H1

dR(Xy0
/Kv) and on each H1

dR(Xy′i
/Lwi) by the filtrations determined by Φ and Φ′i,

respectively, we obtain the desired decomposition of M1(Φ). �
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5. Comparison of period maps and full monodromy

The relevance of v-adic period maps in the context of Diophantine geometry is that they provide a
tool for proving finiteness of subsets of the v-adic points on a smooth curve Y : this idea underlies the
approach of Lawrence and Venkatesh. In order to make this work, one needs to be able to ensure that the
v-adic period map associated to some smooth proper family X → Y has large image. This is achieved by
means of a comparison theorem relating v-adic period maps with period maps over the complex numbers,
the latter of which can be controlled by monodromy computations and basic topology.

In this section, we review the theory of period maps over the complex numbers and its comparison
with v-adic period maps. Using this, we recall what it means for an abelian-by-finite family to have
full monodromy [LV20, p. 927], and give a criterion for certain subsets of Y (Kv) to be finite in terms
of v-adic period maps. The discussion here closely parallels [LV20, §3], save that we need to compare
v-adic and complex period maps around any Kv-point of Y , not just those defined over K.

5.1. Period maps over the complex numbers. Let Y be a smooth connected variety over C. By
an étale neighbourhood Uy0

of a point y0 ∈ Y an in the analytification Y an of Y , we mean a local
biholomorphism Uy0

→ Y an of complex manifolds, together with a chosen point ỹ0 ∈ Uy0
mapping to y0.

For example, Uy0
could be an open neighbourhood of y0 in the analytic topology, or could be the universal

cover of Y an with a chosen point in the fibre over y0.
If Uy0 is a simply connected étale neighbourhood of y0 and E = (E ,∇) is a holomorphic vector bundle

with flat connection on Y an, then by the Riemann–Hilbert correspondence, the restriction (pullback)
of E to Uy0

is trivial: there is a unique isomorphism

T∇ỹ0
: (OUy0 ⊗C Ey0 ,d⊗1)

∼−→ (E|Uy0 ,∇|Uy0 )

of holomorphic vector bundles with flat connection on Uy0 , characterised by the fact that the fibre of T∇ỹ0

at ỹ0 is the identity on Ey0 . Suppose moreover that E comes with an exhaustive, separated descending
filtration F•E whose graded pieces are all vector bundles. One then defines, as in Definition 3.1, the period
domain Gy0

to be the complex flag variety parametrising filtrations on Ey0
with the same dimension data

as F•Ey0
, and defines the complex period map

Φỹ0
: Uy0

→ Gan
y0

to be the holomorphic map classifying the filtration on OUy0 ⊗CEy0 given by pulling back the filtration F•

along the parallel transport map T∇ỹ0
. Here we are implicitly using a description of the functor of points

of Gan
y0

similar to Proposition 3.2.
Later, we will be interested in the Zariski-closure of the image of the complex period map Φỹ0

, by
which we mean the smallest closed subvariety Z ⊆ Gy0

such that Φỹ0
factors through Zan. We note the

following regarding this image.

Lemma 5.1. The Zariski-closure of the image of the complex period map Φỹ0
: Uy0

→ Gan
y0

is independent
of the choice of simply connected étale neighbourhood Uy0 .

Proof. It suffices to prove the following: if U ′y0
is a simply connected open subset of Uy0

containing ỹ0,
then the Zariski-closure of the image of Φỹ0

is equal to the Zariski-closure of the image of Φỹ0
|U ′y0 . Let

us write Z and Z ′, respectively, for the Zariski-closures of these images. We clearly have Z ′ ⊆ Z. For
the converse inclusion, Φ−1

ỹ0
(Z ′) is a closed analytic subvariety of Uy0 with non-empty interior (since it

contains U ′y0
). Hence by isolation of zeroes Φ−1

ỹ0
(Z ′) = Uy0

, so we have the converse inclusion Z ⊆ Z ′. �

5.1.1. Monodromy. One can gain some control on the Zariski-closure of the image of the complex period
map using monodromy actions. Let E := E∇=0 be the C-local system on Y an corresponding to E under
the Riemann–Hilbert correspondence. There is thus a monodromy action of π1(Y an, y0) on the fibre
Ey0 = Ey0 , and hence on the flag variety Gy0 . This monodromy action gives a lower bound on the image
of the period map, as follows.

Lemma 5.2. The Zariski-closure of the image of the complex period map Φỹ0 : Uy0 → Gan
y0

contains the
orbit π1(Y an, y0) · h0 of the point h0 ∈ Gy0(C) corresponding to the filtration F•Ey0 .

Proof. By Lemma 5.1, it suffices to prove this in the case that Uy0
is the universal cover of Y an. We

will show that in this case, π1(Y an, y0) · h0 is already contained in the image of Φỹ0
, without passing to

Zariski-closures.
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So let γ ∈ π1(Y an, y0), and lift γ to a path γ̃ in Uy0 starting from ỹ0. The end point ỹ′0 of γ̃ also lies
above y0, and the monodromy action of γ is given by the parallel transport map19

T∇ỹ0,ỹ′0
: Ey0

→ Ey0
.

Hence γ−1 · h0 = Φỹ0(ỹ′0) lies in the image of the complex period map, which is what we wanted to
show. �

5.2. Comparison between v-adic and complex period maps. Complex period maps can be used to
control the image of v-adic period maps. LetKv be a finite extension of Qp and Y a smooth geometrically
connected variety over Kv with a fixed basepoint y0 ∈ Y (Kv), as in §3.1. Let (E ,∇,F•) be an algebraic
filtered vector bundle with flat connection on Y , and choose an admissible open subset Uy0,v ⊆ Y an in
the rigid analytification Y an of Y over which Ean has a full basis of flat sections, so that we have a v-adic
period map

Φy0,v : Uy0,v → Gan
y0
,

where Gy0 is a flag variety parametrising filtrations on Ey0 , as in Definition 3.1.
Choose an embedding ι : Kv ↪→ C and let Y an

C denote the complex analytification of the base change YC
of Y to C along ι. Choose a simply connected étale neighbourhood Uy0,∞ of y0 in Y an

C , so that we also
have a complex period map

Φỹ0,∞ : Uy0,∞ → Gan
y0,C .

We will prove the following.

Proposition 5.3. Let Zv ⊆ Gy0
and Z∞ ⊆ Gy0,C denote the Zariski-closure of the image of v-adic period

map Φy0,v and the complex period map Φỹ0,∞, respectively. Then Z∞ = Zv,C is the base change of Zv
to C along ι.

The proof of Proposition 5.3 is essentially contained in [LV20, §3.4], except that there the variety Y
and point y0 are defined over a number field rather than Kv. For the sake of completeness, we give the
full argument here.

We begin with a preparatory observation, which parallels Lemma 5.1 for complex period maps.

Lemma 5.4. The Zariski-closure of the image of the v-adic period map Φỹ0,v : Uy0,v → Gan
y0

is indepen-
dent of the choice of v-adic neighbourhood Uy0,v.

Proof. A similar proof to that of Lemma 5.1 works. The key point is that any closed analytic subvariety
of a polydisc with non-empty interior is equal to the whole polydisc: this follows since open inclusions
of polydiscs induce injective maps on their affinoid rings. �

Hence, in proving Proposition 5.3 we are free to replace Y by a Zariski-open subvariety containing y0,
shrinking Uy0,v and Uy0,∞ correspondingly. Thus, we are free to assume that Y is affine and connected,
that the vector bundle E ' O⊕mY is trivial, and that so too are the graded pieces of the filtration F•E .
We fix an identification E = O⊕mY for which FiE = O⊕miY is the constant subbundle spanned by the
first mi basis sections, where mi := rk FiE . Hence, the connection ∇ on E = O⊕mY is given by

∇(f) = d(f) + ω · f,

where the connection matrix ω is an m × m matrix with coefficients in Γ(Y,Ω1
Y/Kv

). Flatness of the
connection is equivalent to the equality dω + ω ∧ ω = 0.

Now let us fix a system t = t1, . . . , tn of local parameters at y0. [Kat70, Proposition 8.9] ensures that
there is a unique m ×m matrix T with coefficients in Kv[[t]] = Kv[[t1, . . . , tn]] satisfying the differential
equation

dT = −ω · T subject to the initial condition T |t=0 = Im , (5.1)
where

d: Kv[[t]]→ Ω1,f
Kv[[t]]/Kv

=

n⊕
i=1

Kv[[t]] dti

19Our convention for composition in fundamental groups is that γ2γ1 denotes the composite loop given by first follow-
ing γ1 and then following γ2. This is the opposite of the usual convention in topology.
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is the universal t-adically continuous derivation. Here, by mild abuse of notation, we regard ω as a
matrix with coefficients in Ω1,f

Kv[[t]]/Kv
via the inclusion Γ(Y,Ω1

Y/Kv
) ↪→ Ω1,f

Kv [[t]]/Kv
given by taking power

series expansions.
For 1 ≤ i ≤ m we write Ti for the ith column of T , and let

Φ̂y0
: Spec(Kv[[t]])→ Gy0

denote the Kv-scheme map classifying the filtration on Kv[[t]]
⊕m where Fi is the span of the vectors

T1, . . . , Tmi . Explicitly, the flag variety Gy0 is a closed subvariety of
∏
i∈Z P

(mmi)−1

Kv
via the embed-

ding taking a filtration F• on Ey0
= K⊕mv to the sequence of one-dimensional subspaces

∧mi Fi inside∧mi(K⊕mv ) = K
⊕(mmi)
v for i ∈ Z, and Φ̂y0

is the map whose ith component is given by T1 ∧ · · · ∧ Tmi ,
viewed as a map from Kv[[t]]→ A(mmi) \ {0}.

Now shrinking the v-adic neighbourhood Uy0,v and rescaling the local parameters t1, . . . , tn if necessary,
we may assume that Uy0,v = Sp(Kv〈t〉) is the polydisc of radii 1 in the parameters t1, . . . , tn. The sheaf
of Kv-analytic 1-forms on Uy0,v is the free vector bundle generated by dt1, . . . ,dtn [FvdP04, Proof of
Theorem 3.6.1], so the v-adic parallel transport map

T∇y0,v : (O⊕mUy0,v
,d⊕m)

∼−→ (O⊕mUy0,v
,∇)

is represented by an m × m matrix with coefficients in Kv〈t〉 ⊂ Kv[[t]] which satisfies the differential
equation (5.1). It thus follows by unicity of solutions to (5.1) that T∇y0,v is represented by the matrix T
(which thus has coefficients in Kv〈t〉). It then follows that the v-adic period map

Φy0,v : Uy0,v → Gan
y0
⊆
∏
i∈Z

P
(mmi)−1,an

Kv

is the map whose ith component is given by T1∧ · · ·∧Tmi : in other words, the Taylor expansion of Φy0,v

at y0 is the map Φ̂y0 . Using this, we see

Lemma 5.5. The Zariski-closure Zv of the image of the v-adic period map Φy0,v : Uy0,v → Gan
y0

is the
scheme-theoretic image of Φ̂y0

.

Proof. Choose a projective embedding Gy0 ⊆ PNKv . The above discussion shows that there are elements
f0, . . . , fN ∈ Kv〈t〉 such that both Φy0,v : Uy0,v → Gan

y0
and Φ̂y0

: Spec(Kv[[t]]) → Gy0
are given in

projective coordinates by (f0 : . . . : fN ). The homogenous ideal of definition of Zv ⊆ PNKv is then the
ideal generated by those homogenous elements F ∈ Kv[X0, . . . , XN ] such that F (f0, . . . , fN ) = 0. But
this is also the homogenous ideal of definition of the scheme-theoretic image of Φ̂y0

. �

We can apply exactly the same argument to the complex-analytic period map. Shrinking Uy0,∞ if
necessary, we may assume that the local parameters t1, . . . , tn are defined on all of Uy0,∞, and that
dt1, . . . ,dtn forms a basis for the O(Uy0,∞)-module of holomorphic 1-forms on Uy0,∞. The embedding
ι : Kv ↪→ C induces an embedding Kv[[t]] ↪→ C[[t]], which we also denote by ι. Since the sheaf of
holomorphic 1-forms on Uy0,∞ is the free vector bundle generated by dt1, . . . ,dtn, the complex-analytic
parallel transport map

T∇y0,∞ : (O⊕mUy0,∞
,d⊕m)

∼−→ (O⊕mUy0,∞
,∇)

is represented by an m × m matrix T∞ with coefficients in the ring O(Uy0,∞) ⊂ C[[t]] of holomorphic
functions on Uy0,∞ which satisfies the differential equation

dT∞ = −ι(ω) · T∞ subject to the initial condition T∞|t=0 = Im .

Since this differential equation has a unique solution over C[[t]], it follows that T∞ = ι(T ). It then follows
that the complex-analytic period map

Φy0,∞ : Uy0,∞ → Gan
y0,C ⊆

∏
i∈Z

P
(mmi)−1,an

C

is the map whose ith component is given by ι(T1) ∧ · · · ∧ ι(Tmi). As for the v-adic period map, this
implies
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Lemma 5.6. The Zariski-closure Z∞ of the image of the complex period map Φỹ0,∞ : Uy0,∞ → Gan
y0,C is

the scheme-theoretic image of Φ̂y0,C : Spec(C⊗ι Kv[[t]])→ Gy0,C.

Proof. A similar proof to that of Lemma 5.5 works. That is, if we pick a projective embedding Gy0
⊆ PNKv ,

then we have shown that there are elements f0, . . . , fN ∈ Kv[[t]] with each ι(fi) ∈ C[[t]] convergent
on Uy0,∞, such that Φ̂y0

: Spec(Kv[[t]]) → Gy0
⊆ PNKv and Φy0,∞ : Uy0,∞ → Gan

y0,C ⊆ PN,an
C are given in

projective coordinates by (f0 : · · · : fN ) and (ι(f0) : · · · : ι(fN )), respectively. The homogenous ideal of
definition of Z∞ ⊆ PNKv is then the ideal generated by those homogenous elements F ∈ C[X0, . . . , XN ]
such that F (ι(f0), . . . , ι(fN )) = 0. But this is also the homogenous ideal of definition of the scheme-
theoretic image of Φ̂y0,C. �

Taken together, Lemmas 5.5 and 5.6 imply Proposition 5.3. Indeed, for any open affine W ⊆ Gy0

containing the base point (corresponding to the filtration F• Ey0
on Ey0

), the intersection Zv ∩W is the
subscheme of W cut out by the kernel of Φ̂∗y0

: O(W )→ Kv[[t]], while Z∞ ∩WC is the subscheme of WC

cut out by the kernel of C⊗ι Φ̂∗y0
: C⊗ιO(W )→ C⊗ιKv[[t]]. But ker(C⊗ι Φ̂∗y0

) = C⊗ι ker(Φ̂∗y0
), whence

Z∞ ∩WC = (Zv ∩W )C. Thus Z∞ = Zv,C as desired. �

Remark 5.7. The germ Φ̂y0 of the period map can be characterised intrinsically, without choosing bases:
the restriction Eŷ0

of E to the formal neighbourhood Spec(ÔY,y0
) of y0 in Y is a finite ÔY,y0

-module with
a continuous flat connection, so by [Kat70, Proposition 8.9] admits a unique trivialisation

T̂y0
: (ÔY,y0

⊗Kv Ey0
,d⊗1)

∼−→ (Eŷ0
,∇ŷ0

) .

The map Φ̂y0
: Spec(ÔY,y0

) → Gy0
is just the map classifying the filtration on ÔY,y0

⊗Kv Ey0
given by

pulling back the filtration on Eŷ0
along T̂y0

. This description makes it clear that if the variety Y , the
point y0 and the filtered vector bundle with flat connection (E ,∇,F•) are all defined over some subfield K
of Kv, then so too is Φ̂y0

.

5.3. Full monodromy and a criterion for finiteness. Let us now specialise all of the above theory
to the case of abelian-by-finite families. Suppose initially that X → Y ′ → Y is an abelian-by-finite
family, where Y is a smooth connected variety over C. The relative de Rham cohomology H •

dR(X/Y )an

corresponds, under the Riemann–Hilbert correspondence, to the relative Betti cohomology R•πan
∗ CXan .

The fibre of R•πan
∗ CXan at a point y0 ∈ Y an is the usual C-linear Betti cohomology H•B(Xy0

,C) of the
fibre Xy0

, i.e. the singular cohomology of its analytification Xan
y0
. The fibre Xy0

is a disjoint union of
polarised complex abelian varieties, indexed by the closed points of Y ′ above y0, so we have a decompo-
sition

H1
B(Xy0 ,Q) =

⊕
y′0∈|Y ′y0 |

H1
B(Xy′0

,Q) ,

where each H1
B(Xy′0

,Q) carries a perfect alternating pairing induced from the polarisation on Xy′0
(con-

structed analogously to the pairings in §4).
The following definition will play a key role.

Definition 5.8 (cf. [LV20, (i) on p928]). We say that the abelian-by-finite family X → Y ′ → Y has full
monodromy just when the Zariski-closure of the image of the monodromy representation

ρ : π1(Y an, y0)→ GL(H1
B(Xy0 ,Q))(Q)

contains ∏
y′0∈|Y ′y0 |

Sp(H1
B(Xy′0

,Q)).

It is easy to check that this property is independent of the point y0.
More generally, if Y is a smooth geometrically connected variety over a characteristic 0 field K, we say

that an abelian-by-finite family X → Y ′ → Y has full monodromy with respect to a complex embedding
ι : K ↪→ C just when XC → Y ′C → YC has full monodromy.

For us, the importance of full monodromy is that it gives a simple criterion for the image of the v-adic
period map to be as large as possible.
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Lemma 5.9. Suppose that Y is a smooth geometrically connected variety over a finite extension Kv

of Qp, and that X → Y ′ → Y is an abelian-by-finite family with full monodromy with respect to some
complex embedding ι : Kv ↪→ C. Then for all y0 ∈ Y (Kv) the v-adic period map

Φy0
: Uy0

→ Han
y0

has Zariski-dense image, where Hy0 is the Kv-variety parametrising Lagrangian H0
dR(Xy0/Kv)-submodules

of H1
dR(Xy0

/Kv), as in §4.2.

Proof. By Proposition 5.3 and Lemma 5.2, it suffices to show that the orbit of the base point h0 ∈ Hy0
(C)

under the monodromy action of π1(Y an
C , y0) is Zariski-dense. By assumption, the Zariski-closure of this

orbit contains the orbit of h0 under the action of
∏
y′0∈|Y ′y0 |

Sp(H1
dR(Xy′0,C/C)). But this group acts

transitively on Lagrangian submodules of H1
dR(Xy0,C/C) =

⊕
y′0∈|Y ′y0 |

H1
dR(Xy′0,C/C), so we are done. �

As a consequence of Lemma 5.9, we obtain a criterion for showing that certain subsets of Y (Kv) are
finite in the case that Y is a curve.

Corollary 5.10 (cf. [LV20, Lemma 3.3]). Suppose that Y is a smooth curve over a finite extension Kv

of Qp, and that X → Y ′ → Y is an abelian-by-finite family with full monodromy with respect to some
complex embedding ι : Kv ↪→ C. Let y0 ∈ Y (Kv) and let Uy0 ⊆ Y an be an admissible open neighbourhood
of y0, isomorphic to a closed disc, over which H 0

dR(X/Y )an and H 1
dR(X/Y )an have a full basis of

horizontal sections.
Suppose that C0 ⊆ Uy0

(Kv) is a subset such that Φy0
(C0) is not Zariski-dense in Hy0

. Then C0 is
finite.

Remark 5.11. If C ⊆ Y (Kv) is a subset for which Φy0(C ∩ Uy0(Kv)) is not Zariski-dense in Hy0 for all
choices of point y0 and neighbourhood Uy0

, then the whole set C must be finite by Corollary 5.10 and
the fact that Y (Kv) is covered by a finite number of the neighbourhoods Uy0

(Kv) by compactness. This
is how we will apply Corollary 5.10 in practice.

Proof of Corollary 5.10. Let Z ( Hy0 be a proper Zariski-closed subvariety containing Φy0(C0). Then
Lemma 5.9 ensures that Zan does not contain the image of Φy0

. This implies that Φ−1
y0

(Zan) ( Uy0
is a

closed analytic proper subspace of Uy0
, i.e. is the vanishing locus of a non-zero coherent sheaf of ideals

in OUy0 . But since Uy0
is a disc, its only closed analytic proper subspaces are finite. �

6. The Lawrence–Venkatesh locus

Now we come to the heart of the paper. Let us fix a smooth projective curve Y of genus g ≥ 2 over
a number field K and a p-adic place v of K. Inspired by obstruction theory, we make the following
definition.

Definition 6.1. Let X → Y ′ → Y be an abelian-by-finite family, and let p be a prime number. We
define the adelic Lawrence–Venkatesh locus (with p-adic coefficients)

Y (AK)LV
X ⊆ Y (AK)

to be the set of adelic points (yu)u ∈ Y (AK) for which there exists a symplectic pair (A, V ) in the
category of GK-representations with Qp-coefficients such that

H≤1
ét (Xyu,Ku

,Qp) ∼= (A|Gu , V |Gu)

as symplectic pairs in the category of Gu-representations for every place u of K. We say that the
pair (A, V ) interpolates the local points yu ∈ Y (Ku). For a p-adic place v of K, we define

Y (Kv)
LV
X ⊆ Y (Kv)

to be the projection of Y (AK)LV
X to Y (Kv).

Although this is the most natural definition of an obstruction locus associated to an abelian-by-finite
family, for our purposes it is more convenient to work with a slightly larger locus by relaxing the local
conditions imposed on the interpolating pair (A, V ). We recall the definition from the introduction.

Definition 6.2. Let S be a finite set of places of K, and p a prime number. A symplectic pair (A, V )
in the category of GK-representations is called S-good just when:



44 L. ALEXANDER BETTS AND JAKOB STIX

• A is unramified outside S;
• V is unramified, pure and integral of weight 1 outside S; and
• V is de Rham at all places over p, with Hodge–Tate weights in {0, 1}.

Let X → Y ′ → Y be an abelian-by-finite family, and let S be a finite set of places of K containing all
places dividing p∞ and all places of bad reduction for X → Y . Let v be a finite place of K, lying over
the rational prime p. We define the Lawrence–Venkatesh locus

Y (Kv)
LV
X,S ⊆ Y (Kv)

to be the set of points yv ∈ Y (Kv) for which there exists an S-good pair (A, V ) such that

H≤1
ét (Xyv,Kv

,Qp) ∼= (A|Gv , V |Gv )

as symplectic pairs in the category of Gv-representations. We say that the pair (A, V ) interpolates the
point yv ∈ Y (Kv).

Remark 6.3. One could also add the restriction that A is pure and integral of weight 0 (i.e. an Artin
representation) in the above definition. This does not change the locus Y (Kv)

LV
X,S , since if (A, V ) inter-

polates yv ∈ Y (Kv), then A is isomorphic to Qnp as an algebra and so has finite automorphism group.

The relationship between these two loci is as follows.

Lemma 6.4. Let X → Y ′ → Y be an abelian-by-finite family. Let p be a prime and let S be a finite
set of places of K, containing all places dividing p∞ and all places of bad reduction20 for X → Y ′ → Y .
Suppose that y = (yu)u ∈ Y (AK)LV

X is an adelic point in the Lawrence–Venkatesh locus, interpolated by
a symplectic pair (A, V ) in the category of GK-representations. Then the pair (A, V ) is S-good in the
sense of Definition 1.2.

In particular we have the containment

Y (Kv)
LV
X ⊆ Y (Kv)

LV
X,S

for all suitable21 S, where Y (Kv)
LV
X,S is as in Definition 1.2.

Proof. This is merely a statement about the local representations Hi
ét(Xyu,Ku

,Qp) associated to local
points yu ∈ Y (Ku): they are unramified, pure and integral of weight i whenever u /∈ S (since Xyu has
good reduction), and they are de Rham with Hodge–Tate weights in {0, 1, . . . , i} whenever u | p. �

Our aim in this section is to prove the following, which can be seen as an abstraction and generalisation
of the argument in [LV20].

Theorem 6.5. Suppose that the place v is self-conjugate. Then there exists an abelian-by-finite family
X → Y ′ → Y for which the Lawrence–Venkatesh locus Y (Kv)

LV
X,S is finite for all suitable S.

This theorem already implies the Mordell Conjecture, as in [LV20], once one makes the almost tauto-
logical observation that

Y (K) ⊆ Y (Kv)
LV
X,S

for all X → Y ′ → Y . Indeed, for y ∈ Y (K), the interpolating pair (A, V ) can be taken to be

H≤1
ét (Xy,K ,Qp) = (H0

ét(Xy,K ,Qp),H
1
ét(Xy,K ,Qp))

with its usual GK-action, which is S-good by Lemma 6.4.

20A finite place of K is of good reduction for X → Y ′ → Y just when it extends to an abelian-by-finite family over a
smooth proper model of Y over the ring of integers at that place.

21We will use “suitable” as a shorthand for “containing all places dividing p∞ and all places of bad reduction”.
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6.1. The Principal Trichotomy. The starting point for the argument is a certain restriction on global
representations. Before we get to this, let us describe an idea which doesn’t work, but nonetheless informs
the general approach, as sketched in the introduction.

Suppose we knew that for every pair (A, V ) satisfying the conditions of Definition 6.1, the A-module V
had no non-zero GK-stable isotropic A-submodules. One could then show, using the symplectic version
of Faltings’ Lemma (Lemma 2.4), that there are only finitely many possibilities for the pair (A, V ) up to
isomorphism, once one specifies the dimensions of A and V . This would imply that there are only finitely
many possibilities for the isomorphism class of H≤1

ét (Xy,Kv
,Qp) for y ∈ Y (Kv)

LV
X,S . To prove finiteness

we may therefore restrict to such y with H≤1
ét (Xy,Kv

,Qp) in a fixed isomorphism class.
Now we restrict attention to points in a suitably small analytic neighbourhood Uy0

of some point y0,
and assume for simplicity of exposition that the fibre Y ′y0

is connected (so isomorphic to Spec(Lw) for a
finite extension Lw/Kv and Xy0 is a polarised abelian variety over Lw). For

y ∈ Y (Kv)
LV
X,S ∩ Uy0

(Kv),

the fact that H≤1
ét (Xy,Kv

,Qp) lies in fixed isomorphism class implies that the image Φy0
(y) ∈ Hy0

(Kv)
under the period map would have to lie in a single orbit under the action of the automorphism group

AutGSp
(ϕ,N,Gw)(H

1
pst(Xy0

/Qnr
p )) .

See §2.2.4, especially Remark 2.14.
Since the scalars in AutGSp

(ϕ,N,Gw)(H
1
pst(Xy0

/Qnr
p )) act trivially on ResKvQp Hy0

, the dimension estimate
of Proposition 2.16(2) would show that Φy0(y) would lie in a closed Qp-subvariety of ResKvQp H of Qp-
dimension ≤ d(2d+1), where d is the relative dimension of X → Y . By the base change–Weil restriction
adjunction, this implies that Φy0(y) would lie in a Kv-subvariety of H of Kv-dimension at most d(2d+1).
So if [Lw : Kv] ≥ 4, then we would have

d(2d+ 1) < [Lw : Kv] ·
d(d+ 1)

2
= dimKv Hy0

,

and so Φy0
(y) would have to lie in a proper Zariski-closed Kv-subvariety of Hy0

. If moreover our abelian-
by-finite family had full monodromy, we would obtain finiteness of Y (Kv)

LV
X,S via Corollary 5.10.

However, this approach fails as stated, since one has no guarantee that pairs (A, V ) satisfying the
conditions of Definition 6.1 have no non-zero GK-stable isotropic A-submodules in V . The key idea
in [LV20] is that the numerics of self-conjugate places still impose (rather technical) constraints on the
possible representations which can appear, and that these constraints still suffice to prove finiteness
results.

This is what we state and prove here, following [LV20]. Before we give a precise statement, we
introduce some notation. Suppose that A is an algebra in the category of GK-representations (resp.
Gv-representations). Since A is an artinian Qp-algebra, the set

ΣA := Spec(A)(Qp) = {ψ : A→ Qp ; Qp-algebra homomorphism}

is finite and GK (resp. Gv) acts continuously on this finite set from the right. For ψ ∈ ΣA, we write

Gψ ≤ GK ( resp. Gwψ ≤ Gv )

for the stabiliser of ψ. The fixed fields under Gψ and Gwψ are denoted by Lψ ⊂ K and Lwψ ⊂
Kv, respectively. When A is an algebra in GK-representations, we may view it as an algebra in Gv-
representations in a natural way: we then have Gwψ = Gv ∩ Gψ, and Lwψ = (Lψ)wψ is the completion
of Lψ at a certain v-adic place wψ of Lψ, namely the restriction of the v-adic place on Kv ⊇ K ⊇ Lψ.
So the fields Lψ and Lwψ fit together in the following diagram.

Kv Lwψ Kv

K Lψ K

For an A-module V in the category of GK- or Gv-representations, we write

Vψ := Qp ⊗A,ψ V
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for the base-change of V along ψ : A→ Qp. This is a symplectic representation ofGψ orGwψ , respectively.

Remark 6.6. In the particular case of the symplectic pair H≤1
ét (Xyv,Kv

,Qp) associated to an abelian-by-
finite family and a Kv-rational point yv ∈ Y (Kv), we have

H0
ét(Xyv,Kv

,Qp) = H0
ét(Y

′
yv,Kv

,Qp) =
∏

π0(Y ′
yv,Kv

)

Qp =
∏

ψ∈Y ′yv (Kv)

Qp .

Thus there is a canonical Gv-equivariant bijection

{ψ : H0
ét(Xyv,Kv

,Qp)→ Qp ; Qp-algebra homomorphism} = Y ′yv (Kv) .

So a Qp-algebra homomorphism ψ corresponds to a choice of a closed point y′v of Y ′yv and aKv-embedding
Kv(y

′
v) ↪→ Kv. The condition that [Gv : Gwψ ] ≥ 4 just means that the degree [Kv(y

′
v) : Kv] is at least 4.

Proposition 6.7 (The Principal Trichotomy, cf. [LV20, Sublemma on p. 936]). Suppose that v is self-
conjugate.

Let (A, V ) be a symplectic pair in the category of GK-representations, where V has rank 2d > 0 as
an A-module. Suppose moreover that V is de Rham at places above p, has Hodge–Tate weights in {0, 1}
at v, and is unramified and pure of weight 1 outside a finite set.

Let Σ = ΣA be the set of Qp-algebra homomorphisms A → Qp. Then at least one of the following
occurs:

a) there is a ψ ∈ Σ such that [Gv : Gwψ ] ≥ 4 and Vψ is GSp-irreducible as a symplectic representa-
tion of Gψ ≤ GK ;

b) there is a ψ ∈ Σ such that [Gv : Gwψ ] ≥ 4 and there exists a non-zero isotropic Gψ-subrepresenta-
tion 0 6= W ≤ Vψ whose average Hodge–Tate weight at wψ is ≥ 1/2, i.e.

dimLwψ
F1DdR,wψ (W ) ≥ 1

2
dimQp(W ) ; or

c) the number of ψ ∈ Σ satisfying [Gv : Gwψ ] < 4 is ≥ 1
d+1 dimQp(A).

Proof. We begin with a preliminary reduction. Let us write Σ =
∐
i Σi as the union of its GK-orbits.

We write
Ai =

∏
ψ∈Σi

Qp,

and write Vi := Ai ⊗A V for the base-change of V along the GK-equivariant map A � Ai whose
components are the ψ ∈ Σi = ΣAi . It is easy to see that (A, V ) satisfies condition (a) (respectively (b))
if and only if some (Ai, Vi) does. Moreover, if all Ai satisfied condition (c), then the proportion of each Σi
contained in a Gv-orbit of size < 4 would be ≥ 1

d+1 , and so the proportion of Σ contained in a Gv-orbit
of size < 4 would be ≥ 1

d+1 . So A would also satisfy (c) because #Σ ≤ dimQp(A). Hence it suffices to
prove the result for the pairs (Ai, Vi): if any of them satisfy (a) or (b) then so does (A, V ), and if all of
them satisfy (c), then so does (A, V ).

We thus restrict attention to the case that A =
∏
ψ∈Σ Qp is a Qp-split Artinian algebra for a transitive

GK-set Σ (which is also the set ΣA of Qp-algebra homomorphisms A→ Qp). The natural map

V
∼−→
∏
ψ∈Σ

Vψ

is an isomorphism by the structure theory of modules over Artinian rings. The action of some σ ∈ GK
maps the factor Vψ isomorphically onto the factor Vψ·σ. In other words, if we fix some ψ0 ∈ Σ, then
V = IndGKGψ0

Vψ0
as GK-equivariant symplectic modules over A = IndGKGψ0

Qp.
Suppose now that neither (a) nor (b) holds; we will show (c). If Σ contains no Gv-orbit of size ≥ 4,

then (c) certainly holds, so we may assume without loss of generality that [Gv : Gwψ0
] ≥ 4. Failure

of (a) implies that Vψ0
must fail to be GSp-irreducible, so there exists a non-zero Gψ0

-stable isotropic
subspace W0 ≤ Vψ0 . For every σ ∈ GK , σ−1(W0) is an isotropic subspace of Vψ0·σ, stable under the
action of Gψ0·σ = σ−1Gψ0

σ. The subrepresentation σ−1(W0) is automatically de Rham at wψ0·σ with
Hodge–Tate weights in {0, 1}, so by failure of (b), we must have

dimLwψ0·σ
F1DdR,wψ0·σ

(σ−1(W0)) ≤ 1

2
(dimQp(W0)− 1) (∗)
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whenever ψ0 · σ is contained in a Gv-orbit of size ≥ 4.
Now the place wψ0·σ can be viewed as a place of L := Lψ0

under the identification Lψ0·σ
∼−→ Lψ0

given
by the action of σ. If we let σ run over a set of right coset representatives of Gψ0 ≤ GK , then we obtain
every v-adic place of L in this way, with the place w appearing [Lw : Kv] times. Hence, by summing (∗)
and the trivial bound dimLw F1DdR,w(W0) ≤ dimQp(W0), we obtain the inequality∑

w|v

[Lw : Kv] dimLw F1DdR,w(W0) ≤ 1

2
(dimQp(W0)− 1) · (#Σ−#Σ<4) + dimQp(W0) ·#Σ<4 ,

where Σ<4 denotes the subset of Σ consisting of the Gv-orbits of size < 4. But since W0, being a
subquotient of V , has Hodge–Tate weights in {0, 1}, Corollary 2.21 gives us that∑

w|v

[Lw : Kv] dimLw F1DdR,w(W0) =
1

2
dimQp(W0) ·#Σ .

Equating and rearranging, we obtain

(dimQp(W0) + 1) ·#Σ<4 ≥ #Σ = dimQp(A) .

SinceW0 is an isotropic subspace of the 2d-dimensional symplectic vector space Vψ, we have the estimate
dimQp(W0) ≤ d and we have shown (c). �

The principal trichotomy allows us to decompose the Lawrence–Venkatesh locus Y (Kv)
LV
X,S into three

sets, according to which of the conditions (a), (b) or (c) is satisfied for the interpolating pair (A, V ). Let
us make a precise definition.

Definition 6.8. Let S be a finite set of places of K, p a prime number, and v a p-adic place of K.
a) We say that an S-good symplectic pair (A, V ) in the category of GK-representations is of type (a)

just when there exists a ψ ∈ ΣA such that [Gv : Gwψ ] ≥ 4 and Vψ is GSp-irreducible as a
symplectic representation of Gψ ≤ GK .

b) We say that a symplectic pair (A, V ) in the category of Gv-representations is of type (b) just
when there exists a ψ ∈ ΣA such that [Gv : Gwψ ] ≥ 4 and there exists a non-zero isotropic
Gwψ -subrepresentation 0 6= W ≤ Vψ whose average Hodge–Tate weight is ≥ 1/2.

c) Let d > 0 be a positive integer. We say that an algebra A in the category of Gv-representations
is of type (c) just when the number of ψ ∈ ΣA such that [Gv : Gwψ ] < 4 is ≥ 1

d+1 dimQp(A).
If X → Y ′ → Y is an abelian-by-finite family of constant relative dimension d > 0, and if S is a

suitable set of places of K, then we define three subsets

Y (Kv)
LV
X,S,(a), Y (Kv)

LV
X,(b), Y (Kv)

LV
X,(c) ⊆ Y (Kv)

as follows.
a) Y (Kv)

LV
X,S,(a) ⊆ Y (Kv) is the set of all points yv ∈ Y (Kv) for which there exists an S-good

pair (A, V ) of type (a) such that

H≤1
ét (Xyv,Kv

,Qp) ∼= (A|Gv , V |Gv )

as symplectic pairs in the category of Gv-representations.
b) Y (Kv)

LV
X,(b) is the set of all points yv ∈ Y (Kv) for which H≤1

ét (Xyv,Kv
,Qp) is of type (b).

c) Y (Kv)
LV
X,(c) is the set of all points yv ∈ Y (Kv) for which H0

ét(Xyv,Kv
,Qp) is of type (c).

With this notation, Proposition 6.7 implies that when v is self-conjugate, then for any abelian-by-finite
family X → Y ′ → Y of constant relative dimension d > 0 we have the containment

Y (Kv)
LV
X,S ⊆ Y (Kv)

LV
X,S,(a) ∪ Y (Kv)

LV
X,(b) ∪ Y (Kv)

LV
X,(c) .

So, to prove Theorem 6.5, it suffices to study the sets Y (Kv)
LV
X,S(a), Y (Kv)

LV
X,(b) and Y (Kv)

LV
X,(c) separately.

Specifically, we will prove:
• if X → Y ′ → Y has full monodromy, then Y (Kv)

LV
X,S(a) and Y (Kv)

LV
X,(b) are finite; and

• there exists a choice of X → Y ′ → Y which has full monodromy and for which Y (Kv)
LV
X,(c) = ∅.

These together suffice to prove Theorem 6.5.
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6.2. Finiteness for points of type (a). To begin with, we deal with the set Y (Kv)
LV
X,S,(a) using the

theory of period maps. For the duration of §6.2, we fix an abelian-by-finite family X → Y ′ → Y and fix
a choice of finite set S of places of K, containing all places dividing p∞ and all places of bad reduction
for X → Y ′ → Y . Our aim here is to prove the following.

Proposition 6.9. For a point y0 ∈ Y (Kv), let

Hy0
(Kv)

LV
X,S,(a) ⊆ Hy0

(Kv)

denote the set of Lagrangian H0
dR(Xy0

/Kv)-submodules Φ of H1
dR(Xy0

/Kv) for which there exists an
S-good symplectic pair of type (a) in the category of GK-representations such that

M≤1(Φ) ∼= (DpH(A|Gv ),DpH(V |Gv ))

as symplectic pairs in the category of filtered discrete (ϕ,N,Gv)-modules.
Then Hy0

(Kv)
LV
X,S,(a) is not Zariski-dense in Hy0

.

Corollary 6.10. If X → Y ′ → Y has full monodromy, then Y (Kv)
LV
X,S,(a) is finite.

Proof of Corollary 6.10. Choose a point y0 ∈ Y (Kv) and let Uy0
⊆ Y an

Kv
be an admissible open neighbour-

hood isomorphic to a closed disc, over which H 0
dR(XKv/YKv )an and H 1

dR(XKv/YKv )an have a full basis
of horizontal sections. It follows from Proposition 4.11 that the image of Y (Kv)

LV
X,S,(a) ∩ Uy0

(Kv) under
the period map Φy0 lies in Hy0(Kv)

LV
X,S,(a), and hence Y (Kv)

LV
X,S,(a) ∩Uy0(Kv) is finite by Corollary 5.10.

By compactness this implies that Y (Kv)
LV
X,S,(a) is finite. �

For the proof, let us enumerate the closed points of Y ′y0
as (y′i)i∈I as in §4.2.1 and write Lwi = Kv(y

′
i).

Recall that any Lagrangian H0
dR(Xy0/Kv)-submodule Φ of H1

dR(Xy0/Kv) factors as
∏
i Φ′i where each Φ′i

is a Lagrangian Lwi-subspace of H1
dR(Xy′i

/Lwi), and that we then have by Lemma 4.12 a decomposition

M1(Φ) =
∏
i

IndGvGwi
M1
i (Φ′i)

in the category of filtered discrete (ϕ,N,Gv)-modules, compatible with symplectic structures. We ex-
amine the possibilities for the isomorphism classes of the M1

i (Φ′i).

Definition 6.11. For an index i, let di := dimLwi
Xy′i

and write δ := deg(Y ′ → Y ). We write Ti for
the set of isomorphism classes of symplectic 1-modules of rank 2di in the category of filtered discrete
(ϕ,N,Gwi)-modules D for which there exists:

• a finite extension L/K of degree ≤ δ, unramified outside S;
• a v-adic place wi of L; and
• a GSp-irreducible symplectic representation V of GL, de Rham at places of L over p and unram-

ified, pure and integral of weight 1 outside places of L above S
such that Lwi is Kv-isomorphic to the completion of L at wi and D ∼= DpH,wi(V |Gwi ) as symplectic
filtered discrete (ϕ,N,Gwi)-modules.

As a consequence of Hermite–Minkowski and Faltings’ Lemma (Lemma 2.4), we have the following.

Lemma 6.12. The set Ti is finite for all i.

Now as in §4 let us write
Hy′i := LGrass(H1

dR(Xy′i
/Lwi))

for the Lagrangian Grassmannian parametrising Lagrangian Lwi-subspaces Φ′i of H1
dR(Xy′i

/Lwi), and
write

Hy′i(Lwi)(a) ⊆ Hy′i(Lwi)
for the set of Lagrangian Lwi-subspaces Φ′i for which M1

i (Φ′i) ∈ Ti. The key computation is as follows.

Lemma 6.13 (cf. proof of [LV20, Lemma 6.2]). If [Lwi : Kv] ≥ 4, then Hy′i(Lwi)(a) is not Zariski-dense

in Res
Lwi
Kv
Hy′i .

Remark 6.14. It is important in Lemma 6.13 that we Weil-restrict down to Kv: we certainly make no
claim as to whether Hy′i(Lwi)(a) is Zariski-dense in Hy′i .
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Proof of Lemma 6.13. Since Ti is finite, the set Hy′i(Lwi)(a) is a finite union of orbits under the action
of (the Qp-points of) AutGSp

(ϕ,N,Gwi )
(H1

pst(Xy′i
/Qnr

p )) on Hy′i(Lwi), as in Lemma 2.15. This action is Qp-

algebraic, i.e. arises from an action of theQp-algebraic group AutGSp
(ϕ,N,Gwi )

(H1
pst(Xy′i

/Qnr
p )) on Res

Lwi
Qp Hy′i .

Since the scalars inside AutGSp
(ϕ,N,Gwi )

(H1
pst(Xy′i

/Qnr
p )) act trivially, it follows from the dimension estimate

of Proposition 2.16(2) that Hy′i(Lwi)(a) is contained in a closed Qp-algebraic subvariety of Res
Lwi
Qp Hy′i of

Qp-dimension ≤ di(2di+1). By the base change–Weil restriction adjunction, this implies thatHy′i(Lwi)(a)

is also contained in a closed Kv-algebraic subvariety of Res
Lwi
Kv
Hy′i of Kv-dimension ≤ di(2di + 1). Since

the Kv-dimension of Res
Lwi
Kv
Hy′i is

dimKv Res
Lwi
Kv
Hy′i = [Lwi : Kv] ·

di(di + 1)

2
> di(2di + 1) ,

we have non-density for dimension reasons. �

Proof of Proposition 6.9. Consider the decomposition

Hy0 =
∏
i

Res
Lwi
Kv
Hy′i

from (4.3). We claim that for every Φ ∈ Hy0
(Kv)

LV
X,S,(a) there exists an index i such that [Gv : Gwi ] ≥ 4

and the ith component Φ′i of Φ lies in Hy′i(Lwi)(a). The proposition then follows from Lemma 6.13.
Proving the claim is a matter of unwinding definitions. Given some Φ ∈ Hy0

(Kv)
LV
X,S,(a), there is by

definition an S-good symplectic pair (A, V ) of type (a) in the category of GK-representations and an
isomorphism

M≤1(Φ) ∼= (DpH(A|Gv ),DpH(V |Gv )) (∗)
of symplectic pairs in filtered (ϕ,N,Gv)-modules. Recall that being of type (a) means that there exists
some ψ ∈ ΣA such that [Gv : Gwψ ] ≥ 4 and Vψ is GSp-irreducible. Since DpH is a fully faithful ⊗-functor,
the algebra part of (∗) is DpH of an isomorphism

H0
ét(Xy0,Kv

,Qp) ∼= A|Gv ,
so the element ψ ∈ ΣA corresponds to a Qp-algebra homomorphism

ψi : H0
ét(Xy0,Kv

,Qp)→ Qp .

Such a map is automatically the map induced by a Kv-point of Y ′y0
, i.e. a pair of a closed point y′i ∈ |Y ′y0

|
and a Kv-embedding Kv(y

′
i) ↪→ Kv. Replacing ψ by another element of ΣA in its Gv-orbit, we may

assume without loss of generality that this embedding is the embedding Lwi ↪→ Kv fixed in §4.2.1.
For this value of i, we have [Lwi : Kv] = [Gv : Gwψ ] ≥ 4 by assumption. We also have

DpH,wψ (Vψ|Gwψ ) = DpH,wψ (Qp ⊗A,ψ V ) ∼= 1⊗M0|Gwi ,DpH,wi
(ψi) M

1(Φ)|Gwi = M1
i (Φ′i)

as symplectic 1-modules in the category of filtered discrete (ϕ,N,Gwi)-modules, using Lemma 4.12 for
the final identification. The fact that (A, V ) is S-good of type (a) implies that the number field Lψ,
place wψ and symplectic representation Vψ satisfy the conditions of Definition 6.11, and hence we have
M1
i (Φ′i) ∈ Hy′i(Lwi)(a). This completes the proof of the claim, and hence of the proposition. �

6.3. Finiteness for points of type (b). Next, we deal with the set Y (Kv)
LV
X,(b). Again, this goes via

the theory of period maps, but rather than using Faltings’ Lemma and a dimension estimate, we instead
use a more explicit argument. Throughout §6.3, we again fix an abelian-by-finite family X → Y ′ → Y
and a Kv-point y0 ∈ Y (Kv). We define

Hy0
(Kv)

LV
X,(b) ⊆ Hy0

(Kv)

to be the set of Lagrangian H0
dR(Xy0

/Kv)-submodules Φ of H1
dR(Xy0

/Kv) such that

M1(Φ) ∼= (DpH(A),DpH(V ))

for some symplectic pair (A, V ) in the category of de Rham Gv-representations of type (b). Our aim is
to prove the following counterpoint to Proposition 6.9.

Proposition 6.15. Hy0(Kv)
LV
X,(b) is not Zariski-dense in Hy0 .
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Corollary 6.16. If X → Y ′ → Y has full monodromy, then Y (Kv)
LV
X,(b) is finite.

Again, the decomposition of the fibre Xy0
reduces this to a simpler computation. For a closed

point y′i ∈ |Y ′y0
|, we write

Hy′i(Lwi)(b) ⊆ Hy′i(Lwi)
for the set of Lagrangian Lwi-subspaces Φ′i of H1

dR(Xy′i
/Lwi) for which there exists a non-zero isotropic

filtered discrete (ϕ,N,Gwi)-submodule D ≤M1
i (Φ′i) such that

dimLwi
F1DdR ≥

1

2
dimQnr

p
Dpst .

We say that D has average Hodge–Tate weight ≥ 1/2.

Lemma 6.17 (cf. [LV20, Lemma 6.3]). If [Lwi : Kv] ≥ 4, then Hy′i(Lwi)(b) is not Zariski-dense in

Res
Lwi
Kv
Hy′i .

Proof. It suffices to show that Hy′i(Lwi)(b) is not Zariski-dense in the base-change of Res
Lwi
Kv
Hy′i from Kv

to Kv. We enumerate the Kv-embeddings Lwi ↪→ Kv as ι1, . . . , ιr, with ι1 the embedding chosen earlier,
so that there is an isomorphism

Kv ⊗Kv Lwi ∼=
r∏
j=1

Kv

of Kv-algebras whose jth component is 1⊗ ιj . For each j, we may choose an element σj ∈ Gv such that
ιj = σj ◦ ι1, and we may assume moreover that σj acts on Qnr

p as an integer power ϕmj of Frobenius. In
the case j = 1, we may take σ1 = 1 and m1 = 0. Fixing these choices of σj and mj , we have a Kv-linear
isomorphism

Kv ⊗ιj H1
dR(Xy′i

/Lwi)
∼= Kv ⊗Qnr

p
H1

pst(Xy′i
/Qnr

p )

given as the composite

Kv ⊗ιj H1
dR(Xy′i

/Lwi) Kv ⊗ι1 H1
dR(Xy′i

/Lwi)

Kv ⊗Qnr
p

H1
pst(Xy′i

/Qnr
p ) Kv ⊗Qnr

p
H1

pst(Xy′i
/Qnr

p ) .

σ−1
j ⊗1

∼

c−1
BO◦c

−1
dR

∼

σj⊗ϕmj
∼

Taken together, we obtain an isomorphism

Kv ⊗Kv H1
dR(Xy′i

/Lwi)
∼=

r∏
j=1

(
Kv ⊗ιj H1

dR(Xy′i
/Lwi)

) ∼= (Kv ⊗Qnr
p

H1
pst(Xy′i

/Qnr
p )
)r

(6.1)

of symplectic modules overKv⊗KvLwi ∼=
∏r
j=1Kv. In particular, LagrangianKv⊗KvLwi-submodules of

the left-hand side of (6.1) correspond bijectively to r-tuples of LagrangianKv-subspaces of the symplectic
vector space Kv ⊗Qnr

p
H1

pst(Xy′i
/Qnr

p ), so we have a decomposition(
Res

Lwi
Kv
Hy′i

)
Kv

∼= LGrass(Kv ⊗Qnr
p

H1
pst(Xy′i

/Qnr
p ))r .

If now Φ′i is a Lagrangian Lwi-subspace of H1
dR(Xy′i

/Lwi), then Kv ⊗Kv Φ′i corresponds under (6.1)
to an r-tuple of Lagrangian Kv-subspaces Φ′ij of Kv ⊗Qnr

p
H1

pst(Xy′i
/Qnr

p ) satisfying

Φ′ij = (σj ⊗ ϕmj )(Φ′i1)

for all i. If Φ′i ∈ Hy′i(Lwi)(b), then by definition there is a non-zero isotropic (ϕ,N,Gwi)-submodule
Dpst ≤ H1

pst(Xy′i
/Qnr

p ) such that dimKv
(Kv ⊗Qnr

p
Dpst) ∩ Φ′i1 ≥ 1

2 dimQnr
p
Dpst. Since Dpst is ϕ-stable,

this in fact implies that for all j

dimKv
(Kv ⊗Qnr

p
Dpst) ∩ Φ′ij ≥

1

2
dimQnr

p
Dpst .

Hence non-density of Hy′i(Lwi)(b) in
(

Res
Lwi
Kv
Hy′i

)
Kv

follows from the following pure linear algebra

lemma. �
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Sublemma 6.18 (cf. [LV20, Lemma 6.4]). Let (V, ω) be a symplectic vector space over a field F , and
let r ≥ 4. Then the set of r-tuples (Φs)1≤s≤r of Lagrangian F -subspaces of V for which there exists a
non-zero isotropic F -subspace W ≤ V satisfying

dim(Φj ∩W ) ≥ 1

2
dim(W ) for 1 ≤ j ≤ r (∗)

is contained in a proper Zariski-closed subscheme of LGrass(V, ω)r.

Proof. We may assume without loss of generality that F is algebraically closed, which anyway is the
only case we will need. It suffices to prove the result in the case r = 4. Let IGrass∗(V, ω) denote
the Grassmannian of non-zero isotropic subspaces in V . The set Z ⊆ LGrass(V, ω)4 described in the
sublemma is the image under the proper projection

pr2 : IGrass∗(V, ω)× LGrass(V, ω)4 → LGrass(V, ω)4

of the set Z̃ of all (W,Φ1,Φ2,Φ3,Φ4) satisfying (∗). Now for j = 1, 2, 3, 4, the function dim(Φj ∩W ) is
upper-semicontinuous, and hence the subset Z̃ is Zariski-closed. The projection Z = pr2(Z̃) is then also
Zariski-closed. We want to prove that Z is not all of LGrass(V, ω)4, for which it suffices to exhibit an
F -point of LGrass(V, ω)4 which doesn’t lift to Z̃(F ).

We construct such a point as follows. Let Φ1 = 〈e1, e2, . . . , ed〉 be a Lagrangian subspace and let
Φ2 = 〈f1, f2, . . . , fd〉 be a Lagrangian complement spanned by a dual basis, i.e. such that ω(eα, fβ) = δαβ .
The graph Φψ of a linear map ψ : Φ1 → Φ2 is a Lagrangian subspace of V = Φ1 ⊕ Φ2 if and only if
the pairing on Φ1 defined by 〈x, y〉ψ := ω(x, ψ(y)) is symmetric; and ψ is an isomorphism if and only
if 〈−,−〉ψ is non-degenerate. We choose ψ3, ψ4 : Φ1

∼−→ Φ2 as the maps given by ψ3(eα) = fα and
ψ4(eα) = λαfα for a choice of distinct nonzero λα ∈ F×. Clearly the pairings 〈−,−〉ψj are symmetric
for j = 3, 4. With Φj = Φψj for j = 3, 4 we find

V = Φj1 ⊕ Φj2 ; for all j1 < j2, (j1, j2) 6= (3, 4) .

Suppose now for contradiction that (Φ1,Φ2,Φ3,Φ4) lies in the image of a point in Z̃(F ). There is thus
a non-zero isotropic F -subspace W of V satisfying (∗). It follows from this that, writing Wj = Φj ∩W ,
we have

W = Wj1 ⊕Wj2 ; for all j1 < j2, (j1, j2) 6= (3, 4) .

It follows that ψj(W1) = W2 for j = 3, 4 and thus W1 is a g = ψ−1
3 ψ4-stable subspace of Φ1. Since

g(eα) = λαeα, the map g has dim(Φ1)-many different eigenvalues and so W1 must contain one of the
vectors eα. But then W also contains ψ3(eα) = fα, contradicting the fact that W is isotropic as
ω(eα, fα) = 1. �

Remark 6.19. The corresponding result in [LV20], Lemma 6.4, differs from Sublemma 6.18 in that W is
not required to be isotropic, but on the other hand, r is required to be at least 5.

Proof of Proposition 6.15. As in the proof of Proposition 6.9, our aim is to prove that for every Φ ∈
Hy0

(Kv)
LV
X,(b) there exists an index i such that [Gv : Gwi ] ≥ 4 and the ith component Φ′i of Φ lies

in Hy′i(Lwi)(b). This implies the proposition by Lemma 6.17 and the decomposition (4.3) of Hy0 .
Again, proving this claim is a matter of unwinding definitions. Given some Φ ∈ Hy0

(Kv)
LV
X,(b),

there is by definition a symplectic pair (A, V ) of type (b) in the category of Gv-representations and an
isomorphism

M1(Φ) ∼= (DpH(A),DpH(V )) (∗)
of symplectic pairs in filtered (ϕ,N,Gv)-modules. Recall that being of type (b) means that there exists
some ψ ∈ ΣA such that [Gv : Gwψ ] ≥ 4 and Vψ possesses a non-zero isotropic Gwψ -subrepresentation
W ≤ Vψ whose average Hodge–Tate weight is ≥ 1/2. As in the proof of Proposition 6.9, the element ψ ∈
ΣA corresponds to the Qp-algebra homomorphism

ψi : H0
ét(Xy0,Kv

,Qp)→ Qp

induced by a pair of a closed point y′i ∈ |Y ′y0
| and a Kv-embedding Kv(y

′
i) ↪→ Kv; again we may assume

without loss of generality that this embedding is the embedding Lwi ↪→ Kv fixed in §4.2.1.
For this value of i, we have [Lwi : Kv] = [Gv : Gwψ ] ≥ 4 by assumption, and

DpH,wψ (Vψ|Gwψ ) ∼= M1
i (Φ′i)
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as symplectic 1-modules in the category of filtered discrete (ϕ,N,Gwi)-modules. Hence DpH,wψ (W )

corresponds to a non-zero isotropic filtered discrete (ϕ,N,Gwi)-submodule D of M1
i (Φ′i) whose average

Hodge–Tate weight is ≥ 1/2. So M1
i (Φ′i) ∈ Hy′i(Lwi)(b), completing the proof. �

6.4. The Kodaira–Parshin family and points of type (c). It remains to deal with the set Y (Kv)
LV
X,(c).

The approach here is different to the approach for Y (Kv)
LV
X,S,(a) and Y (Kv)

LV
X,(b): rather than prove that

Y (Kv)
LV
X,(c) is finite in any level of generality, we will instead exhibit a particular abelian-by-finite family

X → Y ′ → Y for which Y (Kv)
LV
X,(c) = ∅. The relevant construction was given in [LV20, §7], where

Lawrence and Venkatesh constructed an abelian-by-finite family Xq → Y ′q → Y called the Kodaira–
Parshin family with parameter q (an odd prime number). The Kodaira–Parshin family has constant
relative dimension dq = (g− 1/2)(q− 1) > 0 [LV20, §7.2] and always has full monodromy [LV20, §8.2.3].
The key point here is that, for a suitable choice of q, we also have Y (Kv)

LV
X,(c) = ∅.

Proposition 6.20. Let Xq → Y ′q → Y be the Kodaira–Parshin family with parameter q an odd prime
number, and suppose that q satisfies the following two conditions:

• q−1 is not divisible by 4 or any odd prime divisor of qv(qv+1)(q3
v−1), where qv is the cardinality

of the residue field of Kv; and
• q − 1 ≥ 9nv, where nv is the number of extensions of Kv of degree 2 or 3 inside Kv.

Then Y (Kv)
LV
Xq,(c) = ∅.

Proof. We follow a proof similar to [LV20, Theorem 5.4]. For a finite non-empty Gv-set Σ let us write22

sizev(Σ) :=
#{x ∈ Σ : x is contained in a Gv-orbit of size < 4}

#Σ
.

So we wish to prove that

sizev(Y
′
q,y(Kv)) <

1

dq + 1

for all y ∈ Y (Kv).
We denote by Aff(q) the affine linear group FqoF×q of dimension 1, and write k = (q− 1)/2 for short.

The construction of the Kodaira–Parshin family shows that there is a Gv-equivariant bijection

Y ′q,y(Kv) ∼= Surjout,∗(πét
1 (YKv

− y),Aff(q)) ,

where Surjout,∗(πét
1 (YKv

− y),Aff(q)) denotes the set of surjections πét
1 (YKv

− y) � Aff(q) which are
non-trivial on an inertia generator at y, up to conjugation. The projections Aff(q) � F×q � Z/kZ induce
Gv-equivariant surjections

Surjout,∗(πét
1 (YKv

− y),Aff(q)) � Surj(πét
1 (YKv

− y),F×q ) = Surj(πét
1 (YKv

),F×q ) � Surj(πét
1 (YKv

,Z/kZ)) ,

each of whose fibres all have the same size, see [LV20, Lemma 2.11]23. We then have the estimate

sizev(Yq,y(Kv)) = sizev(Surjout,∗(πét
1 (YKv

− y),Aff(q))) ≤ sizev(Surj(πét
1 (YKv

),Z/kZ)) ,

so it suffices to prove that sizev(Surj(πét
1 (YKv

),Z/kZ)) < 1
dq+1 .

On the one hand, the number of surjections πét
1 (YKv

) � Z/kZ is equal to the number of 2g-tuples of
elements of Z/kZ which generate it as an abelian group. The number of such tuples is

# Surj(πét
1 (YKv

),Z/kZ) = k2g ·
∏
r

(1− r−2g) > ζ(2g)−1 · k2g

where r runs through the distinct prime factors24 of k.

22This is the same as [LV20, Definition 5.2], except that we count orbits of size < 4 rather than < 8.
23Strictly speaking, [LV20, Lemma 2.11] only proves the corresponding statement when Surjout,∗(πét

1 (YKv
− y),Aff(q))

is replaced by the set Surj∗(πét
1 (YKv

− y),Aff(q)) of surjections πét
1 (YKv

− y) � Aff(q) which are non-trivial on an
inertia generator at y, not up to conjugation. But the conjugation action of Aff(q) on Surj∗(πét

1 (YKv
− y),Aff(q)) is free

(since Aff(q) has trivial centre), from which we deduce the statement we need.
24One can tighten the bound slightly by observing that 2, 3 - k.
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On the other hand, the group of homomorphisms πét
1 (YK) → Z/kZ (not necessarily surjective) is

Gv-equivariantly isomorphic to the étale cohomology group

M := H1
ét(YKv

,Z/kZ) ,

which carries a perfect Gv-equivariant alternating Weil pairing

〈·, ·〉 : M ⊗M → µ∨k .

We need to estimate the size of the subset
⋃
Gw

MGw of M , where Gw ranges over open subgroups of
index 2 or 3. Such a Gw contains an element T acting on the residue field as the ith power of arithmetic
Frobenius for some 1 ≤ i ≤ 3. If m1,m2 ∈MGw , we then have

〈m1,m2〉 = 〈Tm1, Tm2〉 = T 〈m1,m2〉 = q−iv 〈m1,m2〉 .
But the first of our assumptions on q ensures that gcd(k, qiv − 1) = 1, and hence we have 〈m1,m2〉 = 0,
i.e. MGw is isotropic with respect to the Weil pairing. This implies that

#MGw ≤ kg .
In total, the number of elements of M contained in a Gv-orbit of size < 4 is at most nvkg.

Combining this with the previous part, we obtain

sizev(Surj(πét
1 (YKv

),Z/kZ)) <
ζ(2g)nv
kg

<
9nv
8kg
≤ 1

4kg−1
<

1

(2g − 1)k + 1
=

1

dq + 1
,

which is what we wanted to prove. �

Remark 6.21. The quantity nv appearing in the statement of Proposition 6.20 is bounded depending
only on K. In fact, if v - 6 then we always have nv = 7: Kv has three quadratic extensions and
four cubic extensions inside Kv. (If qv ≡ 1 modulo 3 then all of the cubic extensions are Galois; if
instead qv ≡ −1 modulo 3 then one of the cubic extensions is Galois and the other three are conjugate
non-Galois extensions.)

Corollary 6.22. For every finite place v of K, there exists an abelian-by-finite family X → Y ′ → Y of
constant relative dimension > 0, having full monodromy, such that Y (Kv)

LV
Xq,(c) = ∅.

Proof. Dirichlet’s Theorem ensures that there exists an odd prime q satisfying the conditions of Propo-
sition 6.20. The Kodaira–Parshin family with this parameter q has full monodromy [LV20, §8.2.3] and
has Y (Kv)

LV
X,(c) = ∅ by Proposition 6.20. �

6.5. Proof of Theorem 6.5. Putting this all together, we obtain the proof of Theorem 6.5. Suppose
that v is self-conjugate, and let Xq → Y ′q → Y be the Kodaira–Parshin family with parameter q, where q
satisfies the conditions of Proposition 6.20. The Principal Trichotomy (Proposition 6.7) implies that

Y (Kv)
LV
Xq,S ⊆ Y (Kv)

LV
Xq,S,(a) ∪ Y (Kv)

LV
X,(b) ∪ Y (Kv)

LV
Xq,(c) ,

since v is self-conjugate. Because the Kodaira–Parshin family has full monodromy, the sets Y (Kv)
LV
Xq,S,(a)

and Y (Kv)
LV
Xq,(b) are finite by Corollaries 6.10 and 6.16, and we also have Y (Kv)

LV
Xq,(c) = ∅ by Proposi-

tion 6.20. Hence the Lawrence–Venkatesh locus Y (Kv)
LV
Xq,S

is finite. �

Remark 6.23. Compared with the proof in [LV20], our proof shows finiteness of the locus Y (Kv)
LV
Xq,S

for more pairs (v, q) of a finite place v and an odd prime q. The proof in [LV20] establishes finiteness
of Y (Kv)

LV
Xq,S

whenever (v, q) satisfies the following list of conditions:
(1◦) v is self-conjugate and unramified over Q (i.e. friendly), and does not divide 2;
(2◦) q − 1 is not divisible by 4 or any odd prime divisor of qv ·

∏7
i=1(qiv − 1);

(3◦)
4 · ζ(2g) · 2g

(q − 1)g
<

1

(g − 1/2)(q − 1) + 1
;

(4◦) the Kodaira–Parshin family Xq → Y ′q → Y admits a good model over the ring of integers of Kv

in the sense of [LV20, Definition 5.1].
By contrast, our proof establishes finiteness of Y (Kv)

LV
Xq,S

whenever (v, q) satisfies the following less
stringent list of conditions:

(1) v is self-conjugate;
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(2) q − 1 is not divisible by 4 or any odd prime divisor of qv ·
∏3
i=1(qiv − 1);

(3)
nv · ζ(2g) · 2g

(q − 1)g
<

1

(g − 1/2)(q − 1) + 1
.

(In the case that Y has good reduction at v, the quantity nv can be replaced by 2, since the representa-
tion M appearing in the proof of Proposition 6.20 is unramified, and so one need only consider the two
subgroups Gw corresponding to unramified extensions of Kv.)

We conclude with a miscellany of remarks comparing how easy it is to satisfy the conditions (1◦)–(4◦)
compared with (1)–(3).

(I) When K contains no CM subfield, then for 100% of places v (in the natural density) there exists
an odd prime q satisfying (1◦)–(4◦). Indeed, for any q satisfying (3◦), conditions (1◦) and (4◦) are
satisfied for all but finitely many places v. And if we choose q ≡ 3 modulo 4 such that Q(ζq−1) is
linearly disjoint from the Galois closure K ′ of K, then qv is equidistributed among the invertible
residue classes modulo q − 1, so condition (2◦) is satisfied for a proportion of at least∏

r|q−1

max

(
1− 18

r − 1
, 0

)
(∗)

of places of K, where r runs over odd prime factors of q. (Here, 18 is the maximal number of
elements of order ≤ 7 in a cyclic group.)

We claim that the quantity (∗) can be made arbitrarily close to 1 for suitably chosen q
(satisfying all other relevant conditions). For this, choose an auxiliary prime number r0 ≥ 100
strictly greater than all odd prime divisors of [K ′ : Q], and let q be the least prime number
congruent to 3 modulo 4 and congruent to 2 modulo all odd primes less than r0. Then (3◦) is
automatically satisfied, K ′ is linearly disjoint from Q(ζq−1), and Linnik’s Theorem tells us that
log(q) = O(π(r0) log(r0)) = O(r0) where π(r0) = O(r0/ log(r0)) is the prime counting function.
Now every odd prime factor of q − 1 is at least r0 and there are at most log(q)/ log(r0) of them,
so we obtain

(∗) ≥
(

1− 50

r0

)log(q)/ log(r0)

≥ exp

(
−100 log(q)

r0 log(r0)

)
= exp

(
− O(1)

log(r0)

)
,

and the right-hand bound tends to 1 as r0 →∞.
(II) On the other hand, there are always places v for which (1◦)–(4◦) are not satisfied for any q, e.g.

if v is ramified over Q, if v | 2, or if Y has bad reduction at v. This is the most significant
difference in the context of this paper, since we want to prove a constraint for every place v.

(III) In general, the smallest value of q satisfying (1)–(3) is smaller than the smallest value satisfy-
ing (1◦)–(4◦). For example, if Y is a curve of genus 3, then the smallest value of q satisfying (1◦)–
(4◦) for some v is q = 23, since (2◦) implies in particular that q − 1 cannot be divisible by 3, 5
or 7. On the other hand, the smallest value of q satisfying (1)–(3) (with the modification of (3)
for places of good reduction) is q = 11. As mentioned in the introduction, this extra efficiency
may be useful in the context of carrying out the Lawrence–Venkatesh method in practice.

7. The Lawrence–Venkatesh obstruction for Selmer sections

Having shown finiteness of the Lawrence–Venkatesh locus, we now come to the other half of our proof
of Theorem A. We fix notation as in the preceding section; that is, K is a number field, Y/K is a smooth
projective curve of genus ≥ 2, and v is a p-adic place of K for some rational prime p. Our aim is to
prove the following, which proves point (1) of the introduction.

Theorem 7.1. For every abelian-by-finite family X → Y ′ → Y , the image of the localisation map

SecSel(Y/K)→ Y (Kv)

is contained in the Lawrence–Venkatesh locus Y (Kv)
LV
X (see Definition 6.1).

For the remainder of this section, we fix a choice of abelian-by-finite family X → Y ′ → Y and write
π : X → Y for the projection.
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7.1. Relative étale cohomology of an abelian-by-finite family. The relative étale cohomology
R•πét∗Qp of the abelian-by-finite family π : X → Y is a Qp-local system on Yét whose fibre at any
geometric point y of Y is H•ét(Xy,Qp). We see, e.g. by looking at any fibre, that the natural map∧•

πét∗Qp

R1πét∗Qp
∼−→ R•πét∗Qp

is an isomorphism of Qp-local systems on Yét. Now let λ denote the polarisation on X → Y ′. We define
its first relative étale Chern class

cét
1 (λ)/Y ∈ H0(Y,R2πét∗Qp(1))

as follows. The Kummer sequence induces a boundary map

R1πét∗Gm → R2πét∗µpn ∼= R2πét∗Z/pnZ(1)

for every n ≥ 0. These maps are compatible in a natural way, so induce a map

R1πét∗Gm → R2πét∗Zp(1)

of inverse systems of abelian sheaves on Yét, where the left-hand side is viewed as a constant inverse
system. For a line bundle L on X, we define cét

1 (L)/Y to be the image of the class of L in Pic(X) =

H1(Xét,Gm) under the composite

H1(Xét,Gm)→ H0(Y,R1πét∗Gm)→ H0
(
Y,R2πét∗Zp(1)

)
→ H0

(
Y,R2πét∗Qp(1)

)
where the first map arises from the Leray spectral sequence for étale cohomology, and the final map is
tensoring with Qp over Zp. We set cét

1 (λ)/Y = 1
2c

ét
1 (L)/Y for L = (1, λ)∗P with P the Poincaré bundle.

Now it follows from the usual functoriality properties of the Leray spectral sequence that the fibre of
cét
1 (λ)/Y at a geometric point y of Y is cét

1 (λy) ∈ H2
ét(Xy,Qp(1)), where λy is the polarisation on the

fibre Xy. If we define

Hét
1 (X/Y,Qp) := Homπét∗Qp

(
R1πét∗Qp, πét∗Qp

)
,

then

cét
1 (λ)/Y ∈ H0

(
Y,R2πét∗Qp(1)

)
= H0

(
Y,
∧2

πét∗Qp

R1πét∗Qp(1)
)

corresponds to a pairing

ω̌ét
λ :

∧2

πét∗Qp

Hét
1 (X/Y,Qp)→ πét∗Qp(1) .

By considering the fibre of this pairing at a geometric point of Y and using Lemma 4.2, we see that ω̌ét
λ

is a perfect pairing: it induces an isomorphism

Hét
1 (X/Y,Qp)

∼−→ R1πét∗Qp(1)

of Qp-local systems on Yét. Hence there is a dual pairing

ωλ :
∧2

πét∗Qp

R1πét∗Qp → πét∗Qp(−1) ,

making R1πét∗Qp into a symplectic πét∗Qp-module in the category of Qp-local systems on Yét. The fibre
of the symplectic pair

R≤1πét∗Qp := (πét∗Qp,R1πét∗Qp)

at a geometric point y of Y is isomorphic to the symplectic pair

H≤1
ét (Xy,Qp) = (H0

ét(Xy,Qp),H1
ét(Xy,Qp))

compatibly with the algebra and symplectic module structures and, if y is defined over a non-algebraically
closed field, the action of the Galois group.
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7.2. Attaching representations to Galois sections. We can use this setup to attach to every Galois
section a symplectic pair in the category of GK-representations. Let us fix a geometric point η̄ of YK ,
and write A and V for the πét

1 (Y, η̄)-representations corresponding to the Qp-local systems πét∗Qp and
R1πét∗Qp, respectively. Thus (A, V ) is a symplectic pair in the category of πét

1 (Y, η̄)-representations.
If s is a section of the fundamental exact sequence

1→ πét
1 (YK , η̄)→ πét

1 (Y, η̄)→ GK → 1 ,

then we define As := A and Vs := V , endowed with the action of GK given by restriction along
s : GK → πét

1 (Y, η̄). Thus (As, Vs) is a symplectic pair in the category of GK-representations. Moreover,
if γ is an element of πét

1 (YK , η̄) and s′ = γsγ−1 is a conjugate section, then the action of γ gives a GK-
equivariant isomorphism (As, Vs)

∼−→ (As′ , Vs′). So the isomorphism class of the symplectic pair (As, Vs)
depends only on the πét

1 (YK , η̄)-conjugacy class of s.
More generally, if η̄′ is another geometric point of YK and γ ∈ πét

1 (YK ; η̄, η̄′) is an étale path from η̄
to η̄′, then conjugation by γ induces an isomorphism

1 πét
1 (YK , η̄) πét

1 (Y, η̄) GK 1

1 πét
1 (YK , η̄

′) πét
1 (Y, η̄′) GK 1

o o (†)

between the fundamental exact sequences at basepoints η̄ and η̄′, respectively. If s′ = γsγ−1 is the section
of the lower sequence in (†) conjugate to s, then the action of γ gives a GK-equivariant isomorphism
(As, Vs)

∼−→ (A′s′ , V
′
s′), where A

′ and V ′ are the πét
1 (Y, η̄′)-representations corresponding to the Qp-local

systems πét∗Qp and R1πét∗Qp, respectively. So the isomorphism class of the symplectic pair (As, Vs) is
also independent of the choice of geometric basepoint η̄ defining the étale fundamental group.

7.2.1. Selmer sections. In the particular case that the section s is Selmer, we can say considerably more
about the local behaviour of the representations As and Vs.

Proposition 7.2. Let u be a place of K. Suppose that the restriction s|Gu of s to the decomposition
group Gu ⊆ GK is the local section arising from a point yu ∈ Y (Ku). Then

(As|Gu , Vs|Gu) ∼= H≤1
ét (Xyu,Ku

,Qp)
as symplectic pairs in the category of Gu-representations.

Proof. By the above discussion, we may suppose that the geometric point η̄ defining the fundamental
group is ȳu, the Ku-valued geometric point of YK determined by yu. Moreover, we may suppose that
the restricted section s|Gu is the map

Gu = πét
1 (Spec(Ku),Spec(Ku))

ι∗−→ πét
1 (YKu , ȳu) ⊆ πét

1 (Y, ȳu)

induced by functoriality from the morphism

ι : (Spec(Ku),Spec(Ku))→ (YKu , ȳu)

of pointed schemes. By definition of the étale fundamental group as a functor, (As|Gu , Vs|Gu) is Gu-
equivariantly isomorphic to ι∗R≤1πét∗Qp, which is isomorphic to H≤1

ét (Xyu,Ku
,Qp). �

Proof of Theorem 7.1. As a consequence of Proposition 7.2, if s is a Selmer section with associated
adelic point y = (yu)u ∈ Y (AK), then the symplectic pair (As, Vs) interpolates the points yu in the
sense of Definition 6.1. In particular, we have y ∈ Y (AK)LV

X , and yv ∈ Y (Kv)
LV
X . Thus we have proved

Theorem 7.1. �

Appendix A. Filtered derived categories

In this appendix, we prove a few basic lemmas on filtered derived categories of sheaves used in the
proof of Theorem 3.12. Suppose that (U,A) is a small ringed site. One then has the derived category
D(A) of A-modules, which is given as the localisation of the categoryKom(A) of (unbounded) complexes
of A-modules at the quasi-isomorphisms.

Let SKom(A) denote the category of Z-indexed decreasing sequences

· · · → F1A→ F0A→ F−1A→ . . .
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of complexes of sheaves of A-modules. The maps Fi+1A→ FiA are not necessarily monomorphisms. A
morphism A→ B in SKom(A) is called a filtered quasi-isomorphism just when the induced maps FiA→
FiB are quasi-isomorphisms for all i. We defined the filtered derived category FD(A) to be the localisation
of SKom(A) at the filtered quasi-isomorphisms. Equivalently, FD(A) is the derived category of the
category Seq(A) of sequences in A.

Remark A.1. Any object of SKom(A) is quasi-isomorphic to an object A in which all of the maps
Fi+1A → FiA are monomorphisms, i.e. A is a filtered complex. Thus FD(A) can also be described
as the derived category of the category FMod(A) of filtered A-modules, hence the name. However,
since FMod(A) is not an abelian category, it is generally clearer to view FD(A) as the derived category
of SMod(A) instead.

There is a second important class of morphisms in SKom(A). If A ∈ SKom(A) is a sequence
of complexes of A-modules, we write griFA for the cone of the map Fi+1A → FiA. A map A → B
in SKom(A) is called a graded quasi-isomorphism just when the induced maps griFA → griFB are
quasi-isomorphisms for all i.

A.1. Cohomology objects. If A ∈ SKom(A) is a sequence of complexes, then it has natural coho-
mology objects Hj(A) ∈ Seq(A), namely the sequences

· · · → Hj(F1A)→ Hj(F0A)→ Hj(F−1A)→ . . . .

Note that even if A ∈ FKom(A) is a filtered complex, its cohomology objects Hj(A) may still not
be filtered themselves (meaning the maps Hj(Fi+1A) → Hj(FiA) may not be injective). We have the
following criterion due to Deligne which governs when this happens.

Lemma A.2. Suppose that A is a filtered complex of sheaves of A-modules whose filtration is bounded
below in every degree. If the spectral sequence associated to A degenerates at the first page, then Hj(A)
is a filtered A-module for all j.

Proof. It suffices to prove this under the additional assumption that the filtration is degreewise bounded
above. In this case, A is a filtered complex with strict differentials by [Del71, Proposition 1.3.2], and it
is easy to check that this implies that Hj(A) is filtered. �

Let us say that A ∈ SKom(A) has filtered cohomology objects just when Hj(A) is filtered for all j.

Lemma A.3. Suppose that A → B is a graded quasi-isomorphism in SKom(A) and A has filtered
cohomology objects.

(1) B also has filtered cohomology objects.
(2) The induced map Hj(A)∧ → Hj(B)∧ on the completions of cohomology objects with respect to

their filtrations is an isomorphism for all j.

Proof. For the first point, we note that A has filtered cohomology objects if and only if the coboundary
map Hi(grjFA)→ Hi+1(Fj+1A) is zero for all i and j. So if A has filtered cohomology objects and A→ B
is a derived graded quasi-isomorphism, then we have a commuting square

Hi(grjFA) Hi+1(Fj+1A)

Hi(grjFB) Hi+1(Fj+1B)

0

o

for all i and j, where the top arrow is 0 and the left-hand vertical arrow is an isomorphism. So the
bottom arrow is 0 too and B has filtered cohomology objects.

For the second point, A having filtered cohomology objects implies that the natural map

Hi(FjA)/Hi(FkA)→ Hi(FjA/FkA)

is an isomorphism for all i and all j ≤ k, where FjA/FkA is the cone of the map FjA → FkA. Since
A → B is a graded quasi-isomorphism, it induces quasi-isomorphisms FjA/FkA

∼−→ FjB/FkB for
all j ≤ k, and hence the induced maps

Hi(FjA)/Hi(FkA)→ Hi(FjB)/Hi(FkB)
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are isomorphisms for all i and all j ≤ k. Taking the inverse limit over k gives the result. �

Remark A.4. There are several different definitions of the filtered derived category in the literature; the
definition we give above coincides with that used in [SS16] and [BMS19]. If one localises SKom(A) in-
stead at the graded quasi-isomorphisms, one obtains the filtered derived category as defined in e.g. [GP18].
The filtered derived categories used in [Sch13] is also the localisation of SKom(A) at graded quasi-
isomorphisms: the term “filtered derived category” is not defined in [Sch13], but the definition was
clarified to us in email correspondence with Peter Scholze. In particular, maps referred to as “filtered
quasi-isomorphisms” in [Sch13] are what we refer to as graded quasi-isomorphisms above.

Remark A.5. The above discussion doesn’t strictly apply to the pro-étale site Uproét of [Sch13], since Uproét

is large. The necessary modifications were described to us by Peter Scholze. One follows the approach
in [Sch17], by picking a suitable cardinal (as in [Sch17, Lemma 4.1]) and considering only those adic
spaces U which are κ-small in the same sense as [Sch17, Definition 4.2]. If U is κ-small, then the κ-small
pro-étale site Uproét,κ is defined to be the restriction of the pro-étale site to the full subcategory of κ-small
objects. This is a small site.

One then checks, from [Sch17, Proposition 8.2] that the pullback functor

c−1
κ,κ′ : U

∼
proét,κ → U∼proét,κ′

on categories of sheaves is fully faithful for κ < κ′, and the natural map

F → Rcκ,κ′,∗c
−1
κ,κ′F (A.1)

is an isomorphism for all abelian sheaves F on Uproét,κ. We call the (large) colimit

U∼proét := lim−→
κ

U∼proét,κ

the category of small sheaves on Uproét, which is equivalent to the category of sheaves on Uproét which
arise via pullback from a sheaf on some Uproét,κ. All of the sheaves discussed in §3.2 are small, and
it follows from isomorphy of (A.1) that cohomology and derived pushforwards of small sheaves can be
computed on the level of sheaves on Uproét,κ for a suitable κ. So the discussion in this section can be
applied to small sheaves on Uproét, even though it is large.
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